Metric Dimension Parameterized by Max Leaf Number
DOI:
https://doi.org/10.7155/jgaa.00360Abstract
The metric dimension of a graph is the size of the smallest set of vertices whose distances distinguish all pairs of vertices in the graph. We show that this graph invariant may be calculated by an algorithm whose running time is linear in the input graph size, added to a function of the largest possible number of leaves in a spanning tree of the graph.Downloads
Download data is not yet available.
Downloads
Published
2015-01-01
How to Cite
Eppstein, D. (2015). Metric Dimension Parameterized by Max Leaf Number. Journal of Graph Algorithms and Applications, 19(1), 313–323. https://doi.org/10.7155/jgaa.00360
License
Copyright (c) 2015 David Eppstein
This work is licensed under a Creative Commons Attribution 4.0 International License.