
Journal of Graph Algorithms and Applications
http://jgaa.info/ vol. 9, no. 1, pp. 19–29 (2005)

Graph Pattern Analysis with PatternGravisto

Christian Klukas Dirk Koschützki Falk Schreiber

Institute of Plant Genetics and Crop Plant Research,
Gatersleben, Germany.

http://www.ipk-gatersleben.de/en/
{klukas,koschuet,schreibe}@ipk-gatersleben.de

Abstract

The analysis of patterns in graphs has applications in many fields of
science. We propose a new method for analyzing graph patterns consisting
of a user-friendly and flexible mechanism to specify patterns, an algorithm
to recognize multiple appearances of patterns in a target graph, a pattern
preserving layout algorithm, and a navigation technique to explore the
underlying structure of the graph given by the patterns. This method has
been implemented in a tool called PatternGravisto. We demonstrate the
utility of our approach with the example graphs from the Graph Drawing
Contest 2003 which cover problems from biology and sociology.

Article Type Communicated by Submitted Revised

regular paper G. Liotta January 2004 July 2005

This work was supported by the German Ministry of Education and Research (BMBF)

under grant 0312706A.



Klukas, Koschützki, Schreiber, PatternGravisto, JGAA, 9(1) 19–29 (2005) 20

1 Introduction

Graphs are used to represent data and processes in many fields of science such
as biology, engineering, and sociology. To analyze graph structured data and
to uncover important properties patterns in graphs (also called motifs in net-
works) play an important role. Analyzing graph patterns has many applications,
including:

• Finding functional compounds in biological networks: Patterns such as
“feed-forward loops” may play functional roles for information processing
in gene regulatory networks [12].

• Determining the toxicology of substances: The toxicology or carcinogenic-
ity of chemical substances is often based on specific substructures [13].

• Identifying substructures of circuits: Using graph patterns sequential logic
circuits can be separated into classes such that the classification is related
to the circuit’s functional description [11].

Motivated by the Graph Drawing Contest 2003 (http://www.gd2003.org)
which asked entrants “to visualize distinguished graph structures that are con-
tained in larger graphs in a distinct way” we present a method for analyzing and
visualizing patterns in graphs. Our approach consists of (1) a powerful specifi-
cation of patterns, (2) a pattern recognition algorithm to detect them in a given
graph, (3) a pattern preserving layout algorithm to visualize the network such
that patterns are easily recognizable, and (4) a navigation technique to explore
the underlying structure of the graph.

This paper is organized as follows: in Section 2 we define the graph model
on which we operate, describe the pattern specification and discuss our pattern
recognition algorithm based on subgraph isomorphism. In Section 3 we present
a graph layout algorithm which produces an overall force directed layout of the
network with uniform visualization of all matches of a pattern. We furthermore
address a navigation technique to explore the underlying structure of the graph
using folding and unfolding of patterns and color-coding. Section 4 presents
some implementation aspects. To demonstrate the utility of our method it
is applied to the example graphs from the Graph Drawing Contest 2003 in
Section 5. Finally, we discuss our approach in Section 6.

2 Pattern in Graphs

2.1 Graphs and Isomorphism in Graphs

We consider labeled directed graphs1 G = (V,E,L) where V = {v1, . . . , vn} is
a finite set of vertices, E ⊆ {(vi, vj) | vi, vj ∈ V } is a finite set of edges and

1A graph without labels can be interpreted as a graph with “empty” labels. The outlined
method can also be adapted for undirected graphs, for example by using the transformation
of undirected into directed graphs with antiparallel edges for both the target and the pattern
graph.



Klukas, Koschützki, Schreiber, PatternGravisto, JGAA, 9(1) 19–29 (2005) 21

rpoN .*.*

^.*AB$

.*

hydHG

rtcRzraP atoC

rtcAB atoDAB atoDAE

fdhF

act

rep act act

actact actact

G

act

Gp

(act|rep)

Figure 1: An example graph G and a pattern Gp with regular expressions at
vertices and edges.

L = {l1, . . . , lp} is a finite set of vertex and edge labels. Each vertex or edge
of the graph is required to have a not necessarily unique label. We denote the
cardinality of the set of vertices by n and the cardinality of the set of edges by
m.

A graph G′ = (V ′, E′, L′) is a subgraph of a graph G = (V,E,L) if V ′ ⊆ V ,
E′ ⊆ E ∩ (V ′ × V ′), and L′ is the restriction of L on V ′ ∪ E′. Two graphs
G1 = (V1, E1, L1) and G2 = (V2, E2, L2) are isomorphic, if (1) there exists
a bijective mapping between the vertices in V1 and V2, (2) there is an edge
between two vertices of one graph if and only if there is an edge between the
two corresponding vertices in the other graph, and (3) the labels on the vertices
and edges are preserved by the mapping. A graph G1 is an isomorphic subgraph
of G2 if there exists a subgraph G′

2
of G2 which is isomorphic to G1.

2.2 Pattern Specification

A simple form of graph pattern matching is the problem of finding a subgraph
(the match) of an input graph (the target) such that the subgraph is isomorphic
to another input graph (the pattern). This problem is known as the subgraph
isomorphism problem [7, 14]. We are interested in a more general graph pattern
matching approach which finds multiple or all matches of a pattern in the target,
extends the scope defined by the patterns towards a more general definition of
label equivalence, and restricts the matching of vertices further.

Patterns are labeled directed graphs. To define families of patterns we allow
regular expressions as labels of vertices and edges. Every vertex or edge of a
pattern may be labeled with a regular expression and therefore a single graph
may specify either a single pattern, if the labels are interpreted as ordinary
strings, or may specify a family of patterns, if the labels are interpreted as
regular expressions.

Figure 1 shows a graph G and a pattern Gp with regular expressions at
the vertex and edge labels of Gp. Without considering labels we find three



Klukas, Koschützki, Schreiber, PatternGravisto, JGAA, 9(1) 19–29 (2005) 22

isomorphic subgraphs of the pattern Gp in the graph G which are shown in the
following table:

vertex in pattern Gp match 1 match 2 match 3
top vertex rpoN rpoN rpoN
mid vertex rtcR atoC atoC

bottom vertex rtcAB atoDAB atoDAE

Taking labels into consideration we find two matches of the pattern Gp in the
graph G, namely match 1 and match 2 from the previous table.

Regular expressions are not always sufficient to describe specific matches. In
many application areas only some of the matches should be interpreted as valid
depending on their topological environment. Think for example of a logical cir-
cuit where inner elements of a match are expected to have only as many incoming
signals as defined by the pattern. Therefore, we add secondary information be-
sides the labels to the pattern graph: every vertex may specify the number of
“additional” incoming edges (+i : V 7→ N) and outgoing edges (+o : V 7→ N)
which are not related to the pattern. This information restricts the available
vertices for a match in the target graph. For example, if for the mid vertex vm of
the pattern graph Gp from Figure 1 an arbitrary number of additional incoming
edges (+i(vm) = ∞) and outgoing edges (+o(vm) = ∞) are allowed we obtain
the same matches as before. Other settings of +i(vm) and +i(vm) may restrict
the matching of vertices. For example, the setting +i(vm) = 0 and +o(vm) = 0
does not allow any unrelated incoming and outgoing edges, therefore only the
first solution given above (match 1) is valid.

2.3 Pattern Detection

Subgraph isomorphism, which is the basis of our matching problem, is an NP-
complete problem [7]. A common approach to deal with the computationally
difficult task of subgraph isomorphism is to restrict the classes of graphs. Ex-
amples are algorithms for trees [1], planar graphs [8] and graphs with bounded
valence [10]. On the other hand, some graph class-independent algorithms do
exist. Although a faster algorithm for the general problem of subgraph isomor-
phism exists [4, 5], the work of Ullmann from 1976 [14] seems to be in use in
many situations.

Currently, we use Ullmann’s algorithm [14] with an extension towards our
pattern definition and therefore labeled, edge-restricted, directed graphs. The
matching of labels with regular expressions from a pattern to the target graph is
straightforward. The information concerning additional incoming and outgoing
edges is handled during the creation of the matrix M0. In Ullmann’s algorithm
M0 represents pairs of vertices between graph and subgraph (pattern) and con-
tains information about possible mappings between them. During initialization
of M0 the algorithm tests if the degree of a vertex of the target graph is equal
to or greater than the degree of the corresponding vertex of the subgraph. We
changed this initialization such that the in- and out-degrees of a vertex of the
target graph are between the in- and out-degrees of the corresponding vertex



Klukas, Koschützki, Schreiber, PatternGravisto, JGAA, 9(1) 19–29 (2005) 23

and these degrees plus the user-specified additional numbers of incoming and
outgoing edges.

3 Pattern Visualization

3.1 Graph Drawing for Pattern Visualization

Research dealing with (sub)graph isomorphism or the detection of symmetries
in graphs often considers visualization aspects. A typical visualization approach
is to use force-directed layout algorithms and extend them to draw isomorphic
(sub)graphs uniformly [2]. However, as far as we know no work considers the
problem of visualizing a graph such that sets of matches of different patterns
are easily readable.

In the following we present an approach that enhances the well known spring
embedder method [3, 6] to provide a layout of graphs which contain pattern
matches, where different patterns may have different layouts. In order to make
the matches in the target graph easily recognizable every match will be uniformly
laid out corresponding to the user defined layout of the pattern. The problem
of what happens if a vertex is in the intersection of more than one match is
discussed in Section 4. Our layout algorithm consists of two steps: (1) An
initial placement of the vertices, and (2) the modified spring embedder loop.

The initial placement assigns random positions to all vertices that do not
belong to a pattern. Afterwards all vertices of the matches in the target graph
are placed with the given layout of the corresponding pattern. A random move
vector is calculated and applied to all vertices that belong to a certain match
such that at the end of the initial layout every match is placed on a different
position without overlapping another match.

The second step is the spring embedder loop. The spring embedder method
of calculating a force vector for a vertex v is used for vertices that do not belong
to a match of a pattern. This force is the sum of the repulsive forces between
v and all other vertices and the spring forces between v and the vertices that
are connected with v. Vertices that belong to a match of a pattern are treated
differently. For these vertices a uniform movement vector is calculated. This
vector is the average of the forces which are computed for all vertices of the
match. During the calculation of the force for such a vertex only forces to
vertices that do not belong to the current match are considered. All vertices of
the match are moved at once, therefore the relative layout of the vertices within
the match does not change. Figure 3 shows a result of the layout algorithm.

3.2 Pattern Navigation Methods

Two methods for easy navigation through the target graph are considered: (1)
color-coding and (2) folding and unfolding of matches.

Pattern matches can be color-coded, i.e., a color can be assigned to each
pattern. This color is used for all matches of the pattern in the target graph



Klukas, Koschützki, Schreiber, PatternGravisto, JGAA, 9(1) 19–29 (2005) 24

Gp G G′

Figure 2: An example of a graph G which contains two matches of a pattern Gp.
Graph G′ is created by replacing the pattern matches in G with new vertices
(folding operation).

and therefore allows the easy recognition of multiple matches of the pattern.
Matches of patterns in the target graph can be collapsed into single vertices

(see Figure 2), which by default have the same color as the matches. The
resulting graph G′ is defined as follows: All vertices and edges of a match in the
graph G are replaced by a new vertex, whereas edges which connect the vertices
of the match to the remaining graph are preserved. It is possible to fold and
unfold specific patterns or all patterns in order to easily analyze the structure
of the original graph.

4 Implementation - PatternGravisto

PatternGravisto is based on Gravisto, a project from the University of Pas-
sau, Germany. We extended the functionality of the Gravisto graph editor via
the plug-in mechanism towards pattern specification and pattern matching (see
Section 2) as well as pattern layout and pattern navigation (see Section 3). We
would like to emphasize some aspects of the implementation of pattern matching
and pattern layout. Currently, the pattern matching algorithm allows a vertex
to be a member of at most one match. The pattern layout and the pattern
navigation components are restricted to deal with non-overlapping occurrences
of matches. However, a pattern may match the same set of vertices in the
target graph multiple times (e. g. for a clique with four vertices 24 matches to
itself exist) and a vertex may belong to several matches. Furthermore, a vertex
may belong to matches of different patterns. If a vertex is found multiple times
during pattern matching, the first occurrence is used.

It is sometimes very difficult to find a good layout for a graph containing
matched patterns with predefined layouts. Often several runs of the spring
embedder algorithm with different parameters are required. To avoid this sit-
uation and improve the users’ experience with the application, a thread-safe



Klukas, Koschützki, Schreiber, PatternGravisto, JGAA, 9(1) 19–29 (2005) 25

implementation of the spring embedder algorithm has been developed. The al-
gorithm computes the layout in the background and provides an interface for
changing parameters such as optimal edge length and stiffness while the al-
gorithm is still running. Therefore, every change of a parameter produces an
immediately visible reaction and helps the user to find a good visualization in
a very short time.

5 Application Examples

The usefulness of our approach is demonstrated on two examples given by the
organizers of the Graph Drawing Contest 2003: A biological and a social net-
work.

5.1 Biological Network - a Transcriptional Regulation Net-

work

This network shows the transcriptional regulation of Escherichia coli (courtesy
of Uri Alon, The Weizmann Institute). Vertices represent operons and tran-
scription factors and edges represent typed interactions. Interestingly this net-
work has frequent occurrences of small subgraphs (so-called motifs) described
by Shen-Orr et al. [12] and the main request is to highlight such motifs using
graph drawing methods.

A motif as described by Shen-Orr et al. [12] is a collection of related patterns.
They define these collections by structural considerations such as patterns with
similar structure but an arbitrary number of vertices (e.g. SIMs) or dense re-
gions which fulfill additional constraints (e.g. DORs). Our approach of pattern
matching is more related to subgraph isomorphism and therefore uses a fixed
structure for one pattern. To deal with motifs we use sets of patterns to cover
motifs.

Figure 3 shows a screenshot of PatternGravisto with the transcriptional reg-
ulation network consisting of 423 vertices and 578 edges. The window contains
the target graph (left hand side) and shows the interface for pattern manage-
ment (right hand side). One pattern which is part of the pattern set for the
motif “single input module” (SIM) is shown. The target graph contains sev-
eral matches of patterns which are laid out and color-coded as specified in the
pattern management interface.

5.2 Social Network - a Drug Policy Making Network

The given social network represents informal communications among organiza-
tions involved in drug policy making (courtesy of Patrick Kenis, Tilburg Univer-
sity). A visualization of this network should depict the structure of the overall
network, the structure of the subnetwork consisting only of confirmed relations,
and the way in which the latter is embedded in the former.



Klukas, Koschützki, Schreiber, PatternGravisto, JGAA, 9(1) 19–29 (2005) 26

Figure 3: PatternGravisto showing a part of the transcriptional regulation net-
work with some matches for motifs. For example, the highlighted subgraph with
three vertices in the middle of the graph is a match of the pattern shown in the
pattern management interface. To improve the readability of the drawing, edge
labels have been replaced by edge colors, for instance most of the edges in this
graph denote “activator” relations in the underlying transcriptional regulation
network.

Our pattern matching method does not solve the given task automatically.
Nevertheless, we believe that using our approach one can gain new insights into
the structure of the network such as confirmed or partly confirmed relations
in groups of organizations. We see our approach as an exploration technique
which allows “network discovery by doing”. For example, the screenshot in
Figure 4 displays small groups of communication partners. We decided to fo-
cus on three organization groups where from all to none of the communication
links are confirmed. The dark match shows a group where all communication
links are confirmed, the grey matches where one link is confirmed, and the
light grey match shows a group of three organizations where no link is formally
confirmed2.

2Note that every vertex can be a member of at most one match (see also Section 4),
therefore groups of more than three organizations are not immediately visible.



Klukas, Koschützki, Schreiber, PatternGravisto, JGAA, 9(1) 19–29 (2005) 27

Figure 4: PatternGravisto showing the informal communication among orga-
nizations involved in drug policy making, with different groups of three orga-
nizations; dark edges relate to confirmed relations. The side panel shows the
parameter settings for the interactive, pattern preserving spring embedder al-
gorithm.

6 Discussion

We have presented an approach to analyze patterns in graphs. In this paper
we discussed a flexible way to define patterns, an algorithm based on subgraph
isomorphism to recognize patterns in a given target graph, a pattern preserv-
ing layout algorithm extending the spring embedder approach, and a navigation
technique to explore the underlying structure of the graph given by the patterns.
The proposed algorithms have been implemented in a tool called PatternGrav-
isto.

The extensions of pattern detection and layout do not change the overall
complexity of both algorithms. Running time experiments with the example
graphs showed that the analysis and layout took a few seconds (the social net-
work with 26 vertices and 128 edges and a pattern size of 3 vertices and 3 edges)
and approximately five minutes (the biological network with 423 vertices and
578 edges and a pattern size of 7 vertices and 12 edges) on a normal personal
computer. Nearly all this time was inevitably spent on the pattern detection



Klukas, Koschützki, Schreiber, PatternGravisto, JGAA, 9(1) 19–29 (2005) 28

algorithm.
Our pattern matching method is based on subgraph isomorphism. The use

of regular expressions for vertex and edge labels allows us to define a family of
patterns by one pattern. By the restriction of additional incoming and outgoing
edges we are able to be more strict than subgraph isomorphism and therefore
to recognize specific matches, an extension which was motivated by discussions
with users. A limitation of our approach is that there is no way to express a
set of structurally similar patterns using one single pattern. One way to define
such sets of patterns would be the use of graph grammars. However, graph
grammars are only known within the computer science community and training
and explanation hurdles for users not familiar with this concept seem to be too
high, and therefore we decided to use the more straightforward solution of direct
pattern specification.

We plan to extend the functionality towards a user interface which allows
the user to assign a specific match of a pattern to a set of vertices. Currently,
PatternGravisto only works with a user-provided set of patterns. We therefore
want to investigate the automatic discovery of patterns in a given graph. A
further possible extension is an even more flexible and faster matching algorithm.
We are convinced that our method is of great value to find and visualize patterns
in graphs in order to obtain new insights into underlying data. Currently, we
are investigating the usability of our method in cooperation with scientists from
the University of Bielefeld, Germany, for pattern analysis in hormone networks.

Acknowledgements

We would like to thank Franz J. Brandenburg, Michael Forster, Andreas Pick,
Marcus Raitner and Paul Holleis (all University of Passau, Germany) for the
excellent cooperation and for granting usage of Gravisto; and the reviewers who
provided their thoughtful comments and suggestions for this paper.



Klukas, Koschützki, Schreiber, PatternGravisto, JGAA, 9(1) 19–29 (2005) 29

References

[1] A. V. Aho, J. E. Hopcroft, and J. D. Ullman. The Design and Analysis of
Computer Algorithms. Addison-Wesley Publishing Company, 1974.

[2] S. Bachl. Isomorphe Subgraphen und deren Anwendung beim Zeichnen von
Graphen. PhD thesis, Universität Passau, 2001.

[3] P. Eades. A heuristic for graph drawing. Congressus Numerantium, 42:149–
160, 1984.

[4] P. Foggia, C. Sansone, and M. Vento. A database of graphs for isomorphism
and sub-graph isomorphism benchmarking. In Jolion et al. [9], pages 176–
187.

[5] P. Foggia, C. Sansone, and M. Vento. An improved algorithm for matching
large graphs. In Jolion et al. [9], pages 149–159.

[6] T. Fruchterman and E. Reingold. Graph drawing by force-directed place-
ment. Software - Practice and Experience, 21(11):1129–1164, 1991.

[7] M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide
to the Theory of NP-Completeness. W. H. Freeman, New York, 1979.

[8] J. E. Hopcroft and J. K. Wong. Linear time algorithm for isomorphism
of planar graphs (preliminary report). In Proc. 6th ACM Symposium on
Theory of Computing, pages 172–184. ACM Press, 1974.

[9] J. M. Jolion, W. Kropatsch, and M. Vento, editors. Proc. 3rd IAPR-TC15
Workshop on Graph-based Representations in Pattern Recognition, 2001.

[10] E. M. Luks. Isomorphism of graphs of bounded valance can be tested in
polynomial time. Journal of Computer and System Sciences, 25(1):42–65,
1982.

[11] R. Milo, S. Shen-Orr, S. Itzkovitz, N. Kashtan, D. Chklovskii, and U. Alon.
Network motifs: Simple building blocks of complex networks. Science,
298:824–827, 2002.

[12] S. Shen-Orr, R. Milo, S. Mangan, and U. Alon. Network motifs in the
transcriptional regulation network of escherichia coli. Nature Genetics,
31(1):64–68, 2002.

[13] A. Srinivasan, R. D. King, S. H. Muggleton, and M. J. E. Sternberg. The
predictive toxicology evaluation challenge. In Proc. 15th International Joint
Conference on Artificial Intelligence (IJCAI), pages 1–6, 1997.

[14] J. R. Ullmann. An algorithm for subgraph isomorphism. Journal ACM,
23(1):31–42, 1976.


