Equitable colorings of $K_4$-minor-free graphs

Authors

  • Rémi de Joannis de Verclos
  • Jean-Sébastien Sereni

DOI:

https://doi.org/10.7155/jgaa.00451

Keywords:

Equitable coloring; maximum degree , K4-minor-free graph , Series-parallel graph , Decomposition tree

Abstract

We demonstrate that for every positive integer $\Delta$, every $K_4$-minor-free graph with maximum degree $\Delta$ admits an equitable coloring with $k$ colors where $k\ge\frac{\Delta+3}{2}$. This bound is tight and confirms a conjecture by Zhang and Wu. We do not use the discharging method but rather exploit decomposition trees of $K_4$-minor-free graphs.

Downloads

Download data is not yet available.

Downloads

Published

2017-10-01

How to Cite

de Joannis de Verclos, R., & Sereni, J.-S. (2017). Equitable colorings of $K_4$-minor-free graphs. Journal of Graph Algorithms and Applications, 21(6), 1091–1105. https://doi.org/10.7155/jgaa.00451

Issue

Section

Articles

Categories