
Journal of Graph Algorithms and Applications
http://jgaa.info/ vol. 8, no. 2, pp. 135–160 (2004)

Straight-line Drawings of Binary Trees with
Linear Area and Arbitrary Aspect Ratio

Ashim Garg

Department of Computer Science and Engineering
University at Buffalo
Buffalo, NY 14260

agarg@cse.buffalo.edu

Adrian Rusu

Department of Computer Science
Rowan University

Glassboro, NJ 08028
rusu@rowan.edu

Abstract

Trees are usually drawn planar, i.e. without any edge-crossings. In
this paper, we investigate the area requirement of (non-upward) planar
straight-line grid drawings of binary trees. Let T be a binary tree with n
nodes. We show that T admits a planar straight-line grid drawing with
area O(n) and with any pre-specified aspect ratio in the range [n−ε, nε],
where ε is any constant, such that 0 < ε < 1. We also show that such a
drawing can be constructed in O(n log n) time. In particular, our result
shows that optimal area (equal to O(n)) and optimal aspect ratio (equal
to 1) are simultaneously achievable for such drawings.

Article Type Communicated by Submitted Revised
Regular Paper Xin He April 2003 May 2004

Research supported by NSF CAREER Award IIS-9985136, NSF CISE Research Infras-

tructure Award No. 0101244, and Mark Diamond Research Grant No. 13-Summer-

2003 from GSA of The State University of New York. This research was performed

while the second author was at the Department of Computer Science and Engineering,

University at Buffalo, Buffalo, NY. A preliminary version of the paper was presented

at the Tenth International Symposium on Graph Drawing, Irvine, CA, September,

2002.



Garg and Rusu, Drawing Binary Trees, JGAA, 8(2) 135–160 (2004) 136

(a) (b) (c)

Figure 1: Various kinds of drawings of the same tree: (a) straight-line, (b)
polyline, and (c) orthogonal. Also note that the drawings shown in Figures (a)
and (b) are upward drawings, whereas the drawing shown in Figure (c) is not.
The root of the tree is shown as a shaded circle, whereas other nodes are shown
as black circles.

1 Introduction

Trees are very common data-structures, which are used to model information
in a variety of applications, such as Software Engineering (hierarchies of object-
oriented programs), Business Administration (organization charts), and Web-
site Design (structure of a Web-site). A drawing Γ of a tree T maps each node of
T to a distinct point in the plane, and each edge (u, v) of T to a simple Jordan
curve with endpoints u and v. Γ is a straight-line drawing (see Figure 1(a)),
if each edge is drawn as a single line-segment. Γ is a polyline drawing (see
Figure 1(b)), if each edge is drawn as a connected sequence of one or more line-
segments, where the meeting point of consecutive line-segments is called a bend.
Γ is an orthogonal drawing (see Figure 1(c)), if each edge is drawn as a chain of
alternating horizontal and vertical segments. Γ is a grid drawing if all the nodes
and edge-bends have integer coordinates. Γ is a planar drawing if edges do not
intersect each other in the drawing (for example, all the drawings in Figure 1
are planar drawings). Γ is an upward drawing (see Figure 1(a,b)), if the parent
is always assigned either the same or higher y-coordinate than its children. In
this paper, we concentrate on grid drawings. So, we will assume that the plane
is covered by a rectangular grid. Let R be a rectangle with sides parallel to the
X- and Y -axes, respectively. The aspect ratio of R is the ratio of its width and
height. R is the enclosing rectangle of Γ if it is the smallest rectangle that covers
the entire drawing. The width, height, area, and aspect ratio of Γ is equal to the
width, height, area, and aspect ratio, respectively, of its enclosing rectangle. T
is a binary tree if each node has at most two children.



Garg and Rusu, Drawing Binary Trees, JGAA, 8(2) 135–160 (2004) 137

2 Our Result

Planar straight-line drawings are considered more aesthetically pleasing than
non-planar polyline drawings. Grid drawings guarantee at least unit distance
separation between the nodes of the tree, and the integer coordinates of the
nodes and edge-bends allow the drawings to be displayed in a (large-enough)
grid-based display surface, such as a computer screen, without any distortions
due to truncation and round-off errors. Giving users control over the aspect ratio
of a drawing allows them to display the drawing in different kinds of display
surfaces with different aspect ratios. Finally, it is important to minimize the
area of a drawing, so that the users can display a tree in as small of a drawing
area as possible.

We, therefore, investigate the problem of constructing (non-upward) planar
straight-line grid drawings of binary trees with small area. Clearly, any planar
grid drawing of a binary tree with n nodes requires Ω(n) area. A long-standing
fundamental question has been, whether this is also a tight bound, i.e., given a
binary tree T with n nodes, can we construct a planar straight-line grid drawing
of T with area O(n)?

In this paper, we answer this question in affirmative, by giving an algorithm
that constructs a planar straight-line grid drawing of a binary tree with n nodes
with O(n) area in O(n log n) time. Moreover, the drawing can be parameterized
for its aspect ratio, i.e., for any constant ε, where 0 < ε < 1, the algorithm can
construct a drawing with any user-specified aspect ratio in the range [n−ε, nε].
Theorem 2 summarizes our overall result. In particular, our result shows that
optimal area (equal to O(n)) and optimal aspect ratio (equal to 1) is simulta-
neously achievable (see Corollary 1).

3 Previous Results

Previously, the best-known upper bound on the area of a planar straight-line
grid drawing of an n-node binary tree was O(n log log n), which was shown in [1]
and [7]. This bound is very close to O(n), but still it does not settle the question
whether an n-node binary tree can be drawn in this fashion in optimal O(n) area.
Thus, our result is significant from a theoretical view-point. In fact, we already
know of one category of drawings, namely, planar upward orthogonal polyline
grid drawings, for which n log log n is a tight bound [5], i.e., any binary tree
can be drawn in this fashion in O(n log log n) area, and there exists a family of
binary trees that requires Ω(n log log n) area in any such drawing. So, a natural
question arises, whether n log log n is also a tight bound for planar straight-
line grid drawings. Of course, our result implies that this is not the case. In
addition, our drawing technique and proofs are significantly different from those
of [1] and [7]. Moreover, the drawings constructed by the algorithms of [1] and [7]
have a fixed aspect ratio, equal to Θ(log2 n/(n log log n)), whereas the aspect
ratio of the drawing constructed by our algorithm can be specified by the user.

We now summarize some other known results on planar grid drawings of



Garg and Rusu, Drawing Binary Trees, JGAA, 8(2) 135–160 (2004) 138

binary trees (for more results, see [4]). Let T be an n-node binary tree. [5]
presents an algorithm for constructing an upward polyline drawing of T with
O(n) area, and any user-specified aspect ratio in the range [n−ε, nε], where ε
is any constant, such that 0 < ε < 1. [6] and [9] present algorithms for con-
structing a (non-upward) orthogonal polyline drawing of T with O(n) area. [1]
gives an algorithm for constructing an upward orthogonal straight-line draw-
ing of T with O(n log n) area, and any user-specified aspect ratio in the range
[log n/n, n/ log n]. It also shows that n log n is also a tight bound for such draw-
ings. [7] gives an algorithm for constructing an upward straight-line drawing of
T with O(n log log n) area. If T is a Fibonacci tree, (AVL tree, and complete bi-
nary tree), then [2, 8] ([3], and [2], respectively) give algorithms for constructing
an upward straight-line drawing of T with O(n) area.

Table 1 summarizes some of these results.

Drawing Type Area Aspect Ratio Ref.
Upward Orthogonal

Polyline O(n log log n) Θ(log2 n/(n log log n)) [5, 7]
Upward Orthogonal

Straight-line O(n log n) [log n/n, n/ log n] [1]
(Non-upward) Orthogonal

Polyline O(n) Θ(1) [6, 9]
Upward Polyline O(n) [n−ε, nε] [5]

Upward Straight-line O(n log log n) Θ(log2 n/(n log log n)) [7]
(Non-upward) Straight-line O(n log log n) Θ(log2 n/(n log log n)) [1, 7]

this
O(n) [n−ε, nε] paper

Table 1: Bounds on the areas and aspect ratios of various kinds of planar grid
drawings of an n-node binary tree. Here, ε is an arbitrary constant, such that
0 < ε < 1.

4 Preliminaries

Throughout the paper, by the term tree, we will mean a rooted tree, i.e., a
tree with a given root. We will assume that the plane is covered by an infinite
rectangular grid. A horizontal channel (vertical channel) is a line parallel to the
X-(Y -)axis, passing through grid-points.

Let T be a tree with root o. Let n be the number of nodes in T . T is an
ordered tree if the children of each node are assigned a left-to-right order. A
partial tree of T is a connected subgraph of T . If T is an ordered tree, then the
leftmost path p of T is the maximal path consisting of nodes that are leftmost
children, except the first one, which is the root of T . The last node of p is called
the leftmost node of T . Two nodes of T are siblings if they have the same parent.



Garg and Rusu, Drawing Binary Trees, JGAA, 8(2) 135–160 (2004) 139

The subtree of T rooted at a node v consists of v and all the descendents of v.
T is the empty tree, i.e., T = ∅, if it has zero nodes in it.

Let Γ be a drawing of T . By the bottom (top, left, and right, respectively)
boundary of Γ, we will mean the bottom (top, left, and right, respectively) bound-
ary of the enclosing rectangle R(Γ) of Γ. Similarly, by top-left (top-right, bottom-
left, and bottom-right, respectively) corner of Γ, we mean the top-left (top-right,
bottom-left, and bottom-right, respectively) corner of R(Γ).

Let R be a rectangle, such that Γ is entirely contained within R. R has a
good aspect ratio, if its aspect ratio is in the range [n−ε, nε], where 0 < ε < 1 is
a constant.

Let w be a node of an ordered tree. We denote by p(w), l(w), r(w), and
s(w), respectively, the parent, left child, right child, and sibling of w.

For some trees, we will designate a special link node u∗, that has at most
one child. As we will see later in Section 5, the link node helps in combining
the drawing of a tree with the drawing of another tree to obtain a drawing of a
larger tree, that contains both the trees.

Let T be a tree with link node u∗. Let o be the root of T . A planar straight-
line grid drawing Γ of T is a feasible drawing of T , if it has the following three
properties:

• Property 1: The root o is placed at the top-left corner of Γ.

• Property 2: If u∗ �= o, then u∗ is placed at the bottom boundary of
Γ. Moreover, we can move u∗ downwards in its vertical channel by any
distance without causing any edge-crossings in Γ.

• Property 3: If u∗ = o, then no other node or edge of T is placed on,
or crosses the vertical and horizontal channels occupied by o. Moreover,
we can move u∗ (i.e., o) upwards in its vertical channel by any distance
without causing any edge-crossings in Γ.

The following Theorem paraphrases a theorem of Valiant [9]:

Theorem 1 (Separator Theorem [9]) Every binary tree T with n nodes,
where n ≥ 2, contains an edge e, called a separator edge, such that removing
e from T splits it into two non-empty trees with n1 and n2 nodes, respectively,
such that for some x, where 1/3 ≤ x ≤ 2/3, n1 = xn, and n2 = (1 − x)n.
Moreover, e can be found in O(n) time.

Let Γ be a drawing of T . Let v be a node of T located at grid point (i, j)
in Γ. Assume that the root o of T is located at the grid point (0, 0) in Γ. We
define the following operations on Γ (see Figure 2):

• rotate operation: rotate Γ counterclockwise by δ degrees around o. After a
rotation by δ degrees of Γ, node v will get relocated to the point (i cos δ−
j sin δ, i sin δ + j cos δ). In particular, after rotating Γ by 90◦, node v will
get relocated to the grid point (−j, i).



Garg and Rusu, Drawing Binary Trees, JGAA, 8(2) 135–160 (2004) 140

Figure 2: Rotating a drawing Γ by 90◦, followed by flipping it vertically. Note
that initially node u∗ was located at the bottom boundary of Γ, but after the
rotate operation, u∗ is at the right boundary of Γ.

• flip operation: flip Γ vertically or horizontally about the X− or Y −axis,
respectively. After a horizontal flip of Γ, node v will be located at grid
point (−i, j). After a vertical flip of Γ, node v will be located at grid point
(i,−j).

Suppose Γ were a feasible drawing, where the link node u∗ was placed at the
bottom of Γ. On applying a rotation operation followed by a vertical-flip oper-
ation, u∗ will get relocated to the right-boundary of Γ, but o will continue to
stay at the top-left corner (see Figure 2). We will use this fact later in Section 5
in the Compose Drawings step of our drawing algorithm.

5 Our Tree Drawing Algorithm

Let T be a binary tree with link node u∗. Let n be the number of nodes in T .
Let A and ε be two numbers, where ε is a constant, such that 0 < ε < 1, and
n−ε ≤ A ≤ nε. A is called the desirable aspect ratio for T .

Our tree drawing algorithm, called DrawTree, takes ε, A, and T as input,
and uses a simple divide-and-conquer strategy to recursively construct a feasible
drawing Γ of T , by performing the following actions at each recursive step:

• Split Tree: Split T into at most five partial trees by removing at most
two nodes and their incident edges from it. Each partial tree has at most
(2/3)n nodes. Based on the arrangement of these partial trees within T ,
we get two cases, which are shown in Figures 4 and 5, respectively, and
described later in Section 5.1.

• Assign Aspect Ratios: Correspondingly, assign a desirable aspect ratio Ak

to each partial tree Tk. The value of Ak is based on the value of A and
the number of nodes in Tk.

• Draw Partial Trees: Recursively construct a feasible drawing of each par-
tial tree Tk with Ak as its desirable aspect ratio.

• Compose Drawings: Arrange the drawings of the partial trees, and draw
the nodes and edges, that were removed from T to split it, such that the



Garg and Rusu, Drawing Binary Trees, JGAA, 8(2) 135–160 (2004) 141

drawing Γ of T is a feasible drawing. Note that the arrangement of these
drawings is done based on the cases shown in Figures 4 and 5. In each
case, if A < 1, then the drawings of the partial trees are stacked one above
the other, and if A ≥ 1, then they are placed side-by-side.

Remark: The drawing Γ constructed by the algorithm may not have aspect
ratio exactly equal to A, but as we will prove later in Lemma 4, it will fit inside
a rectangle with area O(n) and aspect ratio A.

Figure 3(a) shows a drawing of a complete binary tree with 63 nodes con-
structed by Algorithm DrawTree, with A = 1 and ε = 0.5. Figure 3(b) shows
a drawing of a tree with 63 nodes, consisting of a single path, constructed by
Algorithm DrawTree, with A = 1 and ε = 0.5.

We now give the details of each action performed by Algorithm DrawTree:

5.1 Split Tree

The splitting of tree T into partial trees is done as follows:

• Order the children of each node such that u∗ becomes the leftmost node
of T .

• Using Theorem 1, find a separator edge (u, v) of T , where u is the parent
of v.

• Based on whether, or not, (u, v) is in the leftmost path of T , we get two
cases:

– Case 1: The separator edge (u, v) is not in the leftmost path of T .
Let o be the root of T . Let a be the last node common to the path
o � v, and the leftmost path of T . We define partial trees TA, TB ,
TC , Tα, Tβ , T1 and T2, as follows (see Figure 4(a)):

∗ If o �= a, then TA is the maximal partial tree with root o, that
contains p(a), but does not contain a. If o = a, then TA = ∅.

∗ TB is the subtree rooted at r(a).
∗ If u∗ �= a, then TC is the subtree rooted at l(a). If u∗ = a, then

TC = ∅.
∗ If s(v) exists, i.e., if v has a sibling, then T1 is the subtree rooted

at s(v). If v does not have a sibling, then T1 = ∅.
∗ T2 is the subtree rooted at v.
∗ If u �= a, then Tα is the subtree rooted at u. If u = a, then

Tα = T2. Note that Tα is a subtree of TB.
∗ If u �= a and u �= r(a), then Tβ is the maximal partial tree with

root r(a), that contains p(u), but does not contain u. If u = a
or u = r(a), then Tβ = ∅. Again, note that Tβ belongs to TB .



Garg and Rusu, Drawing Binary Trees, JGAA, 8(2) 135–160 (2004) 142

(a)

(b)

Figure 3: (a) Drawing of the complete binary tree with 63 nodes constructed
by Algorithm DrawTree, with A = 1 and ε = 0.5. (b) Drawing of a tree with
63 nodes, consisting of a single path, constructed by Algorithm DrawTree, with
A = 1 and ε = 0.5.



Garg and Rusu, Drawing Binary Trees, JGAA, 8(2) 135–160 (2004) 143

(a)

(b)

(c)

(d)
(Figure 4 continued on the next page)



Garg and Rusu, Drawing Binary Trees, JGAA, 8(2) 135–160 (2004) 144

(figure continued from the previous page)

(e)

(f)

(g)

Figure 4: Drawing T in all the seven subcases of Case 1 (where the separator
edge (u, v) is not in the leftmost path of T ): (a) TA �= ∅, TC �= ∅, u∗ �= l(a), (b)
TA �= ∅, TC �= ∅, u∗ = l(a), (c) TA �= ∅, TC = ∅, o �= p(a), (d) TA �= ∅, TC = ∅,
o = p(a), (e) TA = ∅, TC = ∅, (f) TA = ∅, TC �= ∅, u∗ �= l(a), and (g) TA = ∅,
TC �= ∅, u∗ = l(a). For each subcase, we first show the structure of T for that
subcase, then its drawing when A < 1, and then its drawing when A ≥ 1. In
Subcases (a) and (b), for simplicity, p(a) is shown to be in the interior of ΓA,
but actually, either it is the same as o, or if A < 1 (A ≥ 1), then it is placed at
the bottom (right) boundary of ΓA. For simplicity, we have shown ΓA, ΓB, and
ΓC as identically sized boxes, but in actuality, they may have different sizes.



Garg and Rusu, Drawing Binary Trees, JGAA, 8(2) 135–160 (2004) 145

(a)

(b)

(c)

(d)
(Figure 5 continued on the next page)



Garg and Rusu, Drawing Binary Trees, JGAA, 8(2) 135–160 (2004) 146

(figure continued from the previous page)

(e)

(f)

(g)

(h)

Figure 5: Drawing T in all the eight subcases of Case 2 (where the separator
edge (u, v) is in the leftmost path of T ): (a) TA �= ∅, TB �= ∅, v �= u∗, (b)
TA �= ∅, TB �= ∅, v = u∗, (c) TA �= ∅, TB = ∅, v �= u∗, (d) TA �= ∅, TB = ∅,
v = u∗, (e) TA = ∅, TB �= ∅, v �= u∗, (f) TA = ∅, TB �= ∅, v = u∗, (g) TA = ∅,
TB = ∅, v �= u∗, and (h) TA = ∅, TB = ∅, v = u∗. For each subcase, we first
show the structure of T for that subcase, then its drawing when A < 1, and
then its drawing when A ≥ 1. In Subcases (a), (b), (c), and (d), for simplicity,
p(u) is shown to be in the interior of ΓA, but actually, either it is same as o,
or if A < 1 (A ≥ 1), then it is placed at the bottom (right) boundary of ΓA.
For simplicity, we have shown ΓA, ΓB , and ΓC as identically sized boxes, but in
actuality, they may have different sizes.



Garg and Rusu, Drawing Binary Trees, JGAA, 8(2) 135–160 (2004) 147

We get seven subcases, where subcase (a) is the general case, and
subcases (b–g) are special cases: (a) TA �= ∅, TC �= ∅, u∗ �= l(a) (see
Figure 4(a)), (b) TA �= ∅, TC �= ∅, u∗ = l(a) (see Figure 4(b)), (c)
TA �= ∅, TC = ∅, o �= p(a) (see Figure 4(c)), (d) TA �= ∅, TC = ∅,
o = p(a) (see Figure 4(d)), (e) TA = ∅, TC = ∅ (see Figure 4(e)), (f)
TA = ∅, TC �= ∅, u∗ �= l(a) (see Figure 4(f)), and (g) TA = ∅, TC �= ∅,
u∗ = l(a) (see Figure 4(g)).
The reason we get these seven subcases is as follows: T2 has at least
n/3 nodes in it because of Theorem 1. Hence T2 �= ∅, and so, TB �= ∅.
Based on whether TA = ∅ or not, TC = ∅ or not, u∗ = l(a) or not,
and o = p(a) or not, we get a total of sixteen cases. From these
sixteen cases, we obtain the above seven subcases, by grouping some
of them together. For example, the cases TA �= ∅, TC �= ∅, u∗ �= l(a),
o = p(a), and TA �= ∅, TC �= ∅, u∗ �= l(a), o �= p(a) are grouped
together to give Case (a), i.e., TA �= ∅, TC �= ∅, u∗ �= l(a). So, Case
(a) corresponds to 2 cases. Similarly, Cases (b), (c), (d), (f), and (g)
correspond to 2 cases each, and Case (e) corresponds to 4 cases.
In each case, we remove nodes a and u (which could be the same node
as a), and their incident edges, to split T into at most five partial
trees TA, TC , Tβ , T1, and T2. We also designate p(a) as the link node
of TA, p(u) as the link node of Tβ , and u∗ as the link node of TC .
We arbitrarily select a leaf of T1, and a leaf of T2, and designate them
as the link nodes of T1 and T2, respectively.

– Case 2: The separator edge (u, v) is in the leftmost path of T . Let
o be the root of T . We can define partial trees TA, TB, and TC as
follows (see Figure 5(a)):

∗ If o �= u, then TA is the maximal partial tree with root o, that
contains p(u), but does not contain u. If o = u, then TA = ∅.

∗ If r(u) exits, i.e., u has a right child, then TB is the subtree
rooted at r(u). If u does not have a right child, then TB = ∅.

∗ TC is the subtree rooted at v.

We get eight subcases, where subcase (a) is the general case, and
subcases (b–h) are special cases: (a) TA �= ∅, TB �= ∅, v �= u∗ (see
Figure 5(a)), (b) TA �= ∅, TB �= ∅, v = u∗ (see Figure 5(b)), (c)
TA �= ∅, TB = ∅, v �= u∗ (see Figure 5(c)), (d) TA �= ∅, TB = ∅, v = u∗

(see Figure 5(d)), (e) TA = ∅, TB �= ∅, v �= u∗ (see Figure 5(e)), (f)
TA = ∅, TB �= ∅, v = u∗ (see Figure 5(f)), (g) TA = ∅, TB = ∅, v �= u∗

(see Figure 5(g)), and (h) TA = ∅, TB = ∅, v = u∗ (see Figure 5(h)).
The reason we get these eight subcases is as follows: TC has at least
n/3 nodes in it because of Theorem 1. Hence, TC �= ∅. Based on
whether TA = ∅ or not, TB = ∅ or not, and v = u∗ or not, we get the
eight subcases given above.
In each case, we remove node u, and its incident edges, to split T
into at most three partial trees TA, TB , and TC . We also designate



Garg and Rusu, Drawing Binary Trees, JGAA, 8(2) 135–160 (2004) 148

p(u) as the link node of TA, and u∗ as the link node of TC . We
arbitrarily select a leaf of TB and designate it as the link node of TB .

Remark: In Case 2, from the definition of the separator edge (u, v) (see
Theorem 1), it can be easily shown that TA = ∅ and TB = ∅ can happen
simultaneously only if T has very few nodes in it, namely, at most 5 nodes.
Hence, Case 2(g) and Case 2(h) can occur only if T has at most 5 nodes in it.

5.2 Assign Aspect Ratios

Let Tk be a partial tree of T , where for Case 1, Tk is either TA, TC , Tβ , T1, or
T2, and for Case 2, Tk is either TA, TB , or TC . Let nk be number of nodes in
Tk.
Definition: Tk is a large partial tree of T if:

• A ≥ 1 and nk ≥ (n/A)1/(1+ε), or

• A < 1 and nk ≥ (An)1/(1+ε),

and is a small partial tree of T otherwise.
In Step Assign Aspect Ratios, we assign a desirable aspect ratio Ak to each

non-empty Tk as follows: Let xk = nk/n.

• If A ≥ 1: If Tk is a large partial tree of T , then Ak = xkA, otherwise (i.e.,
if Tk is a small partial tree of T ) Ak = n−ε

k .

• If A < 1: If Tk is a large partial tree of T , then Ak = A/xk, otherwise
(i.e., if Tk is a small partial tree of T ) Ak = nε

k.

Intuitively, the above assignment strategy ensures that each partial tree gets
a good desirable aspect ratio.

5.3 Draw Partial Trees

First, we change the values of AA and Aβ in some situations, as follows: (recall
that AA and Aβ are the desirable aspect ratios for TA and Tβ , respectively,
when they are non-empty trees)

• In Case 1(c), we change the value of AA to 1/AA. Moreover, in Case 1(c),
if A ≥ 1, then we change the value of Aβ also to 1/Aβ .

• In Cases 1(a) and 1(b), if A ≥ 1, then we change the values of AA and Aβ

to 1/AA and 1/Aβ , respectively.

• In Cases 1(d), 1(e), 1(f), and 1(g), if A ≥ 1, then we change the values of
Aβ to 1/Aβ .

• In Cases 2(a), 2(b), 2(c), and 2(d), if A ≥ 1, then we change the value of
AA to 1/AA.



Garg and Rusu, Drawing Binary Trees, JGAA, 8(2) 135–160 (2004) 149

This is done so because later in Step Compose Drawings, when constructing Γ,
we have:

• in Case 1(c), the drawing of TA is rotated by 90◦, and if A ≥ 1, then the
drawing of Tβ is also rotated by 90◦,

• in Cases 1(a) and 1(b), if A ≥ 1, then the drawings of TA and Tβ are
rotated by 90◦,

• in Cases 1(d), 1(e), 1(f), and 1(g), if A ≥ 1, then the drawing of Tβ is
rotated by 90◦, and

• in Cases 2(a), 2(b), 2(c), and 2(d), if A ≥ 1, then the drawing of TA is
rotated by 90◦.

Drawing TA and Tβ with desirable aspect ratios 1/AA and 1/Aβ , respectively,
compensates for the rotation, and ensures that the drawings of TA and Tβ that
eventually get placed within Γ are those with desirable aspect ratios AA and
Aβ , respectively.

Next, we draw recursively each non-empty partial tree Tk with Ak as its
desirable aspect ratio. The base case for the recursion happens when Tk contains
exactly one node, in which case, the drawing of Tk is simply the one consisting
of exactly one node.

5.4 Compose Drawings

Let Γk denote the drawing of a partial tree Tk constructed in Step Draw Partial
Trees. We now describe the construction of a feasible drawing Γ of T from the
drawings of its partial trees in both Cases 1 and 2.

In Case 1, we first construct a drawing Γα of the partial tree Tα by composing
Γ1 and Γ2 as shown in Figure 6, then construct a drawing ΓB of TB by composing
Γα and Γβ as shown in Figure 7, and finally construct Γ by composing ΓA, ΓB

and ΓC as shown in Figure 4.
Γα is constructed as follows (see Figure 6): (Recall that if u �= a then Tα is

the subtree of T rooted at u, otherwise Tα = T2)

• If u �= a and T1 �= ∅ (see Figure 6(a)), then:

– If A < 1, then place Γ1 above Γ2 such that the left boundary of Γ1 is
one unit to the right of the left boundary of Γ2. Place u in the same
vertical channel as v and in the same horizontal channel as s(v).

– If A ≥ 1, then place Γ1 one unit to the left of Γ2, such that the top
boundary of Γ1 is one unit below the top boundary of Γ2. Place u in
the same vertical channel as s(v) and in the same horizontal channel
as v.

Draw edges (u, s(v)) and (u, v).

• If u �= a and T1 = ∅ (see Figure 6(b)), then:



Garg and Rusu, Drawing Binary Trees, JGAA, 8(2) 135–160 (2004) 150

(a)

(b)

(c)

Figure 6: Drawing Tα, when: (a) u �= a and T1 �= ∅, (b) u �= a and T1 = ∅,
and (c) u = a. For each case, we first show the structure of Tα for that case,
then its drawing when A < 1, and then its drawing when A ≥ 1. For simplicity,
we have shown Γ1 and Γ2 as identically sized boxes, but in actuality, their sizes
may be different.

– If A < 1, then place u one unit to the left of Γ2 in the same horizontal
channel as v.

– If A ≥ 1, then place u one unit above Γ2 in the same vertical channel
as v.

Draw edge (u, v).

• If u = a, then Γα is the same as Γ2 (see Figure 6(c)).

ΓB is constructed as follows (see Figure 7):

• If Tβ �= ∅ (see Figure 7(a)) then:

– if A < 1, then place Γβ one unit above Γα such that the left bound-
aries of Γβ and Γα are aligned.

– If A ≥ 1, then first rotate Γβ by 90◦ and then flip it vertically, then
place Γβ one unit to the left of Γα such that the top boundaries of
Γβ and Γα are aligned.

Draw edge (p(u), u).

• If Tβ = ∅, then ΓB is same as Γα (see Figure 7(b)).



Garg and Rusu, Drawing Binary Trees, JGAA, 8(2) 135–160 (2004) 151

(a)

(b)

Figure 7: Drawing TB when: (a) Tβ �= ∅, and (b) Tβ = ∅. For each case, we
first show the structure of TB for that case, then its drawing when A < 1, and
then its drawing when A ≥ 1. In Case (a), for simplicity, p(u) is shown to be in
the interior of Γβ , but actually, it is either same as r(a), or if A < 1 (A ≥ 1),
then is placed on the bottom (right) boundary of Γβ . For simplicity, we have
shown Γβ and Γα as identically sized boxes, but in actuality, their sizes may be
different.

Γ is constructed from ΓA, ΓB , and ΓC as follows (see Figure 4):

• In Subcase (a), Γ is constructed as shown in Figure 4(a):

– If A < 1, stack ΓA, ΓB , and ΓC one above the other, such that
they are separated by unit distance from each other, and the left
boundaries of ΓA and ΓC are aligned with each other and are placed
one unit to the left of the left boundary of ΓB. Place a in the same
vertical channel as o and l(a), and in the same horizontal channel as
r(a).

– If A ≥ 1, then first rotate ΓA by 90◦, and then flip it vertically. Then,
place ΓA, ΓC , and ΓB from left-to-right in that order, separated by
unit distances, such that the top boundaries of ΓA and ΓB are aligned
with each other, and are one unit above the top boundary of ΓC .
Then, move ΓC down until u∗ becomes the lowest node of Γ. Place
a in the same vertical channel as l(a) and in the same horizontal
channel as o and r(a).

Draw edges (p(a), a), (a, r(a)), and (a, l(a)).

• The drawing procedure for Subcase (b) is similar to the one in Subcase (a),
except that we also flip ΓC vertically (see Figure 4(b)).

• In Subcase (c), Γ is constructed as shown in Figure 4(c):



Garg and Rusu, Drawing Binary Trees, JGAA, 8(2) 135–160 (2004) 152

– If A < 1, then first flip ΓB vertically, and then flip it horizontally,
so that its root r(a) gets placed at its lower-right corner. Then, first
rotate ΓA by 90◦, and then flip it vertically. Next, place ΓA above
ΓB at unit distance, such that their left boundaries are aligned. Next
move node p(a) (which is the link node of TA) to the right until it is
either to the right of, or aligned with the right boundary of ΓB (since
ΓA is a feasible drawing of TA, by Property 2, as given in Section 4,
moving p(a) in this manner will not create any edge-crossings). Place
u∗ in the same horizontal channel as r(a) and one unit to the right
of p(a).

– If A ≥ 1, then first rotate ΓA by 90◦, and then flip it vertically. Flip
ΓB vertically. Then, place ΓA, u∗, and ΓB left-to-right in that order
separated by unit distances, such that the top boundaries of ΓA and
ΓB are aligned, and u∗ is placed in the same horizontal channel as
the bottom boundary of the drawing among ΓA and ΓB with greater
height.

Draw edges (p(a), a) and (a, r(a)) (i.e., the edges (p(a), u∗) and (u∗, r(a))
because in this case, u∗ = a).

• In Subcase (d), Γ is constructed as shown in Figure 4(d):

– If A < 1, then first flip ΓB vertically, then place ΓA one unit above
ΓB , such that the left boundary of ΓA is one unit to the left of the
left boundary of ΓB . Place u∗ in the same vertical channel as o and
in the same horizontal channel as r(a).

– If A ≥ 1, then first flip ΓB vertically, then place ΓA one unit to the
left of ΓB, such that their top boundaries are aligned. Next, move
ΓB down until its bottom boundary is at least one unit below the
bottom boundary of ΓA. Place u∗ in the same vertical channel as o
and in the same horizontal channel as r(a).

Draw edges (o, u∗) and (u∗, r(a)) (i.e., the edges (p(a), a) and (a, r(a))
because in this case, o = p(a) and u∗ = a). Note that, since ΓA is a
feasible drawing of TA, from Property 3 (see Section 4), drawing (o, u∗)
will not create any edge-crossings.

• In Subcase (e), for both A < 1 and A ≥ 1, place node o one unit above
and one unit left of ΓB (see Figure 4(e)). Draw edge (a, r(a)) (i.e., the
edge (o, r(o)) because in this case, a = o).

• The drawing procedure in Subcase (f) is similar to the one in Subcase (a),
except that we do not have ΓA here (see Figure 4(f)).

• The drawing procedure in Subcase (g) is similar to the one in Subcase (f),
except that we also flip ΓC vertically (see Figure 4(g)).

In Case 2, we construct Γ by composing ΓA, ΓB, and ΓC , as follows (see Fig-
ure 5):



Garg and Rusu, Drawing Binary Trees, JGAA, 8(2) 135–160 (2004) 153

• The drawing procedures in Subcases (a) and (e) are similar to those in
Subcases (a) and (f), respectively, of Case 1 (see Figures 5(a,e)).

• In Subcase (c), Γ is constructed as shown in Figure 5(c):

– If A > 1, we place ΓA one unit above ΓC , such that the left boundary
of ΓC is one unit to the right of the left boundary of ΓA. Place u in
the same vertical channel as o and in the same horizontal channel as
v.

– If A ≥ 1, then first rotate ΓA by 90◦, and then flip it vertically. Then,
place ΓA one unit to the left of ΓC , such that the top boundary of
ΓC is one unit below the top boundary of ΓA. Then, move ΓC down
until u∗ becomes the lowest node of Γ. Place u in the same vertical
channel as v and in the same horizontal channel as o.

Draw edges (p(u), u), and (u, v).

• The drawing procedure (see Figure 5(g)) in Subcase (g) is similar to that
in Case (b) of drawing Tα (see Figure 6(b)).

• The drawing procedures in Subcases (b), (d), (f), and (h) are similar to
those in Subcases (a), (c), (e), and (g), respectively (see Figures 5(b,d,f,h)),
except that we also flip ΓC vertically.

5.5 Proof of Correctness

Lemma 1 (Planarity) Given a binary tree T with a link node u∗, Algorithm
DrawTree will construct a feasible drawing Γ of T .

Proof: We can easily prove using induction over the number of nodes n in T
that Γ is a feasible drawing:
Base Case (n = 1): Γ consists of exactly one node and is trivially a feasible
drawing.
Induction (n > 1): Consider Case 1. By the inductive hypothesis, the drawing
constructed of each partial tree of T is a feasible drawing.

From Figure 6, it can be easily seen that in both the cases, A < 1 and A ≥ 1,
Γα is a planar drawing, and the root of Tα is placed at its top-left corner.

From Figure 7, it can be easily seen that in both the cases, A < 1 and
A ≥ 1, r(a) is placed at the top-left corner of ΓB . Note that because Γβ is a
feasible drawing of Tβ and p(u) is its link node, p(u) is either at the bottom of
Γβ (from Property 2, see Section 4), or at the top-left corner of Γβ and no other
edge or node of Tβ is placed on, or crosses the vertical channel occupied by it
(Properties 1 and 3, see Section 4). Hence, in Figure 7(a), in the case A < 1,
drawing edge (p(u), u) will not cause any edge crossings. Also, in Figure 7(a), in
the case A ≥ 1, drawing edge (p(u), u) will not cause any edge crossings because
after rotating Γβ by 90◦ and flipping it vertically, p(u) will either be at the right
boundary of Γβ (because of Property 2), or at the top-left corner of Γβ and



Garg and Rusu, Drawing Binary Trees, JGAA, 8(2) 135–160 (2004) 154

no other edge or node of Tβ will be placed on, or cross the horizontal channel
occupied by it (because of Properties 1 and 3). It therefore follows that in both
the cases, A < 1 and A ≥ 1, ΓB will be a planar drawing.

Finally, by considering each of the seven subcases shown in Figure 4 one-by-
one, we can show that Γ is a feasible drawing of T :

• Subcase (a): See Figure 4(a). ΓA is a feasible drawing of TA, and p(a)
is the link node of TA. Hence, p(a) is either at the bottom of ΓA (from
Property 2), or is at the top-left corner of ΓA, and no other edge or node
of TA is placed on, or crosses the horizontal and vertical channels occupied
by it (from Properties 1 and 3). Hence, in the case A < 1, drawing edge
(p(a), a) will not create any edge-crossings. In the case A ≥ 1 also, drawing
edge (p(a), a) will not create any edge-crossings because after rotating ΓA

by 90◦ and flipping it vertically, p(a) will either be at the right boundary
of ΓA (because of Property 2), or at the top-left corner of Γβ and no
other edge or node of TA will be placed on, or cross the horizontal channel
occupied by it (because of Properties 1 and 3).

Nodes r(a) and l(a) are placed at the top-left corner of ΓB and ΓC , re-
spectively. Hence, drawing edges (a, r(a)) and (a, l(a)) will not create any
edge-crossings in both the cases, A < 1 and A ≥ 1.

In both the cases, A < 1 and A ≥ 1, o gets placed at the top-left corner
of Γ. Hence, Γ satisfies Property 1.

Since u∗ �= o, Property 3 is satisfied by Γ vacuously.

We now show that Property 2 is satisfied by Γ. In both the cases, A < 1
and A ≥ 1, u∗ gets placed at the bottom of Γ. ΓC is a feasible drawing,
l(a) is the root of TC , and u∗ �= l(a). Hence, from Property 2, we can move
u∗ downwards in its vertical channel by any distance without causing any
edge-crossings in ΓC . Hence, in Γ also, we can move u∗ downwards in its
vertical channel by any distance without causing any edge-crossings in Γ.
Thus, Property 2 is satisfied by Γ.

We therefore conclude that in both the cases, A < 1 and A ≥ 1, Γ is a
feasible drawing of T .

• Subcase (b): See Figure 4(b). The proof is similar to the one for Sub-
case (a), except that in this case, because u∗ = l(a), we use the fact that
ΓC satisfies Property 3 to prove that Γ satisfies Property 2. To elaborate,
since u∗ = l(a), l(a) is the root of ΓC , and ΓC is a feasible drawing, from
Property 3, we can move u∗ upwards in its vertical channel by any distance
without causing any edge-crossings in ΓC . We flip ΓC vertically before
placing it in Γ. Hence, it follows that in Γ, we can move u∗ downwards in
its vertical channel by any distance without causing any edge-crossings in
Γ.

• Subcase (c): See Figure 4(c). ΓA is a feasible drawing of TA, p(a) is the
link node of TA, and p(a) �= o. Hence, from Property 2, p(a) is located at



Garg and Rusu, Drawing Binary Trees, JGAA, 8(2) 135–160 (2004) 155

the bottom of ΓA. Rotating ΓA by 90◦ and flipping it vertically will move
p(a) to the right boundary of ΓA. Moving p(a) to the right until it is either
to the right of, or aligned with the right boundary of ΓB will not cause
any edge-crossings because of Property 2. It can be easily seen that in
both the cases, A < 1 and A ≥ 1, drawing edges (p(a), u∗) and (u∗, r(a))
will not create any edge-crossings, and Γ will be a feasible drawing of T .

• Subcase (d): See Figure 4(d). ΓA is a feasible drawing of TA, p(a) is the
link node of TA, and p(a) = o. Hence, from Properties 1 and 3, p(a) is at
the top-left corner of ΓA, and no other edge or node of TA is placed on,
or crosses the horizontal and vertical channels occupied by it. Hence, in
both the cases, A < 1 and A ≥ 1, drawing edge (p(a), u∗) will not create
any edge-crossings, and Γ will be a feasible drawing of T .

• Subcase (e): See Figure 4(e). Because r(a) is placed at the top-left corner
of ΓB , drawing edge (a, r(a)) will not cause any edge-crossings in both the
cases, A < 1 and A ≥ 1. It can be easily seen that Γ is a feasible drawing
of T in both the cases when A < 1 and A ≥ 1.

• Subcase (f): See Figure 4(f). It is straightforward to see that Γ is a feasible
drawing of T in both the cases, A < 1 and A ≥ 1.

• Subcase (g): See Figure 4(g). ΓC is a feasible drawing of TC , u∗ is the
link node of TC , and u∗ is also the root of TC . Hence, from Properties 1
and 3, u∗ is at the top-left corner of ΓC , and no other edge or node of
TC is placed on, or crosses the horizontal and vertical channels occupied
by it. Flipping ΓC vertically will move u∗ to the bottom-left corner of
ΓC and no other edge or node of TC will be on or crosses the vertical
channel occupied by it. Hence, drawing edge (o, u∗) will not create any
edge-crossings. From Property 3, we can move u∗ upwards in its vertical
channel by any distance without causing any edge-crossings in ΓC . We
flip ΓC vertically before placing it in Γ. Hence, in Γ, we can move u∗

downwards in its vertical channel by any distance without causing any
edge-crossings in Γ. It therefore follows that Γ is a feasible drawing of T .

Using a similar reasoning, we can show that in Case 2 also, Γ is a feasible
drawing of T . �

Lemma 2 (Time) Given an n-node binary tree T with a link node u∗, Algo-
rithm DrawTree will construct a drawing Γ of T in O(n log n) time.

Proof: From Theorem 1, each partial tree into which Algorithm DrawTree
would split T will have at most (2/3)n nodes in it. Hence, it follows that
the depth of the recursion for Algorithm DrawTree is O(log n). At the first
recursive level, the algorithm will split T into partial trees, assign aspect ratios
to the partial trees and compose the drawings of the partial trees to construct
a drawing of T . At the next recursive level, it will split all of these partial trees
into smaller partial trees, assign aspect ratios to these smaller partial trees, and



Garg and Rusu, Drawing Binary Trees, JGAA, 8(2) 135–160 (2004) 156

compose the drawings of these smaller partial trees to construct the drawings of
all the partial trees. This process will continue until the bottommost recursive
level is reached. At each recursive level, the algorithm takes O(m) time to
split a tree with m nodes into partial trees, assign aspect ratios to the partial
trees, and compose the drawings of partial trees to construct a drawing of the
tree. At each recursive level, the total number of nodes in all the trees that the
algorithm considers for drawing is at most n. Hence, at each recursive level, the
algorithm totally spends O(n) time. Hence, the running time of the algorithm
is O(n) · O(log n) = O(n log n). �

Lemma 3 Let R be a rectangle with area D and aspect ratio A. Let W and H
be the width and height, respectively, of R. Then, W =

√
AD and H =

√
D/A.

Proof: By the definition of aspect ratio, A = W/H. D = WH = W (W/A) =
W 2/A. Hence, W =

√
AD. H = W/A =

√
AD/A =

√
D/A. �

Lemma 4 (Area) Let T be a binary tree with a link node u∗. Let n be the
number of nodes in T . Let ε and A be two numbers such that 0 < ε < 1, and A
is in the range [n−ε, nε]. Given T , ε, and A as input, Algorithm DrawTree will
construct a drawing Γ of T that can fit inside a rectangle R with O(n) area and
aspect ratio A.

Proof: Let D(n) be the area of R. We will prove, using induction over n, that
D(n) = O(n). More specifically, we will prove that D(n) ≤ c1n − c2n

β for all
n ≥ n0, where n0, c1, c2, β are some positive constants and β < 1.

We now give the proof for the case when A ≥ 1 (the proof for the case A < 1
is symmetrical). Algorithm DrawTree will split T into at most 5 partial trees.
Let Tk be a non-empty partial tree of T , where Tk is one of TA, Tβ , T1, T2, TC in
Case 1, and is one of TA, TB , TC in Case 2. Let nk be the number of nodes in
Tk, and let xk = nk/n. Let Pk = c1n− c2n

β/x1−β
k . From Theorem 1, it follows

that nk ≤ (2/3)n, and hence, xk ≤ 2/3. Hence, Pk ≤ c1n − c2n
β/(2/3)1−β =

c1n − c2n
β(3/2)1−β . Let P ′ = c1n − c2n

β(3/2)1−β . Thus, Pk ≤ P ′.
From the inductive hypothesis, Algorithm DrawTree will construct a drawing

Γk of Tk that can fit inside a rectangle Rk with aspect ratio Ak and area D(nk),
where Ak is as defined in Section 5.2, and D(nk) ≤ c1nk − c2n

β
k . Since xk =

nk/n, D(nk) ≤ c1nk − c2n
β
k = c1xkn − c2(xkn)β = xk(c1n − c2n

β/x1−β
k ) =

xkPk ≤ xkP ′.
Let Wk and Hk be the width and height, respectively, of Rk. We now

compute the values of Wk and Hk in terms of A, P ′, xk, n, and ε. We have two
cases:

• Tk is a small partial tree of T : Then, nk < (n/A)1/(1+ε), and also, as
explained in Section 5.2, Ak = 1/nε

k. From Lemma 3, we have that

Wk =
√

AkD(nk) ≤ √
(1/nε

k)(xkP ′) =
√

(1/nε
k)(nk/n)P ′ =

√
n1−ε

k P ′/n.

Since nk < (n/A)1/(1+ε), it follows that Wk <
√

(n/A)(1−ε)/(1+ε)P ′/n =√
(1/A(1−ε)/(1+ε))P ′/n2ε/(1+ε) ≤

√
P ′/n2ε/(1+ε), since A ≥ 1.



Garg and Rusu, Drawing Binary Trees, JGAA, 8(2) 135–160 (2004) 157

From Lemma 3, Hk =
√

D(nk)/Ak ≤ √
xkP ′/(1/nε

k) =
√

(nk/n)P ′nε
k =√

n1+ε
k P ′/n. Since nk < (n/A)1/(1+ε), Hk <

√
(n/A)(1+ε)/(1+ε)P ′/n =√

(n/A)P ′/n =
√

P ′/A.

• Tk is a large partial tree of T : Then, as explained in Section 5.2, Ak = xkA.
From Lemma 3, Wk =

√
AkD(nk) ≤ √

xkAxkP ′ = xk

√
AP ′.

From Lemma 3, Hk =
√

D(nk)/Ak ≤ √
xkP ′/(xkA) =

√
P ′/A.

In Step Compose Drawings, we use at most two additional horizontal chan-
nels and at most one additional vertical channel while combining the drawings
of the partial trees to construct a drawing Γ of T . For example, in Case 1(e),
if u �= a and T1 = ∅, then we use one additional horizontal channel and one
additional vertical channel for placing a (see Figure 4(e)), and one additional
horizontal channel for placing u (see Figure 6(b)).

Hence, Γ can fit inside a rectangle R′ with width W ′ and height H ′, respec-
tively, where,

H ′ ≤ max
Tk is a partial tree of T

{Hk} + 2 ≤
√

P ′/A + 2,

and

W ′ ≤
∑

Tk is a large partial tree

Wk +
∑

Tk is a small partial tree

Wk + 1

≤
∑

Tk is a large partial tree

xk

√
AP ′ +

∑
Tk is a small partial tree

√
P ′/n2ε/(1+ε) + 1

≤
√

AP ′ + 5
√

P ′/n2ε/(1+ε) + 1

(because
∑

Tk is a large partial tree xk ≤ 1 , and T has at most 5 partial trees).
R′ might not have aspect ratio equal to A, but it is contained within a

rectangle R with aspect ratio A, area D(n), width W , and height H, where

W =
√

AP ′ + 5
√

P ′/n2ε/(1+ε) + 1 + 2A,

and
H =

√
P ′/A + 2 + (5/A)

√
P ′/n2ε/(1+ε) + 1/A

Hence, D(n) = WH = (
√

AP ′ + 5
√

P ′/n2ε/(1+ε) + 1 + 2A)(
√

P ′/A+
2 + (5/A)

√
P ′/n2ε/(1+ε) + 1/A) ≤ P ′ + c3P

′/
√

An2ε/(1+ε) + c4

√
AP ′+

c5P
′/(An2ε/(1+ε)) + c6

√
P ′/n2ε/(1+ε) + c7A + c8 + c9/A + c10

√
P ′/A+

c11

√
P ′/n2ε/(1+ε)/A, where c3, c4, . . . , c11 are some constants.

Since, 1 ≤ A ≤ nε, we have that

D(n) ≤ P ′ + c3P
′/

√
n2ε/(1+ε) + c4

√
nεP ′ + c5P

′/n2ε/(1+ε) + c6

√
P ′/n2ε/(1+ε)

+c7n
ε + c8 + c9 + c10

√
P ′ + c11

√
P ′/n2ε/(1+ε)



Garg and Rusu, Drawing Binary Trees, JGAA, 8(2) 135–160 (2004) 158

Since P ′ < c1n,

D(n) < P ′ + c3c1n/
√

n2ε/(1+ε) + c4

√
nεc1n + c5c1n/n2ε/(1+ε)

+c6

√
c1n/n2ε/(1+ε) + c7n

ε + c8 + c9 + c10
√

c1n
1/2

+c11

√
c1n/n2ε/(1+ε)

≤ P ′ + c3c1n
1/(1+ε) + c4

√
c1n

(1+ε)/2 + c5c1n
(1−ε)/(1+ε)

+c6
√

c1n
(1−ε)/(2(1+ε)) + c7n

ε + c8 + c9 + c10
√

c1n
1/2

+c11
√

c1n
(1−ε)/(2(1+ε))

≤ P ′ + c12n
1/(1+ε) + c13n

(1+ε)/2

where c12 and c13 are some constants (because, since 0 < ε < 1, (1−ε)/(2(1+
ε)) < (1 − ε)/(1 + ε) < 1/(1 + ε), ε < (1 + ε)/2, and 1/2 < (1 + ε)/2).

P ′ = c1n− c2n
β(3/2)1−β = c1n− c2n

β(1+ c14), where c14 is a constant such
that 1 + c14 = (3/2)1−β .

Hence, D(n) ≤ c1n−c2n
β(1+c14)+c12n

1/(1+ε) +c13n
(1+ε)/2 = c1n−c2n

β −
(c2c14n

β − c12n
1/(1+ε) − c13n

(1+ε)/2). Thus, for a large enough constant n0,
and large enough β, where 1 > β > max{1/(1 + ε), (1 + ε)/2}, for all n ≥ n0,
c2c14n

β − c12n
1/(1+ε) − c13n

(1+ε)/2 ≥ 0, and hence D(n) ≤ c1n − c2n
β .

The proof for the case A < 1 uses the same reasoning as for the case A ≥ 1.
With Tk, Rk, Wk, Hk, R′, W ′, H ′, R, W , and H defined as above, and Ak as
defined in Section 5.2, we get the following values for Wk, Hk, W ′, H ′, W , H,
and D(n):

Wk ≤
√

AP ′

Hk ≤
√

P ′/n2ε/(1+ε) if Tk is a small partial tree

≤ xk

√
P ′/A if Tk is a large partial tree

W ′ ≤
√

AP ′ + 2

H ′ ≤
√

P ′/A + 5
√

P ′/n2ε/(1+ε) + 1

W ≤
√

AP ′ + 2 + 5A
√

P ′/n2ε/(1+ε) + A

H ≤
√

P ′/A + 5
√

P ′/n2ε/(1+ε) + 1 + 2/A

D(n) ≤ P ′ + c12n
1/(1+ε) + c13n

(1+ε)/2

where c12 and c13 are the same constants as in the case A ≥ 1. Therefore,
D(n) ≤ c1n − c2n

β for A < 1 too. Notice that in the values that we get above
for Wk, Hk, W ′, H ′, W , and H, if we replace A by 1/A, exchange Wk with Hk,
exchange W ′ with H ′, and exchange W with H, we will get the same values for
Wk, Hk, W ′, H ′, W , and H as in the case A ≥ 1. This basically reflects the
fact that the cases A > 1 and A < 1 are symmetrical to each other. �



Garg and Rusu, Drawing Binary Trees, JGAA, 8(2) 135–160 (2004) 159

Theorem 2 (Main Theorem) Let T be a binary tree with n nodes. Given two
numbers A and ε, where ε is a constant, such that 0 < ε < 1, and n−ε ≤ A ≤ nε,
we can construct in O(n log n) time, a planar straight-line grid drawing of T with
O(n) area and aspect ratio A.

Proof: Designate any leaf of T as its link node. Construct a drawing Γ of T by
invoking Algorithm DrawTree with T , A, and ε as input. From Lemmas 1, 2,
and 4, Γ will be a planar straight-line grid drawing contained entirely within a
rectangle with O(n) area and aspect ratio A. �

Corollary 1 Let T be a binary tree with n nodes. We can construct in O(n log n)
time, a planar straight-line grid drawing of T with optimal (equal to O(n)) area
and optimal aspect ratio (equal to 1).

Proof: Immediate from Theorem 2, with A = 1, and ε any constant, such that
0 < ε < 1. �

6 Conclusion and Open Problems

We have presented an algorithm for constructing a planar straight-line grid
drawing of an n-node binary tree with O(n) area and with any user-specified
aspect ratio in the range [n−ε, nε], where 0 < ε < 1 is any constant, in O(n log n)
time. Our result implies that optimal area (equal to O(n)) and optimal aspect
ratio (equal to 1) are simultaneously achievable.

Our result leaves some interesting open problems. Is it possible to increase
the range for aspect ratio to [1/n, n] while maintaining the O(n) area bound?
Here, we have used a particular type of separator, often called colloquially as
the “1/3 − 2/3” separator, for splitting the trees. Can the result of this paper
be extended to more general separators?

Acknowledgements

We would like to thank the anonymous referees for their very useful comments
that have helped in improving the paper.



Garg and Rusu, Drawing Binary Trees, JGAA, 8(2) 135–160 (2004) 160

References

[1] T.M. Chan, M. Goodrich, S. Rao Kosaraju, and R. Tamassia. Optimizing
area and aspect ratio in straight-line orthogonal tree drawings. Computa-
tional Geometry: Theory and Applications, 23:153–162, 2002.

[2] P. Crescenzi, G. Di Battista, and A. Piperno. A note on optimal area
algorithms for upward drawings of binary trees. Comput. Geom. Theory
Appl., 2:187–200, 1992.

[3] P. Crescenzi, P. Penna, and A. Piperno. Linear-area upward drawings of
AVL trees. Comput. Geom. Theory Appl., 9:25–42, 1998. (special issue on
Graph Drawing, edited by G. Di Battista and R. Tamassia).

[4] G. Di Battista, P. Eades, R. Tamassia, and I. G. Tollis. Graph Drawing.
Prentice Hall, Upper Saddle River, NJ, 1999.

[5] A. Garg, M. T. Goodrich, and R. Tamassia. Planar upward tree drawings
with optimal area. Internat. J. Comput. Geom. Appl., 6:333–356, 1996.

[6] C. E. Leiserson. Area-efficient graph layouts (for VLSI). In Proc. 21st Annu.
IEEE Sympos. Found. Comput. Sci., pages 270–281, 1980.

[7] C.-S. Shin, S.K. Kim, S.-H. Kim, and K.-Y. Chwa. Area-efficient algorithms
for straight-line tree drawings. Comput. Geom. Theory Appl., 15:175–202,
2000.

[8] L. Trevisan. A note on minimum-area upward drawing of complete and
Fibonacci trees. Inform. Process. Lett., 57(5):231–236, 1996.

[9] L. Valiant. Universality considerations in VLSI circuits. IEEE Trans. Com-
put., C-30(2):135–140, 1981.


