Drawing Graphs with Few Arcs
DOI:
https://doi.org/10.7155/jgaa.00366Abstract
Let G=(V,E) be a planar graph. An arrangement of circular arcs is called a composite arc-drawing of G, if its 1-skeleton is isomorphic to G. Similarly, a composite segment-drawing is described by an arrangement of straight-line segments. We ask for the smallest possible ground set of arcs/segments for a composite arc/segment-drawing. We present algorithms for constructing composite arc-drawings with a small ground set for trees, series-parallel graphs, planar 3-trees and general planar graphs. In the case where G is a tree, we also introduce an algorithm that realizes the vertices of the composite drawing on a O(n1.81) ×n grid. For each of the graph classes we provide a lower bound for the maximal size of the arrangement's ground set.Downloads
Download data is not yet available.
Downloads
Published
2015-01-01
How to Cite
Schulz, A. (2015). Drawing Graphs with Few Arcs. Journal of Graph Algorithms and Applications, 19(1), 393–412. https://doi.org/10.7155/jgaa.00366
License
Copyright (c) 2015 André Schulz
This work is licensed under a Creative Commons Attribution 4.0 International License.