Equitable colorings of $K_4$-minor-free graphs
DOI:
https://doi.org/10.7155/jgaa.00451Keywords:
Equitable coloring; maximum degree , K4-minor-free graph , Series-parallel graph , Decomposition treeAbstract
We demonstrate that for every positive integer $\Delta$, every $K_4$-minor-free graph with maximum degree $\Delta$ admits an equitable coloring with $k$ colors where $k\ge\frac{\Delta+3}{2}$. This bound is tight and confirms a conjecture by Zhang and Wu. We do not use the discharging method but rather exploit decomposition trees of $K_4$-minor-free graphs.Downloads
Download data is not yet available.
Downloads
Published
2017-10-01
How to Cite
de Joannis de Verclos, R., & Sereni, J.-S. (2017). Equitable colorings of $K_4$-minor-free graphs. Journal of Graph Algorithms and Applications, 21(6), 1091–1105. https://doi.org/10.7155/jgaa.00451
License
Copyright (c) 2017 Rémi de Joannis de Verclos, Jean-Sébastien Sereni
This work is licensed under a Creative Commons Attribution 4.0 International License.