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Abstract
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1 Introduction

Let G = (A ∪ B,E) be a partitioned graph, i.e., a graph with a partition of its
vertex set into two disjoint sets A and B. We will refer to the vertices of A
as A-vertices and to the vertices of B as B-vertices, respectively. The question
of drawing partitioned graphs on parallel lines arises from drawing bipartite
graphs, i.e., partitioned graphs such that A and B are independent sets. A
natural way to draw such graphs is to draw all vertices of A on one – say
horizontal – line, all vertices of B on a parallel line, and all edges as straight-
line segments between their end-vertices. Such a drawing will be denoted by
BA-drawing.

If G is planar, a drawing without edge crossings would be desirable. Harary
and Schwenk [7] and Eades et al. [4] showed that a bipartite graph G has a
planar BA-drawing if and only if G is a caterpillar, i.e., a tree such that the set
of all vertices of degree larger than one induces a path.

To obtain planar drawings of a larger class of bipartite graphs, Fößmeier
and Kaufmann [6] proposed BAB-drawings. Again, every edge is a straight-
line segment between its end-vertices and all vertices of A are drawn on one
horizontal line, but the vertices of B may be drawn on two parallel lines – one
above the A-vertices and one below. Fößmeier and Kaufmann [6] gave a linear-
time algorithm to test whether a bipartite graph has a planar BAB-drawing. An
example of a BAB-drawing of a general graph can be found in Fig. 1. Another
generalization of planar BA-drawings of bipartite graphs are planar drawings of
leveled graphs which are considered by Jünger et al. [8].

Planar drawings for non-bipartite partitioned graphs are considered by Biedl
et al. [1, 2]. A complete characterization of graphs that have a planar BA-
drawing is given in [1]. Felsner et al. [5] considered line-drawings of unparti-
tioned graphs. They gave a linear time algorithm that decides whether a tree
has a planar straight line drawing on a fixed number of lines. A fixed-parameter
approach for the problem whether an arbitrary graph has a straight-line draw-
ing on a fixed number of lines with a fixed maximum number of crossings was
given in [3].

We will show how to decide in linear time whether an arbitrary graph has a
planar LL-drawing, i.e., a straight line drawing on two parallel lines without edge
crossings. Examples for planar LL-drawings can be found, e.g., in Fig. 5 and
7. Our algorithm works even if the end-vertices of some edges are constrained
to be on different lines. For planar BAB-drawings, we relax the condition of
bipartiteness to partitioned graphs with the only constraint that the neighbor
of each vertex of B with degree one is in A. Actually, even this restriction is
only necessary in very special cases, which are discussed in Section 2.2. Note
that LL-drawings of unpartitioned graphs are the special case of BAB-drawings
with A = ∅.

This paper is organized as follows. In Section 2, we consider planar BAB-
drawings. First, we decompose the input graph such that the A-vertices of each
component induce a path. We then show that we can substitute each of these
components by a graph that contains only B-vertices, but simulates the possible
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planar BAB-drawings of the component. Finally, in Section 3, we show how to
decide whether an unpartitioned graph has a planar drawing on two parallel
lines.

2 BAB-Drawings

Let G = (A∪B,E) be a partitioned graph such that every B-vertex of degree one
is adjacent to an A-vertex. Since we are interested in straight-line drawings, we
assume that G is simple. As an intermediate step for the construction, however,
we also make use of parallel edges: We say that two edges are parallel, if they
are incident to the same two vertices. Let n := |A∪B| be the number of vertices
of G. Since we want to test planarity, we can reject every graph with more than
3n−6 edges. So we can assume that the number of edges is linear in the number
of vertices. For a subset S ⊆ A∪B we denote by G(S) the graph that is induced
by S. If H = (S,E′) is a subgraph of G, we denote by G − H the subgraph of
G that is induced by (A ∪ B) \ S.

2.1 Decomposition

If G has a planar BAB-drawing, the connected components of G(A) have to
be paths. Therefore, the vertex set of a connected component of G(A) will be
called an A-path of G. By P(A), we denote the set of A-paths. P(A) can be
determined in linear time. Next, we want to decompose G into components. A
subdivision B-path between two vertices b1 and bk is a set {b2, . . . , bk−1} ⊆ B
such that

• {bi, bi+1} ∈ E for i = 1 . . . k − 1 and

• degree bi = 2 for i = 2 . . . k − 1.

For an A-path P ∈ P(A), the A-path component GP is the graph induced by
the union of the following sets of vertices

• set P ,

• set BP of all B-vertices that are incident to P ,

• all subdivision B-paths between two vertices of BP that are not subdivision
B-paths between two vertices of BP ′ for any P ′ ∈ P(A) \ {P}.

Edges that would be contained in several A-path components are omitted in any
of these components. Figure 1 shows a graph with three A-path components.
A vertex of an A-path component GP that is adjacent to a vertex of G − GP

is called a connection vertex of GP . Given a BAB-drawing of G, we call the
first and last vertex of GP on each of the three lines a terminal of GP . By the
restriction on B-vertices of degree one, the following lemma is immediate.
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Figure 1: Decomposition of a graph into three A-path components. White
vertices are A-vertices, all other vertices are B-vertices. Rectangularly shaped
vertices are connection vertices. Dashed edges are not contained in any of the
three A-path components.

Lemma 1 Let P be an A-path of G.

1. All connection vertices of GP are in BP .

2. In any planar BAB-drawing of G, every connection vertex of GP is a
terminal of GP .

3. If G has a planar BAB-drawing, GP has at most four connection vertices.

Let P, P ′ ∈ P(A) be distinct and b1, b2 ∈ BP ∩ BP ′ be two connection vertices
of both GP and GP ′ . Then b1 and b2 are drawn on different lines in any planar
BAB-drawing. In this case, we add edge {b1, b2} to G. We will refer to such
an edge as a reminder edge. Note that by adding the reminder edges, we might
create parallel edges.

Lemma 2 1. The sum of the sizes of all A-path components is in O(n).

2. There is a linear-time algorithm that either computes all A-path compo-
nents and reminder edges or returns an A-path component that has more
than four connection vertices.

Proof:

1. By definition, each edge is contained in at most one A-path component.
The number of A-path components is at most |A| and each A-path com-
ponent is connected. Thus the sum of the number of vertices in all A-path
components is at most |E| + |A| ∈ O(n).

2. First, each subdivision B-path is substituted by a single edge between its
two end-vertices and all sets BP are computed. This can be done in linear
time, e.g. by depth first search. Then for each P ∈ P(A), we examine
the incident edges e of all b ∈ BP . If both end vertices of e are contained
in BP ∪ P , we add e to GP , if not, we classify b as a connection vertex
and stop the examination of this vertex b. This guarantees that for each
vertex, at most one edge that is not in GP is touched. If the number of
connection vertices of GP is greater than 4, we can return GP , else we
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Figure 2: The graph G′ constructed form the graph G in Fig. 1 by inserting the
reminder edges and substituting all A-path components

add a ‘pre-reminder’ edge labeled GP between all six pairs of connection
vertices of GP to G.

In a final walk through the adjacency list of each connection vertex, we
can use the pre-reminder edges to determine the reminder edges and those
edges of G between connection vertices that have to be added to an A-path
component. Finally, subdivision vertices are reinserted into the replace-
ment edges. �

2.2 Substitution

In this section, we show how to substitute an A-path component GP by a
graph that contains only B-vertices. There will be a one-to-one correspondence
between the connection vertices of GP and a subset of the vertex set of its
substitute. The vertices of the substitute that correspond to connection vertices
of GP will also be called connection vertices. The substitute of GP will be
constructed such that it simulates all possible planar BAB-drawings of GP in
which the connection vertices are terminals. In the remainder of this section, a
BA-drawing, a BAB-drawing, or an LL-drawing of an A-path component or its
substitute requires always that the connection vertices are terminals.

Having found a suitable substitute H for GP the substitution process works
as follows. Delete all vertices of GP but the connection vertices of GP from G.
Insert H into G, identifying the connection vertices of GP with the correspond-
ing vertices of H. An example of the graph resulting from the graph in Fig. 1
by inserting the reminder edges and substituting all A-path components can be
found in Fig. 2.

We say that two terminals of GP are on the same side of GP in a BAB-
drawing if they are both first or both last vertices on their lines. They are on
different sides if one is a first and the other one a last vertex. Essentially, there
are six questions of interest:

#: How many connection vertices are contained in GP ?

η: Does the number of connection-vertices equal the number of B-vertices of GP ?

τ : Does GP have a planar BA-drawing?
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τv: For each connection vertex v of GP , is there a planar BAB-drawing of GP

that induces a BA-drawing of GP − v?

σvw: For each pair v, w of connection-vertices of GP , is there a planar BAB-
drawing of GP , such that v and w are on the same side of GP ?

δvw: For each pair v, w of connection-vertices of GP , is there a planar BAB-
drawing of GP , such that v and w are on different sides of GP ?

Note that τ implies τv and that τv implies σvw and δvw for any pair v, w of
connection vertices of GP . Thus, provided that there exists some planar BAB-
drawing of GP , these six questions lead to the cases listed in Table 1. Note that
there is one case with two parallel edges.

We say that an edge in an LL-drawing is vertical if the end vertices of e
are drawn on different lines. Recall that an LL-drawing is the special case
of a BAB-drawing in which the set of A-vertices is empty. Note also that in
case A = ∅ a BA-drawing is an LL-drawing in which all vertices are drawn
on a single line. Finally, for the next lemma, we allow parallel edges in an
LL-drawing. We require, however, that they have to be vertical. A close look
to Table 1 immediately shows that the planar LL-drawings of the substitutes
simulate the possible BAB-drawings of the corresponding A-path components
in the following sense.

Lemma 3 Let Q be one of the decision questions above. Then the answer to Q
is yes for an A-path component if and only if the answer is yes for its substitute.

Let G′ be the graph constructed from G by substituting each A-path component
in the way described above. Let GL be the graph obtained from G′ by deleting
all parallel edges. Each remaining edge in GL that had a parallel edge in G′

will also be called a reminder edge. Further, for each substitute that is not
biconnected1 and for each pair v,w of its connection vertices that is not yet
connected by an edge, insert a reminder edge {v, w} into GL, if there is a
subdivision path of length at least 2 between v and w in GL.

Lemma 4 1. The size of G′ is linear in the size of G.

2. GL has a planar LL-drawing with every reminder edge drawn vertically if
and only if G has a planar BAB-drawing.

Proof: Item 1 follows immediately from the fact that every A-path component
contains at least one A-vertex and is replaced by at most 9 vertices. It remains
to show Item 2.

“⇐”: Suppose we have a planar BAB-drawing. By our general assumption on
B-vertices of degree one, for any two vertices v and w of GP all vertices
that are drawn between v and w do also belong to GP . Thus, by Lemma 3,
we can construct a planar LL-drawing of GL by replacing each A-path
component GP by its substitute.

1A graph is biconnected, if deleting any vertex does not disconnect the graph.
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Table 1: Substitutes for the A-path components. Cases that correspond up
to the names of the connection vertices are omitted. A + means that the
corresponding question is answered by yes. A ⊕ means that the answer to this
property is implied. No entry means that the according property is not fulfilled.
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As mentioned before, pairs of connection vertices, that are contained in
several A-path components are drawn on different lines in a planar BAB-
drawing of G. Parallel edges occur in two cases: they are edges from
different substitutes and hence, between a pair of connection vertices that
are contained in at least two A-path components. Or they are edges of
the substitute with two parallel edges. In either case, the end vertices of
these edges are on different lines.

Suppose now that H is a non-biconnected substitute and that there is a
subdivision path Q in GL − H between two connection vertices v and w
of H. If H is not drawn on one line, then the whole path Q has to be
drawn on the same side of H. Else H = v • w and the LL-drawing can
be changed such that v and w are on different lines.

Hence, there is a planar LL-drawing of GL in which all reminder edges are
vertical.

“⇒”: Suppose now that there exists a planar LL-drawing with the indicated
properties. We first show that we may assume that the drawing of each
substitute H of an A-path component GP fulfills the following two prop-
erties.

1. The connection-vertices of H are all terminals of H.

2. The convex hull of H contains no edge that does not belong to H and
no edge that was parallel to an edge not belonging to H – except if
it is incident to two connection vertices that are drawn on the same
side of H.

Let H be a substitute. The above properties are immediately clear for H
if H is biconnected – we enforce Condition 2 by requiring that reminder
edges have to be vertical.

Now, let H be one of the substitutes that is not biconnected. We show
that it is possible to change the LL-drawing of GL such that it remains
planar but fulfills Condition 1+2. Let v and w be connection vertices of
H that are either not both terminals of H or that are not drawn on the
same side of H. We show that there is no path in GL −H between v and
w. This is immediately clear if v and w are on different lines in the planar
LL-drawing.

So suppose v and w are on the same line and that there is a path P
between v and w in GL − H. Since there is a path in H between v and
w that does not contain any other connection vertex of H, it follows from
the existence of a planar LL-drawing that P is a subdivision path. Hence,
by construction {v, w} is an edge of GL. Hence there cannot be another
path between v and w.

Hence, the convex hull of a substitute H can only contain edges of H
and subdivision paths between a connection vertex of H and a vertex of
degree one. It is illustrated in Fig. 3 how to achieve Condition 1+2 for
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Figure 3: How to move the rest of the graph out of the convex hull of a substitute
in a planar LL-drawing of GL. Parts of GL that are not contained in the
substitute are indicated by dotted lines.

the substitute of an A-path component in which each pair among four
connection vertices can be on the same side in a planar BAB-drawing.
Other cases can be handled similarly.

Now, by Lemma 3, GP can be reinserted into the drawing. �

Note that the precondition on B-vertices of degree one was only needed for
“⇐”. Suppose it was not guaranteed. Then there might be also a subdivision
B-path S between a B-vertex of degree one and a vertex b ∈ BP for an A-path
P , which is drawn between b and another vertex of GP . If b is only contained
in GP and subdivision B-paths between b and a B-vertex of degree one, we can
add S to GP , but if b was also contained in other components, b would be a
connection vertex that is not necessarily a terminal and there need not exist a
suitable substitute any more. There is no problem, if there are at least three
subdivision paths between b and vertices of degree one, since then at least one
of them has to be drawn on the other line then b and then any of them can be
drawn there, thus neither has to be added to GP .

Lemma 5 For each component, the six questions that determine the substitute,
can be answered in time linear in the size of the component.

Proof: It is obvious how to decide Properties # and η. To decide Properties
σvw and δvw, suppose, we have an A-path component GP with an A-path P :
a1, . . . , ak. For technical reasons, we add vertices a0 and ak+1, one at each end,
to P .

Let W be the set of vertices of a connected component of GP (B). Suppose
first that we wouldn’t allow edges between B-vertices on different lines. In this
case G(W ) has to be a path and the vertices in W have to occur in the same
order as their adjacent vertices in P . Furthermore, let a� (ar) be the A-vertex
with lowest (highest) index that is adjacent to W . Then we say that the edges
{ai, ai+1}, i = �, . . . , r− 1 are occupied by G(W ). Finally, if a vertex b in G(W )
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Figure 4: Three reasons for changing a line: a) a chord, b) a change in the order
of adjacent A-vertices, and c) a connection vertex. d) A connection vertex
occupies a part of the A-path. The numbers indicate how many times an edge
or a vertex in the A-path is occupied.

is a connection vertex of GP then b has to be a terminal. Thus, if a� is an
A-vertex with the lowest (highest) index that is adjacent to b, then the edges
{ai, ai+1}, i = 0, . . . , � (or i = �, . . . , k + 1) are also occupied by G(W ).

In general, if GP has a planar BAB-drawing, G(W ) might be a path with at
most two chords and the A-vertices adjacent to this path may change at most
twice between increasing and decreasing order. Thus, there are three reasons
for changing the line in W : a chord, a change in the order of the adjacent A-
vertices, or a connection vertex. Note also that such a change of lines might
occur in at most two connected components of GP (B). If there is a line change
between b1 and b2 in W , then similar to the case of connection vertices above,
G(W ) also occupies the edges between the adjacent A-vertices of b1 and b2 and
one end of the A-path P . Note that in case of a line change some edges in G(P )
might be occupied twice.

We label every edge and every vertex in G(P ) with the number of times it
is occupied as indicated in Fig. 4, where the number of times a vertex v ∈ P is
occupied by G(W ) is defined as follows. v is occupied k times by G(W ), if both
adjacent edges in the A-path are occupied k-times by W and v is not adjacent
to an end vertex of W and k−1 times if it is adjacent to such an end vertex. It is
also occupied k−1-times if one adjacent edge is occupied k-times and the other
one k − 1 times. There exists a planar BAB-drawing with the corresponding
choice of the direction of the connection vertices, if and only if

1. in total, every edge in G(P ) is occupied at most twice and

2. each vertex v ∈ P that is adjacent to an end vertex of a connected com-
ponent of GP (B) is occupied at most once.

This test works in linear time, since we can reject the graph, as soon as an edge
gets a label higher than 2 and because there are at most four connection vertices
and at most two components that change lines for which different orientations
have to be checked. A similar approach can be used to answer questions τ
and τv. �

The results in the next section show how to test the conditions of Lemma 4(2),
which completes the algorithm for deciding whether a planar BAB-drawing ex-
ists.
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a) b)

Figure 5: LL-drawings of a tree. The spine is drawn black.

3 LL-Drawings

Given a graph G = (V,E) and a set of edges U ⊆ E, we show how to decide
in linear time whether there exists a planar LL-drawing of G with the property
that each edge in U is drawn vertically. See also [9] for the construction of
planar LL-drawings. We will first discuss trees and biconnected graphs. Then
we will decompose the graph to solve the general case. For an easier discussion,
we assume that an LL-drawing is a drawing on two horizontal lines.

3.1 LL-Drawings of Trees and Biconnected Graphs

First, we consider trees. Felsner et al. [5] characterized trees that have a
planar LL-drawing and called them strip-drawable. We give a slightly different
characterization.

Lemma 6 A tree T has a planar LL-drawing, if and only if it contains a spine,
i.e., a path S such that T − S is a collection of paths.

Proof:

“⇒”: The unique path between a leftmost and a rightmost vertex of T in a
planar LL-drawing is a spine of T . See Fig. 5a for an illustration.

“⇐”: A planar LL-drawing can be achieved by placing the spine on one of the
lines and the path components in the order of their adjacency to the spine
on the other line. See Fig. 5b for an illustration. �

As indicated in [5], the inclusion minimal spine Smin can be computed in linear
time. If a vertex v is required to be an end vertex of a spine, we only have
to check if there is a path between v and an end vertex of Smin in T − Smin.
We will use this fact when we examine the general case. Finally, the following
lemma characterizes whether the edges in a set U ⊆ E can be drawn vertically.

Lemma 7 A set U of edges of a tree T can all be drawn vertically in a planar
LL-drawing of T if and only if there exists a spine S that contains at least one
end vertex of each edge in U .

Recall that a graph is biconnected if deleting any vertex does not disconnect
the graph. Before we characterize biconnected graphs that have a planar LL-
drawing, we make the following observation.
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Lemma 8 Every graph that has a planar LL-drawing is outer planar.

Proof: Since all vertices are placed on two – say horizontal – lines, every vertex
is either a top most or bottom most vertex and is thus incident to the outer
face. �

For general graphs, the existence of a spine is still necessary for the existence
of a planar LL-drawing, but it is not sufficient. For example, see the graph of
Fig. 6, which is the smallest outer planar graph that has no planar LL-drawing.
For a biconnected graph, a planar LL-drawing can be constructed if and only if
the inner faces induce a path in the dual graph.

Figure 6: The smallest outer planar graph that has no planar LL-drawing.

Theorem 1 A biconnected graph G has a planar LL-drawing if and only if

1. G is outer planar and

2. the set of inner faces induces a path in the dual graph2 of an outer planar
embedding of G.

Proof: Recall that only outer planar graphs can have a planar LL-drawing.
Thus, let G be an outer planar biconnected graph. We assume without loss of
generality that G has at least two inner faces. Let G∗ be the dual of the outer
planar embedding of G, and let G∗−fo be the subgraph of G∗ that results from
deleting the outer face fo. In general, G∗ − fo is a tree. We have to show that
G has a planar LL-drawing if and only if G∗ − fo is a path.

“⇒”: Consider the faces of G according to a planar LL-drawing of G. Then the
boundary of each face contains exactly two vertical edges. Hence every
vertex in G∗ − fo has at most degree 2. Thus, the tree G∗ − fo is a path.

“⇐”: Let G∗−fo be a path and let f1, f2 be the vertices of G∗−fo with degree
one. Chose two edges e1, e2 of G such that ei, i = 1, 2 is incident to fi

and fo. Deleting e1 and e2 from the boundary cycle of fo results into two
paths P1 and P2. A planar LL-drawing of G can be obtained as follows.
Draw the boundary cycle of fo such that P1 is drawn on one line and P2 is
drawn on the other line. Then all vertices of G are drawn. Since G∗ − fo

2The dual graph G∗ of a planar graph G with a fixed planar embedding is defined as
follows. The vertices of G∗ are the faces of G. For each edge e of G the dual graph G∗
contains an edge that is incident to the same faces as e.
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Figure 7: A graph with a planar LL-drawing. Connection vertices are solid.

is a path and by the choice of e1 and e2, non of the edges that is only
incident to inner faces is incident to two vertices on the same line. Hence
all remaining edges are vertical edges. Since G is outer planar, no two
vertical edges cross. Hence the construction yields a planar LL-drawing
of G. �

Corollary 1 A set U of edges of a biconnected graph G can all be drawn ver-
tically in a planar LL-drawing of G if and only if

1. G is outer planar,

2. the set of inner faces induces a path P in the dual graph of an outer planar
embedding of G, and

3. the dual edges of U are all on a simple cycle including P .

3.2 LL-Drawings of General Graphs

To test whether a general graph has a planar LL-drawing, we first split the
graph into components like paths, trees and biconnected components. We give
necessary conditions and show how to test them in linear time. Finally, by con-
structing a drawing, we show that these necessary conditions are also sufficient.

Suppose now without loss of generality that G is a connected graph. In
this section, a vertex v is called a connection vertex, if it is contained in a
cycle and its removal disconnects G. Figure 7 shows the connection vertices
in an example graph. We denote the set of all connection vertices by Vc. The
connection vertices can be determined with depth first search in linear time.

A subgraph L of G is called a single line component, if it is maximal with the
property that L is an induced path and there exists a vertex v ∈ Vc such that L
is a connected component of G− v. By L̄, we denote a single line component L
including its incident connection vertex. If L̄ is a path we call it a strict single
line component, otherwise we call it a fan. Figure 8 illustrates different single
line components.

Simply testing for all v ∈ Vc, whether the connected components of G(V \
{v}) are paths leads to a quadratic time algorithm for finding the single line
components. But we can use outer-planarity to do it in linear time. Note
that any single line component contains at most two connection vertices (see
Fig. 8 for illustration). Thus, we can find them, by storing the three last visited
connection vertices on a walk around the outer face and testing, whether the
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Figure 8: Fans and a strict single line component. Connection vertices are solid.

Figure 9: Components of the graph in Fig. 7. There are two trees, two two-lined
biconnected components, two fans, and three strictly single lined components.

vertices between the first and second occurrence of the same connection vertex
induce a path.

Let G′ be the subgraph that results from G by deleting all single line com-
ponents. The two-lined components of G are the components that we get by
splitting G′ at the connection vertices of G. Two-lined components that do not
contain a cycle will be called tree components. All other two-lined components
will be denoted by two-lined biconnected components. Figure 9 illustrates the
different components of the graph in Fig. 7.

We have now defined all components that we need to characterize those
graphs that have a planar LL-drawing. Before we formulate the characterization
for the general case, note that G′ is a tree if the graph does not contain two-lined
biconnected components. Indeed, the characterization in this case is similar to
the situation in which the graph is a tree.

Remark 1 A graph G that does not contain any two-lined biconnected compo-
nent has a planar LL-drawing if and only if it contains a spine.

Now, consider the set L of all two-lined components. Let P be the graph with
vertex set L in which two two-lined components are adjacent if and only if
they share a connection vertex. Suppose a planar LL-drawing for G is given.
Then all two-lined biconnected components require at least two lines. All tree
components also require at least two lines or are connected to two components
that require two lines. Thus P has to be a path. We will refer to this property
by saying that the two-lined components induce a path. For the same reason
three two-lined components cannot share a vertex.

Theorem 2 A graph G has a planar LL-drawing if and only if

1. G is outer planar,

2. the two-lined components induce a path,
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3. each tree component T has a spine S such that the connection vertices of
T are end vertices of S, and

4. for each two-lined biconnected component B there is a drawing with the
following properties.

(a) Connection vertices are leftmost or rightmost vertices of B on their
line.

(b) At most one two-lined component is connected to each vertex of B.

(c) If a two-lined component or a fan is connected to a vertex of B, then
a vertex on the same side is at most connected to a strict single line
component.

In the rest of this section, we show that the conditions in the above theorem
are necessary. Sufficiency will be shown in the next section by demonstrating
how to find a planar LL-drawing of G in linear time. We will also discuss the
conditions for vertical edges in the next section.

So, suppose that the graph G has a planar LL-drawing. The necessity of
Conditions 1-3 and 4b follows from Section 3.1 and the observations mentioned
above. Clearly, no component can be connected to a two-lined biconnected
component, if not to a leftmost or rightmost vertex. Hence, it follows that also
Condition 4a is necessary.

To prove the necessity of Condition 4c, let B be a two-lined biconnected
component. Let C1, C2 be two components that are connected to different
vertices on the same side of B. Let v be the common vertex of B and C1. First
we observe that C2 cannot be connected to C1 nor to any component C3 that
contains a vertex w 	= v of C1. Else there would be a cycle in G that contains
edges of C1 and C2 – contradicting the fact that they are different components.
Hence, if C1 cannot be drawn on a single line, it follows immediately that C2 can
only be a strict single line component. Suppose now that C1 is a tree component
that can be drawn on a single line. Then there is a component C3 that has no
drawing on a single line, such that C1 and C3 share a vertex w 	= v. Hence, it
follows again that C2 can only be a strict single line component.

3.2.1 Drawing and Sufficient Conditions.

In this subsection we sketch how to construct in linear time a planar LL-drawing
if the conditions in Theorem 2 are fulfilled. We also mention which edges can
be drawn vertically. Since a linear order on the two-lined components is given,
we only have to show how to draw each component separately.

It was already shown in Section 3.1 how to find a spine and that a tree with a
spine has a planar LL-drawing. For drawing two-lined biconnected components,
first note that a biconnected graph has a unique outer planar embedding. Start-
ing with a connection vertex on any line, we add the other vertices in the order
of their appearance around the outer face and switch lines only if necessary,
i.e., at a connection vertex or a chord. We do this procedure for each direction
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around the outer face. Those cases in which lines are switched at most twice,
are the possible outer planar drawings of a two-lined biconnected component,
with respect to Theorem 2. Hence, if a drawing exists, it can be found in linear
time. Vertical edges in two-lined biconnected components only yield another
condition for switching lines.

Let L be a single line component and let L be incident to the connection
vertex v. Let v be contained in the two-lined component B. If a two-lined
component or a fan is connected to another connection vertex on the same side
of B then L is a strict single line component and no edge of L can be vertical.
Else all edges between v and L can be vertical edges.

If no two-lined component is connected to the side of B that contains v, then
among all single line components that are connected to v there is one that may
have additional vertical edges. If it is a fan, also the edges indicated by dotted
lines in Fig. 10 can be vertical. Note, however, that only one of the edges e1

and e2 can be vertical. If the single line component is strict, all edges can be
vertical.

e1

e2

Figure 10: Edges that can be vertical.

4 Conclusion

We showed how to decide in linear time, whether an arbitrary graph has a pla-
nar drawing on two parallel lines, even if the input contains edges that have
to be drawn vertically. We applied this result to decide in linear time whether
a partitioned graph G = (A ∪ B,E) with the property that every B-vertex
of degree one is adjacent to an A-vertex has a planar BAB-drawing. The al-
gorithm worked in three steps. First, the graph was decomposed into A-path
components. Then, each of these components was substituted by a graph that
contains only B-vertices, but simulates the possible positions of the connection
vertices. Finally, we test whether the resulting graph has a planar LL-drawing.
We discussed that the restriction on the vertices of degree one is only needed
in the following sense: If b is a connection vertex of an A-path component, the
number of subdivision B-paths between b and vertices of degree one may not
be one or two.

Acknowledgments

The authors wish to thank the referees for useful suggestions and hints.



Cornelsen et al., Graphs on 2 and 3 Lines, JGAA, 8(2) 161–177 (2004) 177

References

[1] T. C. Biedl. Drawing planar partitions I: LL-drawings and LH-drawings. In
Proceedings of the 14th Annual ACM Symposium on Computational Geom-
etry (SCG ’98), pages 287–296, 1998.

[2] T. C. Biedl, M. Kaufmann, and P. Mutzel. Drawing planar partitions II: HH-
drawings. In J. Hromkovic, editor, Graph Theoretic Concepts in Computer
Science, 24th International Workshop, (WG ’98), volume 1517 of Lecture
Notes in Computer Science, pages 124–136. Springer, 1998.
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