
Journal of Graph Algorithms and Applications
http://www.cs.brown.edu/publications/jgaa/

vol. 2, no. 6, pp. 1–22 (1998)

Memory Paging for Connectivity
and Path Problems in Graphs

Esteban Feuerstein

Departamento de Computación
Facultad de Ciencias Exactas y Naturales

Universidad de Buenos Aires
and

Instituto de Ciencias
Universidad de General Sarmiento

Argentina.
efeuerst@dc.uba.ar

Alberto Marchetti-Spaccamela

Dipartimento di Informatica e Sistemistica
Università di Roma “La Sapienza”

Italy
alberto@dis.uniroma1.it

Abstract

We extend the Paging Problem to the case in which the items that are stored in the cache memory
represent information about a graph. We propose on-line algorithms for two different connectivity
problems in this context, for particular classes of graphs and under different cost assumptions. In
the Path-paging problem we assume that the cache contains edges of the graph and queries to be
answered are of the kind “report a path from i to j”; to answer the query it is necessary to have in
memory all the edges of a path from i to j. In this case the answer to a query is not a single piece of
information stored in memory. In the Connectivity problem the edges of the transitive closure of a
given graph are stored in memory and we want to answer connectivity queries. In order to positively
answer connectivity queries of the type “is i connected with j?”, it is possible to answer the query
even if the cache does not contain the edge (i, j). Most of our algorithms are optimal and fairly
simple.

Communicated by R. Tamassia: submitted October 1994; revised September 1998.

This work was partly supported by EC project DYNDATA under program KIT, by EC Esprit Long Term Research

project ALCOM IT under contract 20244, by UBA projects EX070/J “Algoritmos eficientes para problemas on-

line con aplicaciones” and EX209 “Modélos y Técnicas de Optimización Combinatoria” and by Italian Ministry of

Scientific Research Project 40% “Algoritmi, Modelli di Calcolo e Strutture Informative”. A preliminary version of

this work has been presented at the Fourth International Symposium on Algorithms and Computation ISAAC’93,

Hong Kong, December 1993.

E. Feuerstein and A. Marchetti-Spaccamela, Paging for Graph Problems, JGAA, 2(6) 1–22 (1998) 2

1 Introduction

The input of an on-line problems is, in general, a sequence of requests each of which is to be served
without knowing future requests. Such problems arise, for example, in memory management where an
algorithm has to decide on-line which page of memory must be evicted from fast memory when a page
fault occurs. Namely, in the Paging Problem [18], a fast memory (the cache) can contain at most a
constant number of pages and a sequence of page requests is presented; if the requested page is in the
cache, then the request can be answered with zero cost; otherwise, a page fault occurs and it is necessary
to move the page from secondary memory to the cache paying a unit cost. The decision on which page
to evict must be taken on-line, without knowing future requests.

In this paper we study two applications of the paging problem to graph problems. The considered
problems extend the paging problem to the case in which each piece of information, eventually combined
with other pieces, can be used to infer information not directly present in the cache. As an example, in
the Connectivity problem the edges of the transitive closure of a given graph are stored in memory and
we want to answer connectivity queries. In order to positively answer connectivity queries of the type
“is i connected with j?”, it is possible to answer the query even if the cache does not contain the edge
(i, j); in fact it is sufficient that the cache contains a positive information about the connectivity of i and
vertex h and of h and j, where h is any vertex.

The other problem that we consider is the Path paging problem: we assume that the cache contains
edges of a connected graph and queries to be answered are of the kind “report a path from i to j”; to
answer the query it is necessary to have in memory all the edges of a path from i to j. In this case the
answer to a query is not a single piece of information stored in memory. Note that there might be many
possible paths and, therefore, many possible answers.

In their seminal paper [18], Sleator and Tarjan introduced amortized analysis to analyze the perfor-
mance of algorithms for on-line problems; they compare the cost of an on-line algorithm for answering a
sequence of requests with the cost of the optimal algorithm that knows the whole sequence of requests.
An algorithm is said to be c-competitive [12] if the cost afforded by it to serve any sequence of requests
is at most c times the cost charged to the optimal algorithm plus a constant. Neither the constant c nor
the additive constant depend on the particular input sequence.

During the last years considerable attention has been devoted to competitive analysis of on-line
algorithms, particularly to extend and generalize the Paging Problem. This includes the weighted version
of the paging problem [17, 20], the problem of maintaining caches in a multiprocessor system [12], the
k-server problem [7, 8, 10, 11, 13, 15]. All above extensions to the paging problem consider increasingly
more complex models, but share essentially the same fundamental “individuality” property: in the case
of paging, each request to a page of memory requires that page to be present in the cache; in the k-server
problem one server must be present in one specified location to serve the request.

The problems that we consider are a special case of the more general notion of Metrical Task Sys-
tems [6] that allows to model a great variety of on-line problems. However, the generality of that approach
implies that the results that have been proved are rather negative results. In fact, competitive algorithms
with small constant competitiveness coefficients have been found for different versions of the paging and
the k- server problem [7, 8, 10, 11, 12, 13, 15, 17, 18, 20]. On the other side, a lower-bound on the
competitiveness of any on-line algorithm for Metrical Task Systems has been proved that is linear in the
number of different states [6]. For the problems considered in this paper, the number of states is expo-
nential in the size of the cache. However, the competitiveness coefficients that we obtain are polynomial
in the size of the cache.

Besides their theoretical interest, the problems that we consider are motivated by the memory man-
agement problem of data structures for very large graphs (such that it is not possible to store in main
memory neither the graph nor its transitive closure). We are interested in analyzing algorithms that use a
small fast memory with the goal of reducing the number of accesses to the slow memory. We believe that
the proposed algorithms might be useful in understanding and optimizing the cost of accessing secondary
memory when dealing with very large graphs. Another possible motivation concerning communication
in a network of processors will be discussed in section 4.

We are not aware of previous work on this subject; however a considerable amount of work on related
matters can be found in the literature. Borodin et al. [5] considered the paging problem in the case in

E. Feuerstein and A. Marchetti-Spaccamela, Paging for Graph Problems, JGAA, 2(6) 1–22 (1998) 3

which the sequence of requests follows a pattern given by a previously known access graph. Nodine et
al. [14] studied the speed-up that may be obtained using redundancy and efficient blocking in the case
of searching in particular classes of graphs that are too large to fit in internal memory. The difference
is that in our problem all queries refer to an underlying graph, but the sequence of requests does not
follow any specified pattern. Attention has been also devoted [16, 19] to efficiently storing particular data
structures in secondary memory in a dynamic environment, that is, when the underlying data structure
is updated dynamically.

Other related problems have been considered by Aggarwal et al. [1, 2, 3]. These works introduced
different models of hierarchical memories and analyzed the behavior of algorithms for different problems
in those models. Our problem is different from the cited works in the sense that we do not have to
minimize the number of accesses to secondary memory necessary to solve a certain off-line problem but
to answer in an on-line fashion an arbitrarily long sequence of queries.

In section 2 the Path paging problem is defined and studied. We show that any on-line algorithm
to be competitive for this problem against and adversary with cache of size k needs a cache of size at
least b 3

4k2 − k
2 + 1c. We also study this problem in the particular case of trees, giving lower and upper

bounds for the competitiveness of deterministic and randomized algorithms. Depending on the cost model
considered, lower and upper bounds match or differ only by a constant factor.

In section 3 we consider the Connectivity problem. We show that any on-line algorithm must have a
cache that is at least Ω(k2) in order to be competitive against an adversary with a cache of size k; we also
prove a lower bound of k for the competitiveness of any on line algorithm with any cache size against the
same adversary. We also show a strategy for this problem that is a constant factor away from optimal.

Section 4 presents optimal solutions to the connectivity problem in the particular case of connected
graphs, that allows to model the service of requests in high-speed computer networks. Finally, conclusions
and open problems are presented in section 5.

1.1 Competitive analysis

An on-line algorithm for a given problem is c-competitive [12] if the cost afforded by it to serve any
sequence of requests is less than c times the cost charged to the optimal algorithm for that sequence
plus a constant that does not depend on the chosen sequence. Let CA(σ) denote the cost afforded by
algorithm A to serve an input sequence σ, and let OPT be the optimal off-line algorithm. Formally, we
have the following definition:

Definition 1.1 An on-line algorithm A is c-competitive if there exists a constant d such that for any
input sequence σ,

CA(σ) − c ∗ COPT (σ) ≤ d.

If d = 0 then A is strongly c-competitive. The competitive ratio of algorithm A is the infimum over c
such that A is c-competitive.

As it is usually done in competitive analysis, we will compare on-line strategies with an adversary
that must serve the same sequence of requests with his own cache, but who knows (in fact, who chooses)
the entire request sequence in advance. Proving that the cost afforded by an on-line algorithm is no more
than c times the adversary’s cost on the same sequence of requests implies that the on-line strategy is
c-competitive.

For the paging problem it has been shown [18] that a simple First In First Out (FIFO) rule is optimal,
i.e. it obtains the best possible competitive ratio. In fact, assuming that the algorithm and the adversary
have the same memory of size k, then FIFO achieves a competitive ratio of k; and k is also a lower bound.

In the case of randomized strategies, different kinds of adversaries have been proposed. The most used
adversary is the oblivious adversary that generates the input sequence of requests and then submits it to
the on-line algorithm. Other possible adversaries include the adaptive-on-line and the adaptive-off-line
adversaries [17]. In the following we will restrict our attention to the oblivious adversary.

Note that deterministic and randomized lower-bounds for the competitive ratio of on-line algorithms
for the Paging problem can be immediately extended to the problems considered in this paper; namely k
is a lower bound for deterministic algorithms and Hk (the k-th harmonic number) is a lower bound for
randomized algorithms against an oblivious adversary [9].

E. Feuerstein and A. Marchetti-Spaccamela, Paging for Graph Problems, JGAA, 2(6) 1–22 (1998) 4

For many on-line problems, in particular paging problems, the performance of an on-line algorithm
with respect to an adversary having less resources has been considered. This type of analysis can provide
an insight on the behavior of the algorithm when the resources assigned to it may change. For example,
in [18, 17, 20] different strategies for the Paging problem have been proved to be K

K−k+1 -competitive
when on-line algorithms are assigned a cache of size K ≥ k; it has also been proved that this value is
optimal.

In the following we denote by K the size of the on-line algorithm’s cache and by k that of the
adversary’s; when they are equal we denote the size of both by k.

Some of our proofs use the standard technique of the potential function [18], that is a function that
maps every pair D of configurations of the cache of the on- line algorithm and of the adversary’s to a
value Φ(D). In this model, the amortized cost of an operation is given by t+Φ(D′)−Φ(D), where t is the
actual cost of the operation and D and D′ represent the configurations before and after the execution of
the operation respectively. We will use the following lemma, whose standard proof is left to the reader.
This or similar lemmas have been used in previous works on on-line algorithms (see for example [8]).

Lemma 1.1 Let CADV and CALG denote the total costs charged respectively to an adversary and on-line
algorithm ALG to serve a sequence of requests. Suppose that Φ, Φ ≥ 0, is a potential function with value
Φ0 in the initial configuration such that

1. when the adversary makes a move, the increment in the potential is not more than α times the cost
paid by the adversary, and

2. when the on-line algorithm serves a request, Φ decreases by at least β times the cost paid by the
algorithm to serve the request

Then CALG ≤ (α/β)CADV + Φ0, and hence ALG is (α/β)-competitive.

1.2 Results of the paper

When an algorithm cannot answer a query with the information present in its fast memory, it must search
for the information in secondary storage. It is reasonable to assume that it will search for a shortest path
between the requested vertices. However, the on-line algorithm does not know which path will be more
helpful for answering future queries. We consider three different cost models:

1. Full-cost model: when a path joining a and b is not present in cache, charge the algorithm the length
(i.e. the number of edges) of a shortest path from a to b.

2. Partial-cost model: when a path joining a and b is not present in cache, charge the algorithm the
number of edges it brings into the cache to have a path between the query vertices.

3. 0/1-cost model: when a path joining a and b is not present in cache, charge the algorithm a unit
cost.

Tables 1 and 2 present a summary of the results of the paper (Hk denotes the k-th harmonic number).

2 Path-paging

The Path-paging problem is defined as follows: given an undirected connected graph, a query Path(a, b),
means “give a path joining vertices a and b”; we consider the case when a sequence of such queries must
be answered in an on-line fashion: the i-th query must be answered before the following queries are
presented. The goal is to minimize the number of accesses to secondary memory performed in order to
serve a sequence of requests.

We analyze the behavior of algorithms that use two levels of memory: a small and fast level (the
cache) consisting of a constant number of edges and a secondary level of memory that allows to store the
whole graph. The only stored information in the cache is a set of edges; no further information is stored.

E. Feuerstein and A. Marchetti-Spaccamela, Paging for Graph Problems, JGAA, 2(6) 1–22 (1998) 5

Table 1: Summary of results - Path-paging problem

Problem Full cost Partial cost 0/1 cost
Lower bound for arbitrary graphs, K < 3

4k2 unbounded unbounded unbounded
Upper bound for arbitrary graphs, K = 3

4k2 d 3
4k2e d 3

4k2e k
Lower bound for trees bk2/4c + 1 k k
Upper bound for trees (k2 + k)/2 k k

Lower bound for trees, randomized k
2 ln k Hk bk

e c + 1
Upper bound for trees, randomized 2kHk 2Hk k

Table 2: Summary of results - Connectivity-paging and Link-paging problems

Problem

Lower bound for arbitrary graphs, K < k2

2 − 3
(

k
2

) 5
3 + O(k

4
3) unbounded

Lower bound for arbitrary graphs, any K k

Upper bound for arbitrary graphs K ≈ k2

2 + k k2

2 + k

Lower bound for complete graphs (Link-Paging) K
K−k+1

Upper bound for complete graphs (Link-Paging) K
K−k+1

An algorithm serves a query Path(a, b) without cost if its cache already contains all edges of some
path connecting a and b. If such edges are not present, then a set of edges forming a shortest-path from
a to b is provided to the on-line algorithm, and a cost is charged to it 1. Clearly the problem makes sense
only if the diameter of the graph (i.e. the maximum distance among all pairs of vertices) is bounded by
the size of the cache.

2.1 Path-paging for arbitrary graphs

We first show that no on-line deterministic algorithm can be competitive unless the cache of the algorithm
is sufficiently larger than the adversary’s cache; the bound holds in the case of arbitrary connected graphs
and for all cost models.

Theorem 2.1 No deterministic strategy for the Path-paging problem for arbitrary graphs with a cache
of size K < b 3

4k2 − k
2 + 1c can achieve a bounded competitive ratio against an adversary with cache size

k, under all cost models.

Proof: Consider a sequence of (K + 1)k requests to one-edge paths

e11, . . . , e1k, e21, . . . , e2k, . . . , e(K+1)1, . . . , e(K+1)k

such that each subsequence ei1, . . . , eik forms a path from vertex vi1 to vertex vi(k+1) (the graph corre-
sponding to one such subsequence is depicted in figure 1 (a)).

From now on we suppose k is odd, if k is even the proof is similar. Since the size of the on-line
algorithm’s cache is K, after such a sequence there exists at least one i such that the on-line strategy
has none of ei1 . . . eik in the cache. This holds whichever were the initial configurations of the on-line
algorithm and that of the adversary. As the adversary knows the exact value of such i, he can serve
the sequence of requests as follows (for simplicity of notation, we will denote all edges eij and vertices

1We assume that on-line algorithms can control what kind of path to search for, and for this reason we assume that they
look for shortest paths. In fact such paths provide the required information with a “minimum” use of the cache. Moreover,
without this assumption, competitiveness results would be impossible. Note however that on-line algorithms have no way
of knowing whether the retrieved information will be useful for future requests

E. Feuerstein and A. Marchetti-Spaccamela, Paging for Graph Problems, JGAA, 2(6) 1–22 (1998) 6

vi2

vi3

vi4

vi5

vi6

vi1

vi2

vi3

vi4

vi5

vi6

vi1

ei2

ei3

ei4

i1e

ei5

(a) (b)

Figure 1: Example for Theorem 2.1, with k = 5

vij as êj and v̂j respectively). The subsequence e11 . . . e1k . . . e(i−1)1 . . . e(i−1)k can be served in any way;
for ê1 . . . êk the adversary puts each edge in a different position of the cache, so as to keep all edges of
the subsequence. Let κ = k+1

2 . For the remaining queries of the sequence, the adversary pays for every
query, caching all the edges to the same position of his cache, namely the position that contained edge
êκ = (v̂κ, v̂κ+1).

After the last query of the sequence the adversary may ask again for Path(v̂κ, v̂κ+1), and hence be
ready to answer without paying the following queries:

Path(v̂1, v̂k+1),Path(v̂1, v̂k), . . . ,Path(v̂1, v̂κ+2)

and then
Path(v̂2, v̂k+1),Path(v̂3, v̂k+1), . . . ,Path(v̂κ, v̂k+1).

If, for each one of these queries, the on-line algorithm is provided a shortest path of the same length but
disjoint from the path stored by the adversary and from previously requested paths (see figure 1 (b)),
then we have that the total length of the requested paths is

1 +
k∑

j=κ+1

j +
k−1∑
j=κ

j =
3
2
k +

3
2

+ 2
k−1∑

j=κ+1

j =
3
4
k2 − k

2
+

3
4

Since the total size of the on-line algorithm’s cache is K < b 3
4k2 − k

2 + 1c, then there will be always
one query that can be answered by the adversary with no cost for which the on-line algorithm has to pay.
The theorem follows. 2

We now analyze the behavior of the FIFO algorithm that, each time a new edge has to be brought
into the cache, evicts the edge that has been present in the cache for the longest time.

Theorem 2.2 For the Path-paging Problem on arbitrary graphs, with a cache of size d 3
4k2e, and against

an adversary with cache of size k, FIFO is:

• d 3
4k2e-competitive in the full-cost model

• d 3
4k2e-competitive in the partial-cost model

E. Feuerstein and A. Marchetti-Spaccamela, Paging for Graph Problems, JGAA, 2(6) 1–22 (1998) 7

vi2

vi3

vi4

vi5

vi6

vi1

Figure 2: Example for Theorem 2.2, with k = 5

• k-competitive in the 0/1-cost model.

Proof: Without loss of generality we assume that all queries in the input produce a fault to FIFO. We
divide the sequence of queries in phases as follows: the first phase starts with the first query that implies
a fault of FIFO, and a phase starting with query σi ends with query σj such that j is the minimum
integer such that the paths referred in the queries {σi, σi+1, . . . , σj+1} require more than k edges to be
answered. In other words, any subgraph of the underlying graph in which all the pairs referred in the
queries of a phase are connected has strictly more than k edges. It is obvious that during a phase the
adversary faults at least once, since it is not possible to answer the first query of each phase with the same
set of edges that allows to answer all the queries of the previous phase. Hence the adversary’s amortized
cost is at least 1 for each phase, in all cost models.

Let S be the sum of the lengths of all the paths that produce a fault to FIFO during a phase. By
showing that S is bounded by d 3

4k2e, we prove the claim for the full and partial cost models.
Note that, during a phase, at most k different requests can produce a fault for FIFO (each fault will

provide the information corresponding to at least one edge of the adversary). This immediately implies
the claim for the 0/1-cost model, as the cost of each request in that cost model is at most 1.

We show that S is maximized for a particular sequence of requests that the adversary can construct
whenever the edges of its cache form a simple path (an example of which is depicted in Figure 2, for
k = 5). Let us suppose k is odd (the case in which k is even is similar and it is omitted), and, as
let κ = k+1

2 . The adversary holds a simple path from v1 to vk+1, and the queries are of the form
Path(v1, vj), κ+1 ≤ j ≤ k+1 and Path(vj , vk+1), 2 ≤ j ≤ κ. In this case the total length of the requested
paths (and therefore the maximum cost incurred by FIFO during a phase) is

S =
k∑

j=κ

j +
k−1∑
j=κ

j = k + 2
k−1∑
j=κ

j =
3
4
k2 +

1
4

= d3
4
k2e.

We now show that the above example maximizes S over all possible sets of paths to be requested
during a phase.

Since all the connectivity information given by a cyclic graph is present in a spanning forest of the
graph, without loss of generality we may suppose that the adversary has no cycles in its cache. Moreover,
we assume that all the paths in the spanning forest are shortest paths in the underlying graph, and that
the paths provided to FIFO are always disjoint from those of the adversary. This last assumption can
only increase FIFO’s cost.

We will first prove that, given that the adversary has a spanning forest, all queries refer to a vertex
and its furthest leaf, and that no internal vertex appears in two different queries. Then we show that if

E. Feuerstein and A. Marchetti-Spaccamela, Paging for Graph Problems, JGAA, 2(6) 1–22 (1998) 8

each tree of the spanning forest is a simple path then S is maximized, and finally that the best choice for
the adversary is given by having only one connected component (that is, one simple path). Let d(x, y)
be the distance between x and y.

1. All queries refer to a vertex and its furthest leaf. Suppose there is a query involving two internal
vertices ni and nj . It is obvious that it could be substituted by a query involving one of the
internal vertices (say ni) and a leaf ` with d(ni, `) > d(ni, nj). Moreover, any query of the form
Path(n, `) may be replaced with a query Path(n, `′), where n is an internal vertex and `′ is the
furthest leaf from n.

2. No internal vertex appears in two different queries. Suppose that there is an internal vertex n and
two different leaves `1 and `2 such that the queries Path(n, `1) and Path(n, `2) appear in the input
sequence, in that order. We consider two cases:

• d(`1, `2) ≥ d(n, `2). Clearly, by asking Path(`1, `2) instead of Path(n, `2), we would obtain a
sequence with at least the same S. This substitution is possible unless FIFO has already a path
from `1 to `2 when Path(n, `2) is requested. But this would imply that the query Path(n, `2)
would not produce a fault (because FIFO has also a path from n to `1).

• d(`1, `2) < d(n, `2). In this case n does not belong to the path from `1 to `2. Since n is
an internal vertex, there exists a leaf `3 such that d(`1, `3) > d(`1, n), d(`2, `3) > d(`2, n).
Moreover, the sequence does not contain both requests Path(`1, `3) and Path(`2, `3) (otherwise,
the last of the four paths to be requested would not produce a fault, a contradiction).
Two different cases must be considered:

– Path(`1, `3) is not requested. If Path(n, `1) can be replaced by Path(`1, `3) we are done.
Otherwise, when Path(n, `1) is requested FIFO has already a path from `1 to `3 that does
not pass through n. But then, after the request Path(n, `1) FIFO has a path from n to
`3. If before the request Path(n, `2) FIFO had also a path from `2 to `3, the request
Path(n, `2) would not produce a fault, a contradiction. Hence, FIFO had not a path from
`2 to `3 and the request Path(n, `2) can be replaced by the request Path(`2, `3).

– Path(`1, `3) is requested. If Path(n, `2) can be replaced by Path(`2, `3) we are done. Oth-
erwise, when Path(n, `2) is requested, FIFO has already a path from `2 to `3 that does not
pass through n. Then either Path(`1, `3) was requested before Path(n, `2) and therefore
Path(n, `2) does not produce a fault (a contradiction), or Path(`1, `3) will be requested
after Path(n, `2) but it will not produce a fault (a contradiction).

3. One simple path maximizes S. Suppose that some tree T of the forest F the adversary has in its
cache is not a simple path. Let `h, `i and `j be three leaves of T such that the path from `h to
`i is a longest path of T . We show that there exists a tree T ′ for which the value S is larger. T ′

is obtained from T by eliminating the edge that connects `j to T and adding an edge from `j to
either `h or `i. By case 2 above we can assume that there are no queries Path(n, `j), but there could
be one or more queries Path(`, `j), where ` is a leaf different from `h, `i and `j . Note that either
Path(`h, `j) or Path(`i, `j) is not shorter than the path from ` to `j. Therefore we can eliminate
Path(`, `j) replacing it with one of the other two queries.

For a fixed `j, the adversary will never request both Path(`h, `j) and Path(`i, `j), because that would
prevent him from asking Path(`h, `i), that by hypothesis is the longest path of T . Therefore he will
request only the longest of them, say Path(`h, `j). But then T could be replaced with a different
tree T ′ in which instead of `j there is a leaf `j′ attached to `i, and all the queries Path(n, `i) or
Path(n, `j) could be replaced by queries Path(n, `j′) incrementing the overall length of the requested
paths.

Repeating this reasoning for T ′ we arrive to the conclusion that each connected component of F
must be a path. But then, the best alternative for the adversary is to have only one path (of length
k), for which he can ask one request of length k, two of length k − 1, two of length k − 2, and so
on. This completes the proof of the theorem.

E. Feuerstein and A. Marchetti-Spaccamela, Paging for Graph Problems, JGAA, 2(6) 1–22 (1998) 9

y3

x

oy1

y2

y4

w

y5

Figure 3: Example for Theorem 2.3 with k = 8, (o, w) is the edge requested at the beginning of the phase.

2

The proof of Theorem 2.1 is valid even assuming that the same path is provided to both the on-line
algorithm and the adversary when they fault on the same query. If we eliminate this assumption, a
stronger bound (that matches the upper bound of Theorem 2.2) can be obtained with a simpler proof by
requesting paths

Path(v1, vk+1),Path(v1, vk), . . . ,Path(v1, vκ+1)

and then
Path(v2, vk+1),Path(v3, vk+1), . . . ,Path(vκ, vk+1).

These requests could be served by the adversary with a path from v1 to vk, while if the on-line
algorithm is provided with disjoint paths, he would need a cache of size at least d 3

4k2e to be competitive.
Of course, for this we need to assume that the underlying graph contains all such disjoint paths.

2.2 Path-Paging for trees

In this section we show that if we restrict the input graph to be a tree then it is possible to improve the
bounds given by Theorems 2.1 and 2.2. The improvement is due to the fact that, between each pair of
vertices there is only one path; hence it is not necessary a cache of size quadratic with respect to the
cache of the adversary for being able to “learn” the adversary’s configuration.

2.2.1 Full-cost model

For this cost model, we first prove the following lower bound.

Theorem 2.3 No deterministic on-line strategy with cache size k for the Path-paging problem in trees
under the full-cost model is c-competitive with c < bk2/4c+ 1, against an adversary with cache of size k.

Proof: For the sake of simplicity, we will prove the theorem only in the case k is even; if k is odd the
proof is similar.

Consider the following initial configuration of both the cache of the adversary and on-line algorithm A:
there are k

2 −1 edges {(o, x1), (x1, x2) . . . (x k
2−2, x k

2−1)} forming a path from vertex o to vertex x k
2−1 = x,

and k
2 + 1 edges (o, y1) . . . (o, y k

2 +1). The adversary may then ask for a path (consisting of a single edge)
between o and a vertex w such that w /∈ {o, x1 . . . xk

2−1, y1 . . . y k
2 +1} (see figure 3).

E. Feuerstein and A. Marchetti-Spaccamela, Paging for Graph Problems, JGAA, 2(6) 1–22 (1998) 10

Among all the edges in the initial configuration and the newly requested edge (o, w), there is at least
one edge missing to A, and hence there exists a request Path(x, z1), z1 ∈ {y1 . . . y k

2 +1}∪{w} such that not
all the edges necessary for its answer are present in A’s cache. In order to answer this query the algorithm
pays k/2 and must evict another edge; therefore there exists a request Path(x, z2), z2 ∈ {y1 . . . y k

2 +1}∪{w}
such that not all the edges necessary for its answer are present in A’s cache. In this way a sequence of
k
2 queries Path(x, zi), i = 1, 2, . . . , k

2 are asked , making A pay k
2 (the length of paths (y, zi)) at every

query.
Queries Path(x, w), Path(x, zi), i = 1, 2, . . . , k

2 form a phase; clearly A pays k2/4 + 1 in order to
answer all queries of the phase. However the adversary can pay only 1 during the phase; in fact when
edge (o, w) enters in the cache the adversary can keep the path (o, x), and the edges (o, yi) i = 1, 2, . . . , k

2

necessary to answer all queries Path(x, zi) i = 1, 2, . . . , k
2 with no cost, and hence the total cost for the

adversary during the phase is 1 given by the cost for answering the first query of the phase.
At the end of the phase, a similar phase can start if any edge (o, z) neither in A’s nor in the adversary’s

cache is requested, yielding an arbitrarily long sequence in which the cost of A is at least k2/4 + 1 times
the cost of the adversary. 2

The next theorem shows that FIFO is at most a constant factor away from optimal for this problem.

Theorem 2.4 FIFO with cache size k is (k2 + k)/2-competitive for the Path-paging problem for trees
under the full-cost model against an adversary with cache size k.

Proof: Consider the sequence of queries divided in phases, as in the proof of Theorem 2.2. The paths
requested during a phase involve at most k edges, and the cost of the adversary is at least 1.

Without loss of generality we assume that each query requires only one edge to be brought into the
cache. In fact, suppose that in order to answer Path(a, b) two or more edges must be brought into the
cache.

Let (a, x1), (x1, x2) . . . , (y, y′)(w1, w2)(w2, w3), . . . , (z, z′), (v1, v2), (v2, v3), . . . (vi, b) be the requested
path and let (y, y′) and (z, z′) be the missing edges; if we replace query Path(a, b) with queries Path(a, y′)
and Path(a, b) then the total cost paid by FIFO is not smaller than the cost of answering only Path(a, b);
note that this can be done without affecting the cost of future requests, and hence increasing the total
cost paid by FIFO to process the sequence.

Observe that if the phase consists of only one query then, obviously, the cost of FIFO is bounded by
k; if there are two queries then the maximum cost is bounded by (k − 1) + k. In a similar way we have
that if the phase consists of h queries then the cost of FIFO is bounded by

∑k
i=k−h+1 i; therefore the

total cost during the phase is bounded by
∑k

i=1 i, that is (k2 + k)/2. 2

It is easy to see that the above competitiveness ratio is tight for FIFO. Assume that the configuration
of FIFO consists in a k-edge path from vertex v1 to vertex vk+1, and such that the order in which the
edges will be evicted is the reverse order of the indexes. This situation can be always forced by the
adversary. Suppose that the next query is Path(vk+1, vk+2), and that the adversary evicts edge (v1, v2).
The adversary may then ask for Path(vk, vk+2),Path(vk−1, vk+2), . . .Path(v2, vk+2). To make place for
each new edge necessary to answer the query, FIFO will evict the edge necessary to answer the following
one, and hence will have a fault at each query. The total cost for FIFO will hence be (k2 + k)/2, while
the adversary’s is only 1. The configuration at the end of this sequence of requests is similar to the initial
one (up to renaming of the vertices), and hence the pattern can be repeated forever.

If we consider randomized algorithms, it is possible to prove the following theorem.

Theorem 2.5 Under the full-cost model and with a cache of size k, for sufficiently large k, no random-
ized on-line strategy for the Path-paging problem is better than Ω(k ln k)-competitive against an oblivious
adversary with cache size k.

Proof: The proof follows the approach developed in [9] of constructing a nemesis sequence for the
on- line algorithm based on the possibility that an oblivious adversary has of knowing a probability
distribution on the on-line’s cache. The sequence σ is random, and we show that for each constant d, in
order to have

E[CA(σ)] − c ∗ E[CADV (σ)] < d, (1)

E. Feuerstein and A. Marchetti-Spaccamela, Paging for Graph Problems, JGAA, 2(6) 1–22 (1998) 11

x

o

y1

y2
y3

y4

w

Figure 4: Example for Theorem 2.5 with k = 8, (o, w) is the edge requested at the beginning of the phase.

c must be Ω(k ln k), where CA(σ) and CADV (σ) are the random variables denoting the costs charged to
algorithm A and to the adversary, respectively, for serving the sequence σ.

Assume the initial configuration in which both the adversary and A have in their caches the following
set of edges: l edges {(o, x1), (x1, x2) . . . (xl−1, xl)} forming a path between vertex o and vertex x and
k − l edges (o, y1) . . . (o, yk−l) (the parameter l will be determined later). Consider a random sequence
of queries composed by an arbitrarily large number of epochs; each epoch is defined as follows: the first
query is Path(o, w), w /∈ {x1 . . . xl}∪ {y1 . . . yk−l}; in order to answer the query the adversary evicts edge
(o, yj), for some j ∈ {1 . . . k − l} uniformly chosen at random.

The epoch proceeds with k − l − 1 subepochs, where each subepoch consists in zero or more requests
to paths (x, yi), i 6= j already requested in the epoch followed by a request to a path (x, yi′), i′ 6= j not
yet requested in the epoch. The requests of the first type will be done as many times as necessary till
the probability that the on-line algorithm has exactly the edges needed to answer all the requests so far
in the epoch is 1. This is always possible whenever the on-line algorithm achieves a bounded competitive
ratio as the adversary can simulate the behavior of the on-line algorithm on the sequence of requests up
to that moment, and all these requests cost nothing to the adversary.

Upon completion of the epoch vertex w is “renamed” yj so as to always have again the initial config-
uration (see figure 4).

The expected cost charged to the adversary in each epoch is 1 (in fact 1 is the exact cost). The cost
of the algorithm is 1 for the first query of the epoch; in the full cost model each subsequent fault costs
(l + 1). Without loss of generality we may suppose that edges belonging to the path that connects o and
x will not be evicted by the on-line algorithm and that l lines of the cache are filled by the edges of the
path (o, x). In fact, if A ever evicts during the epoch an edge of the path (o, x), it will surely fault in order
to answer the following query. Therefore, the expected number of faults on the rest of the epoch depends
on the probability that edges (o, yj) are in the remaining part of the cache, of size k− l. Equivalently this
number is one less than the expected number of faults for an epoch of the Paging problem with cache of
size k − l (page yi corresponds to path Path(x, yi)). It has been proved in [9] (where epochs are called
phases) that this number is greater than Hk−l−1 (where Hx denotes the x-th harmonic number). Hence
the expected cost for the epoch is greater than 1 + (l + 1)(Hk−l−1 − 1).

Turning to inequality 1, it follows that c, the competitiveness coefficient, must be greater or equal
to the maximum value of the previous expression. Simple calculations show that the maximum value is

E. Feuerstein and A. Marchetti-Spaccamela, Paging for Graph Problems, JGAA, 2(6) 1–22 (1998) 12

Ω(k ln k) and that, for k ≥ 4, the value is greater than k/2(ln(k) − 2. 2

In the following we will prove that the Marking algorithm (Marking, for short) is nearly optimal under
the full-cost model. Marking has been originally proposed in [9] for the paging problem; we extend it to
the path paging problem as follows. The algorithm maintains a set of marked edges. Initially the marked
edges are exactly those that are present in the cache. The marks are updated after each request: when
query Path(a, b) is requested all edges of the path are marked. If the requested path is completely present
in cache, then nothing else is done.

If edges in the cache do not allow to answer a query then there are two possibilities. Let x be the
number of edges missing in the cache in order to complete the requested path. If there are at least x
unmarked edges in the cache, then the algorithm evicts x edges that are randomly chosen among the
unmarked ones to make place for the missing edges. If the number of unmarked edges is less than x
then all marks except those assigned to edges of the current query are erased and then the previous case
applies.

Before proving the competitive ratio of Marking we need some preliminary definitions. Consider the
sequence of requests divided in epochs. During an epoch, requests may involve three different kinds of
edges:

• marked edges, that are edges already used during the current epoch,

• clean edges, that are edges that where not used during the current epoch nor in the previous one,

• stale edges, that are edges that where used in the previous epoch but not during the current epoch.

In a similar way, we can divide the requests in four types:

• clean requests, that use clean and possibly marked edges,

• stale requests, that use stale and possibly marked edges,

• mixed requests, that use clean and stale edges, and possibly marked edges, and

• marked requests, that use only marked edges.

Without loss of generality we can suppose that there will not be requests of the last kind, as by
definition Marking would answer them with no cost. It is easy to see that each epoch starts with a clean
or a mixed request, that is, with a request that involves at least one clean edge.

Lemma 2.6 The expected number of faults of Marking during an epoch is maximized if each query
involves at most one clean or stale edge.

Proof: Suppose a query q involves r > 1 stale or clean edges. We prove the lemma assuming that r = 2;
by induction the proof can be easily extended to any other value of r. Let a and b denote the stale or
clean edges of the query.

Let A (B) denote the event that edge a (b) is in the cache; A (B) denotes the event that a (b) is not
in the cache.

The expected number of faults Fq for answering q is equal to the probability that at least one edge
among a and b is not present in the cache. Hence we can write:

Fq = Prob(A ∧ B) + Prob(A ∧ B) + Prob(A ∧ B).

Let qa, qb be two queries obtained from q in such a way that qa (qb) can be answered by including
edge a and without edge b (respectively including b and not a) and let B′ be the event that edge b is not
in the cache after query qa has been answered. The expected number Fqa,qb

of faults for answering both
queries qa and qb is equal to

Fqa,qb
= Prob(A ∧ B) + Prob(A ∧ B) + Prob(B′).

The lemma follows by observing that Prob(B′) ≥ Prob(A∧B)+Prob(A∧B) and, hence, Fqa,qb
≥ Fq.

2

E. Feuerstein and A. Marchetti-Spaccamela, Paging for Graph Problems, JGAA, 2(6) 1–22 (1998) 13

Theorem 2.7 Marking is 2kHk competitive for the Path-paging problem on trees under the full-cost
model, against an adversary with cache size k.

Proof: By lemma 2.6 we can suppose that each request involves only one clean or stale edge, and
possibly some marked edges.

This proof is similar to the proof of the competitiveness of Marking in [9]; for this reason we limit to
give a sketch of the proof. The expected number of faults of Marking during the epoch is smaller than the
number of faults it would have if all the clean requests of the epoch where done before any stale request.
In such a case Marking has one fault for each clean request. Let c be the number of clean edges that are
requested in the epoch, therefore, the number of faults for this type of requests is c. The probability of
having a fault in a stale request is equal to the probability that the involved stale edge is not present
in the cache. If we denote by s the current number of stale edges (that ranges from k to c + 1), this
probability is c

s . Hence, the expected number of faults of Marking during the epoch is less than

c +
c

k
+

c

k − 1
+ . . . +

c

c + 1
= c(1 +

1
k

+
1

k − 1
+ . . . +

1
c + 1

) = c(1 + Hk − Hc) ≤ cHk

As for the cost charged to the adversary, it can be proved in the same way as in [9] that it is at least
c/2, half of the number of clean edges requested in the epoch.

It follows that the ratio between the expected number of faults of Marking and the adversary is equal
to 2Hk. In the full cost model, the maximum cost charged to Marking for a fault is k, while the minimum
cost for a fault of the adversary is 1. Hence, if we consider the cost instead of the number of faults, we
have that the cost of Marking is less than 2kHk times the cost of the adversary, that is, Marking is 2kHk-
competitive. 2

The two previous theorems assert that Marking is at most a factor of 4 away from optimality.

2.2.2 Partial-cost model

In this section we consider the partial-cost model, in which the cost charged for a fault is the number of
missing edges that complete the requested path.

In the following we propose a strongly competitive algorithm, based on the Least Recently Used (LRU)
algorithm for the Paging Problem [18]. The LRU algorithm is defined as follows: when a fault occurs
and new edges must be included in the cache LRU evicts the minimum number of edges that allows to
include edges of the current query; the evicted edges are those that have not been used for the longest
time (breaking ties arbitrarily).

The strategy can be implemented in the following way: edges are ordered in such a way that if e
precedes e′ then e′ has not been used for answering a query after e has been used.

To answer a request Path(a, b) the algorithm works as follows:

If a path P from a to b is present in cache
then

A.1 Reorder edges in the cache by placing ahead edges
belonging to P while maintaining their relative order

else
B.1 Retrieve a path P from a to b. Let x be the

number of edges of P not present in the cache
B.2 Reorder edges in the cache by placing ahead edges

belonging to P that are already in the cache
(maintaining their relative order) and then remaining
edges (maintaining their relative order)

B.3 Evict the last x edges in the cache that do not belong to P
B.4 Introduce the x new edges of P placing them ahead in the cache.

Theorem 2.8 LRU is k-competitive for the Path-paging problem on trees under the partial-cost model,
against an adversary with cache size k.

E. Feuerstein and A. Marchetti-Spaccamela, Paging for Graph Problems, JGAA, 2(6) 1–22 (1998) 14

Proof: For every edge e of the tree let a[e] be an integer valued variable, in the range 1, . . . , k for all
the edges present in the cache, such that the first edge in the cache (relative to the order maintained by
LRU) has value k, the second one value k − 1 and so on; if e is not in the cache then we assume a[e] = 0.
a[e] is the weight of e. Let us define the following potential function

Φ =
∑

e∈ADV

(k − a[e])

where ADV is the set of he adversary’s cache.
We suppose that the adversary serves first each request, and then LRU serves it. The behavior of the

potential function in the different situations is the following.
The adversary serves the request
Let z be the cost charged to the adversary (i.e. z new edges enter the adversary’s cache). The

maximum possible increase in the potential occurs when all the z new edges are not present in LRU’s
cache; in this case ∆Φ ≤ kz.

LRU serves a request
If LRU does not fault then there is no increase in the potential function; in fact there might be edges

in both LRU and adversary’s cache that decrease their weight; however this decrease is equal or greater
to the increase of the weights for edges that allow to answer the query (and that certainly belong to the
adversary’s cache).

If LRU faults then let y be the length of the path from a to b, x is the number of edges of that path
that are not present in LRU’s cache. The modifications that LRU performs on the weights of the edges
can be described as follows:

B.2 Assign to the edges of the cache that are not in the path from a to b the values 1, . . . , k − (y − x)
maintaining their relative order; assign values in the range k− (y− x)+ 1, . . . , k to the edges of the
cache that are in the path;

B.3 for every edge e of the cache do a[e] := max(a[e]− x, 0); evict edges of the cache with weight equal
to 0;

B.4 bring into the cache the missing edges, arbitrarily assigning weights in the range k − x + 1, . . . , k.

Step B.2 above increases the weight of (y − x) edges in the adversary’s cache and this increase is at
least the decrease of edges in the adversary’s cache that are not part of the query path; therefore there is
no increase in the potential due to this step. Since there are no more than (k−x) edges in the intersection
of both caches before the execution of step B.3, then the increase of the potential function due to step
B.3 is at most (k − x)x. Since the x new edges are placed ahead of LRU’s cache, then the change of the
potential function due to the insertion of the new edges (step B.4) is −(kx−∑x−1

i=1 i). Therefore the total
modification of the potential function is at bounded by

∆Φ ≤ kx − x2 − kx +
x−1∑
i=1

i = −x2 +
(x − 1)x

2
≤ −x

Lemma 1.1 implies that LRU is k-competitive. 2

In the sequel of this section we will show that the Marking algorithm achieves a competitive ratio
of 2Hk by considering a particular kind of adversary. Let d(a, b) be the number of edges in the path
connecting a and b.

The restricted adversary, before every query Path(a, b) with d(a, b) > 1(from now on these kind of
queries will be referred to as long queries), must request all the edges that form the path from a to b, in
any order; let P(a, b) be such a sequence. This is not a real restriction; in fact the cost charged to the
restricted adversary is exactly the same that it would be charged to a general adversary. Furthermore
the cost charged to Marking is at least the same it would have to pay in a general sequence; in fact, in
the partial-cost model, an algorithm is charged exactly the number of missing edges; hence the cost of
Marking for answering all queries in P(a, b) and then Path(a, b) is at least the number of missing edges
in Path(a, b) before the first edge of P(a, b) is requested.

E. Feuerstein and A. Marchetti-Spaccamela, Paging for Graph Problems, JGAA, 2(6) 1–22 (1998) 15

Moreover, we assume a lazy adversary, (i.e. an adversary that does not evict any edge if all edges
necessary to answer the current query are in the cache, and, when a fault occurs, evicts exactly the
number of edges necessary to make place for the missing ones). It has been shown in [15] that this latter
assumption can be done without loss of generality.

As in the previous section, edges may be divided in marked, clean or stale, and requests in clean,
stale, mixed and marked. The proof of the following lemma is trivial and it is omitted.

Lemma 2.9 Each epoch starts with a clean request.

Lemma 2.10 Every long query but the first one of an epoch is served by Marking with no cost.

Proof: By definition of Marking and the kind of adversary we are considering, all edges that allow
to answer a long query Path(a, b) but the first one of an epoch have been already marked and, hence, are
in the cache. 2

Theorem 2.11 Marking is 2Hk competitive for the Path-paging problem under the partial-cost model,
against an adversary with cache size k.

Proof: By lemma 2.10 we can eliminate from the input sequence all long queries except the first one
of each epoch; furthermore, since Marking does not pay for marked edges then we can eliminate from the
input sequence all marked queries. Therefore we can assume that the sequence of requests of an epoch is
as follows:

c1, . . . , ci, sc1, . . . , scj , L, c1
1, c

1
2, . . . , c

1
x1

, s1
1, s

1
2, . . . , s

1
y1

, c2
1, c

2
2, . . . , c

2
x2

, s2
1, s

2
2, . . . , s

2
y2

, . . .

where c1 . . . ci are requests to clean edges, sc1 . . . scj are requests to clean or stale edges, L is either
empty or a long query involving edges c1, . . . , ci, sc1, . . . , scj and possibly some other stale edges (denoted
s′, s′′, s′′′, . . . in the sequel) that have been requested in the final part of the previous epoch. Queries cn

m

and sn
m are clean and stale requests for one-edge paths, respectively.

Since a marked edge is not evicted it follows that the cost charged to Marking for this sequence is less
that the cost it would be charged for the sequence

c1, . . . , ci, sc1, . . . , scj , s
′, s′′, s′′′, . . . , c1

1, c
1
2, . . . , c

1
x1

, s1
1, s

1
2, . . . , s

1
y1

, c2
1, . . . , c

2
x2

, s2
1, . . . , s

2
y2

, . . .

The rest of this proof is similar to the proof of the competitiveness of Marking for the full-cost model.
The expected cost charged to Marking for the above input sequence is smaller than the cost it would
be charged if all the clean edges of the sequence where requested before any request to a stale edge. In
such a sequence Marking pays one for each clean edge and an expected cost for each stale request that
is equal to the probability that the edge is not present in the cache. This probability is c

s , where c is the
number of clean edges requested so far and s is the current number of stale edges. Hence, the expected
cost charged to Marking during the epoch is less than

c +
c

k
+

c

k − 1
+ . . . +

c

c + 1
= c(1 +

1
k

+
1

k − 1
+ . . . +

1
c + 1

) = c(1 + Hk − Hc) ≤ cHk

Following [9] it is possible to prove that the cost charged to the adversary is at least c/2, half of the
number of clean edges requested in the epoch. This completes the proof of the 2Hk-competitiveness of
Marking.

2

We recall that in [9] it has been proved that Hk is a lower bound for the competitive ratio of any
algorithm for the Paging problem, and hence it is also a lower bound for the Path paging problem for
trees under this cost model. Therefore the proposed algorithm is at most a factor of 2 from optimality.

E. Feuerstein and A. Marchetti-Spaccamela, Paging for Graph Problems, JGAA, 2(6) 1–22 (1998) 16

2.2.3 0/1-Cost Model

If the 0/1-cost model is used, we can prove that LRU is k-competitive and, hence, optimal.

Theorem 2.12 LRU and FIFO are k-competitive for the Path-paging problem on trees under the 0/1
cost model, against an adversary with cache size k.

Proof:
We prove the theorem for LRU omitting the analogous proof for FIFO. We will suppose that the

adversary serves each request before LRU. An integer valued variable, in the range 1, . . . , k is associated
to all edges present in the cache in the same way that was done in the proof of Theorem 2.8; if e is not
in the cache then we assume a[e] = 0.

Let us consider the following potential function

Φ = max
e∈L,e/∈ADV

a[e]

where L and ADV denote, respectively, the set of edges in LRU’s cache and in the adversary’s cache.
The behavior of the potential function is as follows.

The adversary answers the query
Since 0 ≤ Φ ≤ k then clearly ∆Φ ≤ k.
LRU answers the query
Let us first consider the case when LRU faults. Since the adversary serves each request first then the

edges that enter into LRU’s cache are all present in the adversary’s cache. Moreover, since LRU faults
there must be at least one edge e such that e ∈ L, e /∈ ADV , then the update of the array a, produces a
decrease in the potential function, i.e. ∆Φ ≤ −1.

On the other side, if LRU serves a request without a fault then ∆Φ ≤ 0.
The theorem follows by applying Lemma 1.1. 2

Since k is a lower bound for the competitiveness of any deterministic algorithm it follows that LRU
and FIFO are optimal. The following theorem provides a lower bound for randomized algorithms.

Theorem 2.13 No randomized on-line strategy for the Path-paging problem on trees under the 0/1 cost
model is c competitive against an adversary with cache size k with c < (bk

e c + 1) (e is the base of the
natural logarithm) even if oblivious adversaries are considered.

Proof: Let A be any on-line algorithm; assume that before the first query is disclosed the adversary and
A have the same set of edges in their caches. The input sequence is random and consists of an arbitrarily
large number of rounds. The first request of each round asks a path of length l (the value of l will be
determined later) that is disjoint from the set of edges present in both caches. To serve this request, the
adversary evicts l randomly chosen edges; the round continues with k − l subrounds; each subround is
defined as follows: first, all requests of previous subrounds of the round are repeated as shown in the
proof of Theorem 2.5; then one of the k − l edges not evicted by the adversary is requested as one-edge
path. The round terminates when all those k − l edges have been requested.

The adversary’s cost during the round is 1, and after a round A’s and the adversary’s cache coincide
and a new round can start. To complete the proof it is sufficient to show that the expected cost charged
to A during a round is at least k

e + 1.
A pays 1 for the first request of the round. The expected cost paid by the algorithm for answering the

queries of a subround is greater than the probability that, for each of the k − l subrounds, the requested
edge is in the cache when it is requested for the first time during the round. The probability that the
first edge that is requested during the i-th subround is in A’s cache is l

k−i+1 . Therefore the expected
cost for a round is at least:

1 +
l

k
+

l

k − 1
+ . . . +

l

l + 1
= 1 + l(

1
k

+
1

k − 1
+ . . . +

1
l + 1

) = 1 + l(Hk − Hl)

The maximum value of the above expression is 1 + k
e (when l = k

e). This completes the proof of the
theorem. 2

Recall that deterministic algorithms LRU and FIFO are k competitive in this case.

E. Feuerstein and A. Marchetti-Spaccamela, Paging for Graph Problems, JGAA, 2(6) 1–22 (1998) 17

3 Connectivity-paging

In this section we consider the problem of answering (in an on-line way) queries about the connectivity of
an arbitrary directed graph. We assume that the cache contains a subset of k pairs of vertices, together
with the information whether the two vertices lie in the same connected component of the graph or not.
In other words, the cache is a subset of edges of the transitive closure of the graph (which we suppose
is stored in secondary storage). A pair (i, j) is called a yes-edge if i and j are in the same connected
component, a no-edge otherwise. Both kinds of pairs will be referred to as edges when no confusion arises.
We assume that no further information is stored in the cache.

A query Connected(i, j) may be answered with no cost if there is a path in the cache containing at
most one no-edge between i and j: if there is a path containing no no-edges, the answer to Connected(i, j)
will be yes (pair (i, j) is called a deduction); conversely if there is a path containing one no-edge, the
answer to the query will be negative (in this case we call pair (i, j) a no-deduction). Paths with more
than one no-edge do not provide information to answer the connectivity query between i and j.

If the cache does not contain a path between i and j with at most one no-edge then the query
must be answered by accessing secondary memory. We require that after each query Connected(i, j), the
information about the connectivity between i and j must be present in the cache; namely, the faulty
query Connected(i, j) is answered by bringing into the cache edge (i, j): neither the algorithm nor the
adversary are allowed to bring into the cache any other edge of the transitive closure. We assume that a
constant cost is charged for each fault.

3.1 Lower bounds

Let f(k) be the maximum number of no-deductions that are consistent with a cache of size k. The
value of f(k) is crucial in our analysis. In fact, we will show that no strategy can achieve a bounded
competitiveness coefficient against an adversary with a cache of size k if its own cache is of size K < f(k);
we will see that f(k) ' k2/2.

Theorem 3.1 No deterministic on-line strategy for the Connectivity-paging problem on arbitrary graphs
can be competitive against an adversary with cache size k if its own cache is of size K < f(k).

Proof: Consider the sequence of (K + 1)k requests e11 . . . e1k . . . e(K+1)1 . . . e(K+1)k such that each
subsequence ei1 . . . eik denotes a set of yes- and no-edges that allows exactly f(k) no-deductions. Since
the memory of the on-line algorithm is K, after such a sequence there exists at least one i such that the
on-line strategy has none of ei1 . . . eik in its cache. This holds whichever were the initial configurations
of the on-line strategy and that of the adversary.

Since the adversary knows the exact value of i, he can serve the sequence of request as follows: the
subsequence e11 . . . e1k . . . e(i−1)1 . . . e(i−1)k can be served in any way. For ei1 . . . eik the adversary empties
the cache to keep all the edges of the subsequence. For the remaining queries of the sequence, he pays
for every query, caching all the edges to the same position of his cache, a position that contained some
no-edge, say (x, y). After the last query of the sequence the adversary may ask again for Connected(x, y);
after this query the adversary is able to answer a set f(k) different negative queries with no cost. Note
that before answering Connected(x, y) the on-line algorithm has no edge of this set; since K < f(k),
then there is always at least one no-edge absent from his cache. Therefore the algorithm has to pay for
every query of an arbitrarily long sequence of queries for which the adversary pays nothing, yielding an
unbounded relation between the costs. 2

Lemma 3.2 Given a cache of size k the maximum number of no-deductions is

f(k) =
k2

2
− 3

(
k

2

) 5
3

+ O(k
4
3).

This value is obtained when the yes-edges of the cache form l, l = k
2

1
3 + 3

4 + O(k− 1
3), spanning trees,

whose sizes differ at most in one unit, and there is a no-edge in the cache between each pair of spanning
trees (see figure 5).

E. Feuerstein and A. Marchetti-Spaccamela, Paging for Graph Problems, JGAA, 2(6) 1–22 (1998) 18

Figure 5: Two possible configurations for k = 12. The first one maximizes the number of possible
no-deductions. Full lines represent yes- edges of the graph, while dashed lines represent no-edges.

Proof: We suppose that the underlying graph contains subgraphs of the desired type. Let CC
be a connected component. Given an initial configuration of the cache with any number of connected
components we first obtain a sequence of configurations with non-decreasing number of no-deduction that
has fixpoints in configurations of the claimed type, but possibly with a different number of connected
components.

The sequence is obtained by applying one of the following rules until the fixpoint is obtained. Without
loss of generality we assume that at the beginning the initial configuration contains at least one no-edge
(otherwise the number of no-deductions is zero).

Transformation Rules

1. If there exists two CCs a and b such that there is not a no-edge between a vertex in a and a vertex
in b, then merge a and b identifying one vertex x of a and one vertex y of b in a new vertex z. If
this results in repeating the same no-edge (z, w), then replace one copy of the edge by a positive
edge (z, v) where v is a new vertex.

2. If any CC is not a spanning tree then eliminate one positive edge that belongs to a cycle and add
a positive edge between a vertex in the CC and a new vertex.

3. If there are two no-edges between the same pair of CCs then eliminate one no-edge and add a new
yes-edge (x, y) where x is a vertex of one CC and y is a new vertex that was not previously in any
CC.

4. If the difference of the number of positive edges belonging to a pair of CCs connected by a no-edge
is greater than one then eliminate a positive edge from the bigger CC and add a positive edge to
the smaller one.

It is easy to see that rules 2,3 and 4 do not increase the number of possible no-deductions. As far as
rule 1 is concerned we observe that all no-deductions that involve x and y are now possible with vertex
z; moreover it might happen that new no-deductions become possible.

When no rule can be applied, the configuration consists in a set of CCs whose number of edges (and
vertices) differ in at most one. Notice that the number of CCs obtained at the fixpoint depends on the
order in which rules are applied.

E. Feuerstein and A. Marchetti-Spaccamela, Paging for Graph Problems, JGAA, 2(6) 1–22 (1998) 19

It remains to find the optimal size of the CCs as a function of k. It is sufficient to maximize the
number of no-deductions possible as a function of the number of connected components varies. For
example, Figure 5 shows two possible configurations for k = 12, one with 3 CCs and one with 2 CCs.

If there are l CCs then the number of no-edges in such a configuration will be
(

l(l−1)
2

)
; each CC

contains either (bk− l(l−1)
2

l c + 1) or (bk− l(l−1)
2

l c + 2) vertices. The maximum number of no-deductions
possible with a cache of size k is

f(k) = max
l

(
k − l(l−1)

2

l
+ 1

)2
l(l − 1)

2
=

k2

2
− 3

k

2

5
3

+ O(k
4
3) (2)

The value of l that maximizes the value of f(k) is l ≈ k
2

1
3 + 3

4 + o(1).
2

The second result of this section is a lower-bound on the competitive ratio of any on-line algorithm,
with a cache of any size.

Theorem 3.3 No on-line algorithm for the Connectivity paging problem for arbitrary graphs with any
cache size can be c-competitive against an adversary with cache size k with c < k.

Proof: Let h be the size of the algorithm’s cache; we assume that the underlying graph has at least h2+k

vertices. Consider a configuration in which the adversary has k − 1 yes- edges forming a tree with vertex
set T and the on-line algorithm has no edges joining vertices of T ; this is always possible using a suitable
input sequence of queries analogously to the sequence exploited in the proof of Theorem 3.1.

The rest of the input sequence is defined as follows: the adversary asks for a no-edge (x, j) where
j belongs to the tree and x is neither in the adversary’s cache nor in the algorithm’s cache. After this
query, k queries Connected(x, t), t ∈ T can be answered by the adversary with no cost. Since the on-line
algorithm has no yes-edges connecting vertices in T , it will have a fault for each one of these k queries.

Afterwards the input sequence continues analogously with query (y, j′) where j′ belongs to the tree
and y is neither in the adversary’s cache nor in the algorithm’s cache; this pattern can be repeated an
arbitrary number of times. The lower bound follows by observing that for each of these subsequences 1
and k are, respectively, the adversary’s and the algorithm’s costs. 2

3.2 An upper bound

In the following, we will prove an upper bound for the competitive ratio achieved by a variant of FIFO
with a cache of size f(k) + k for the Connectivity-paging problem.

The proposed algorithm maintains yes- and no-edges in separate parts of the cache, using the First-
in-first-out policy in each of them. Namely, the algorithm (that we call FIFOD) has at every moment k
positive edges and f(k) negative edges.

We consider the following implementation of FIFOD: a value p(e) from 1 to k is associated with each
positive edge e in the cache and a value n(e) from 1 to f(k) is associated with each negative edge in the
cache. Whenever FIFOD has a fault on a positive (negative) edge, the values of p(e) (n(e)) are decreased
for every e such that p(e) > 0 (n(e) > 0). The edge e such that p(e) (n(e)) becomes exactly 0 is the one
evicted, and the arriving edge is given value k (f(k)).

Let D(ADV) denote the set of pairs of vertices such that the adversary may answer without paying
a query about the connectivity of that pair in a certain configuration ADV of its cache.

Proposition 3.4 Whenever FIFOD has a fault on a positive (negative) edge, there must be at least one
edge e with p(e) > 0 (n(e) > 0) such that e /∈ D(ADV).

Theorem 3.5 FIFOD with a cache of size f(k)+k is (f(k)+k)-competitive for the Connectivity-paging
problem on arbitrary graphs against an adversary with cache size k.

E. Feuerstein and A. Marchetti-Spaccamela, Paging for Graph Problems, JGAA, 2(6) 1–22 (1998) 20

Proof: The following potential function is used:

Φ = max
e/∈D(ADV)

{p(e)} + max
e/∈D(ADV)

{n(e)}

We will suppose that the adversary serves each request first, and then it presents it to FIFOD. Again,
we will analyze the behavior of the potential function in the cases where the adversary and FIFOD move.

The adversary moves, evicting edge (i, j)
Since Φ ≤ k + f(k), obviously ∆Φ ≤ k + f(k)
FIFOD faults on request Connected(i, j)
Note that in this case the entering edge (i, j) is deducible by the adversary (as the adversary serves

each request first). The decrement in the value of p (n) for all the positive (negative) edges of FIFOD

produces a decrement in the potential function whenever there was at least one edge e with p(e) ≥ 0
(n(e) ≥ 0), e /∈ D(ADV). By proposition 3.4 this is always the case, and hence ∆Φ ≤ −1.

By Lemma 1.1, FIFOD is f(k) + k-competitive. 2

4 Link paging

An important feature of high speed networks (e.g. ATM networks) is that the cost of establishing
a communication channel between two vertices of the network depends on the reconfiguration of the
network that is eventually necessary in order to establish the channel. Namely we assume a computer
network in which all possible connections between pairs of vertices might occur, but at most k pairs of
vertices are connected at the same instant. Communication requests are pairs of vertices to be connected,
and one request is served with no cost if there is a path between the vertices in the current configuration
of the k links; otherwise, both vertices are linked by switching one of the k physical links to connect the
requested pair, and the cost is 1. We call this problem the Link-paging problem. An algorithm for the
Connectivity-paging problem in the particular case in which the graph is complete is also an algorithm
for this problem.

In the following we will prove that FIFO with a cache of size K is K
K−k+1 -competitive against adver-

saries that use caches of size k ≤ K, and therefore optimal for the link paging problem.

Theorem 4.1 FIFO with cache size K is K
K−k+1 -competitive for the Link-paging problem against adver-

saries with cache size k ≤ K, and this is optimal.

Proof: An integer valued variable, in the range 1, . . . , K is associated with all edges present in the cache
in the same way that was done in the proof of Theorem 2.8; if e is not in the cache then we assume
a[e] = 0. Whenever FIFO has a fault a[e] is decreased for every edge in the cache and the evicted edge
is the edge e such that a[e] becomes 0. The edge that is inserted into the cache in order to answer the
query receives the value K.

Note that edges in FIFO’s cache do not form a cycle; moreover without loss of generality we can
assume that also the adversary’s cache does not contain a cycle (since if this occurs the cache contains
at least one redundant edge).

Let GFIFO = (VFIFO, EFIFO) and GADV = (VADV , EADV) be the graphs induced respectively by
the set of edges in FIFO’s and the adversary’s caches. Let H be the multigraph union of GFIFO and
GADV (where edges in both caches appear twice). Let C be the set defined by the following procedure:

C := ∅;
while there is a cycle in H do

begin
let e be the edge in FIFO’s cache belonging to a cycle
such that a[e] is minimum;
C := C ∪ {e};
remove the edge e from H
end

E. Feuerstein and A. Marchetti-Spaccamela, Paging for Graph Problems, JGAA, 2(6) 1–22 (1998) 21

C can be seen as the minimum-weight “feedback” edge set of H that consists only of edges in EFIFO.
We consider the following potential function:

Φ = kK −
∑
e∈C

a[e].

When the adversary faults, ∆Φ ≤ K. This is true because the entering edge does not increase the
potential function and the evicted edge can increase it by at most K. In order to show this latter fact, let
e = (a, b) be the evicted edge, and suppose that e was part of x cycles of G. If x = 1, then the eviction of
e eliminates only that cycle and hence ∆Φ ≤ K. If x > 1, then let C1 . . . Cx be those cycles, and suppose
without loss of generality that C1 is the cycle whose minimum edge is maximum among the minimum
edges of all the cycles. Then C1 is the last cycle that is eliminated by the above procedure. But then,
each one of C2 . . . Cx is a cycle with e substituted by C1 − e, so the edges considered in the computation
of the new potential function will be the same as before the eviction of e, except the one corresponding
to C1.

The other thing to note is that if FIFO has a fault, then ∆Φ ≤ −K +k−1. To see this, note that the
entering edge is necessarily part of a cycle with only edges that are in the adversary’s cache, and, hence,
it decreases the potential by K. Besides, note that |C| ≤ k, because each cycle contains at least one edge
of EADV , and neither the adversary nor FIFO have redundant connections. Moreover if |C| = k then it
follows that D(ADV) ⊆ D(FIFO), where D(ADV) and D(FIFO) denote the set of pairs that may be
connected by the adversary and FIFO respectively. Therefore, the decrease of the weights of the other
edges in FIFO’s cache produces an increase of the potential that is at most k − 1; in fact if FIFO faults,
there are at most k − 1 edges in C. Hence ∆Φ ≤ −K + k − 1.

By applying Lemma 2.1 the thesis follows. 2

As in the case of the general connectivity problem, it is interesting to note that LRU will not work
for this problem.

5 Conclusions and open problems

In this paper we have studied two extensions of the Paging problem to graphs. We have shown that the
competitiveness results that hold for the Paging problem become much worse if we assume that query
answers are either a set of items that are constrained to form a path in an underlying graph or the
connectivity information about a pair of vertices.

Many open problems require further investigation. First of all it would be interesting to close the
gaps between upper and lower bounds that do not match.

Furthermore it would be interesting to extend Path-paging to directed and/or non-connected graphs,
and to consider particular classes of graphs such as trees, forests or graphs with bounded diameter etc.

A topic that deserves further study arises by noting that the lower bound of theorem 2.1 does not
hold if we consider a different model in which at every fault on query Path(a, b) the on-line algorithm may
bring into cache any set of edges and not necessarily a shortest path from a to b. A similar extension of
the Connectivity-paging problem consists in considering algorithms that in response to a fault on query
Connected(a, b) are not forced to bring to their cache the edge (a, b) of the transitive closure but may
look for other edges that allow to answer the query. Note that the proof of the lower bound on the size
of the cache in theorem 3.1 does not hold in this model.

Acknowledgments: We would like to thank Giorgio Ausiello for useful discussions about this work,
and Ricardo Baeza-Yates for computing the exact value of f(k) in Lemma 3.2. We also acknowledge
anonymous referees for comments and observations that allowed us to improve the presentation.

References

[1] A. Aggarwal, B. Alpern, A.K. Chandra and M. Snir, A model for hierarchical memory, Proc. 19th Annual
ACM Symposium on Theory of Computing 305-314 (1987).

E. Feuerstein and A. Marchetti-Spaccamela, Paging for Graph Problems, JGAA, 2(6) 1–22 (1998) 22

[2] A. Aggarwal and A.K. Chandra, Virtual memory algorithms, Proc. 20th Annual ACM Symposium on Theory
of Computing 173-185 (1988).

[3] A. Aggarwal, A.K. Chandra and M. Snir, Hierarchical memory with block transfer, Proc. 28th. Annual
Symposium on Foundations of Computer Science 204-216 (1987).

[4] J.L. Bentley and C.C. McGeoch, Amortized analysis of self organizing sequential search heuristics, Comm.
ACM 28(4) 404-411 (1985).

[5] A. Borodin, Sandy Irani, P. Raghavan and B. Schieber, Competitive paging with locality of reference, Proc.
23rd Annual ACM Symposium on Theory of Computing 249-259 (1991).

[6] A. Borodin, N. Linial, and M. Saks, An optimal online algorithm for metrical task systems, Proc. 19th
Annual ACM Symposium on Theory of Computing 373-382 (1987).

[7] M. Chrobak, H. Karloff, T. Payne, and S. Vishwanathan, New Results on server problems, Proc. 1st. Annual
ACM-SIAM Symposium on Discrete Algorithms 291-300 (1990).

[8] M. Chrobak and L. Larmore, An optimal online algorithm for k servers on trees, SIAM Journal on Com-
puting 20 144- 148 (1991).

[9] A. Fiat, R.M. Karp, M. Luby, L.A. McGeoch, D.D. Sleator and N.E. Young, Competitive paging algorithms,
Journal of Algorithms 12 685-699 (1991).

[10] A. Fiat, Y. Rabani and Y. Ravid, Competitive k- server algorithms, Proc. 31st. Annual Symposium on
Foundations of Computer Science 454-463 (1990).

[11] E.F. Grove, The harmonic online k-server algorithm is competitive, Proc. 23rd Annual ACM Symposium
on Theory of Computing, 260-266, (1991).

[12] A. Karlin, M. Manasse, L. Rudolph and D. Sleator, Competitive snoopy caching, Algorithmica 3 79-119
(1988).

[13] E. Koutsoupias, C. Papadimitriou, On the k-server conjecture, Journal of the ACM 42(5), 971-983 (1995).

[14] M. H. Nodine, M. T. Goodrich and J. S. Vitter, Blocking for external Graph Searching, Algorithmica 16(2),
181-214 (1996).

[15] M.S. Manasse, L.A. McGeoch and D.D. Sleator, Competitive algorithms for server problems, Journal of
Algorithms 11(2), 208-230 (1990).

[16] M. Overmars, M. Smid, M. de Berg and M. van Kreveld, Maintaining range trees in secondary memory,
part I: partitions, Acta Informatica 27 423-452 (1990).

[17] P. Raghavan and M. Snir. Memory versus randomization in on-line algorithms, IBM Journal of Research
and Development, 38(6):683–707, November 1994.

[18] D. Sleator and R.E. Tarjan, Amortized efficiency of list update and paging algorithms, Comm. ACM 28
202-208 (1985).

[19] M. Smid and P. van Emde Boas, Dynamic data structures on multiple storage media, a tutorial, Technical
Report Universitat des Saarlandes a 15/90, (1990).

[20] N. Young, On-line caching as cache size varies, Proc. 2nd. Annual ACM-SIAM Symposium on Discrete
Algorithms 241-250 (1991).

