Complexity of Geometric k-Planarity for Fixed k

Authors

  • Marcus Schaefer

DOI:

https://doi.org/10.7155/jgaa.00548

Keywords:

local crossing number , rectilinear crossing number , rectilinear local crossing number , existential theory of the reals , computational complexity

Abstract

The rectilinear local crossing number, $\mathop{\overline{\rm lcr}}(G)$, of a graph $G$ is the smallest $k$ so that $G$ has a straight-line drawing with at most $k$ crossings along each edge. We show that deciding whether $\mathop{\overline{\rm lcr}}(G) \leq k$ for a fixed $k$ is complete for the existential theory of the reals, $\exists \mathbb{R}$.

Downloads

Download data is not yet available.

Downloads

Published

2021-01-01

How to Cite

Schaefer, M. (2021). Complexity of Geometric k-Planarity for Fixed k. Journal of Graph Algorithms and Applications, 25(1), 29–41. https://doi.org/10.7155/jgaa.00548

Issue

Section

Articles

Categories