Time Windowed Data Structures for Graphs

Authors

  • Farah Chanchary
  • Anil Maheshwari

DOI:

https://doi.org/10.7155/jgaa.00489

Abstract

We present data structures that can answer time windowed queries for a set of timestamped events in a relational event graph. We study the relational event graph as input to solve (a) time windowed decision problems for monotone graph properties, such as disconnectedness and bipartiteness, and (b) time windowed reporting problems such as reporting the minimum spanning tree, the minimum time interval, and the graph edit distance for obtaining spanning forests. We also present results of window queries for counting subgraphs of a given pattern, such as paths of length 2 (in general graphs) and paths of length 3 (in bipartite graphs), quadrangles and complete subgraphs of a fixed order or of all orders $\ell \geq 3$ (i.e., cliques of size $\ell$). These query results can be used to compute graph parameters that are important for social network analysis, e.g., clustering coefficients, embeddedness and neighborhood overlapping.

Downloads

Download data is not yet available.

Downloads

Published

2019-01-01

How to Cite

Chanchary, F., & Maheshwari, A. (2019). Time Windowed Data Structures for Graphs. Journal of Graph Algorithms and Applications, 23(2), 191–226. https://doi.org/10.7155/jgaa.00489

Issue

Section

Articles

Categories