Stack and Queue Layouts via Layered Separators
DOI:
https://doi.org/10.7155/jgaa.00454Abstract
It is known that every proper minor-closed class of graphs has bounded stack-number (a.k.a. book thickness and page number). While this includes notable graph families such as planar graphs and graphs of bounded genus, many other graph families are not closed under taking minors. For fixed $g$ and $k$, we show that every $n$-vertex graph that can be embedded on a surface of genus $g$ with at most $k$ crossings per edge has stack-number $\mathcal{O}(\log n)$; this includes $k$-planar graphs. The previously best known bound for the stack-number of these families was $\mathcal{O}(\sqrt{n})$, except in the case of $1$-planar graphs. Analogous results are proved for map graphs that can be embedded on a surface of fixed genus. None of these families is closed under taking minors. The main ingredient in the proof of these results is a construction proving that $n$-vertex graphs that admit constant layered separators have $\mathcal{O}(\log n)$ stack-number.Downloads
Download data is not yet available.
Downloads
Published
2018-01-01
How to Cite
Dujmović, V., & Frati, F. (2018). Stack and Queue Layouts via Layered Separators. Journal of Graph Algorithms and Applications, 22(1), 89–99. https://doi.org/10.7155/jgaa.00454
Issue
Section
Articles
Categories
License
Copyright (c) 2018 Vida Dujmović, Fabrizio Frati
This work is licensed under a Creative Commons Attribution 4.0 International License.