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Abstract

We present linear-I/O algorithms for fundamental graph problems on em-
bedded outerplanar graphs. We show that breadth-first search, depth-first
search, single-source shortest paths, triangulation, and computing an ε-
separator of size O(1/ε) take O(scan(N)) I/Os on embedded outerplanar
graphs. We also show that it takes O(sort(N)) I/Os to test whether a
given graph is outerplanar and to compute an outerplanar embedding
of an outerplanar graph, thereby providing O(sort(N))-I/O algorithms
for the above problems if no embedding of the graph is given. As all
these problems have linear-time algorithms in internal memory, a simple
simulation technique can be used to improve the I/O-complexity of our
algorithms from O(sort(N)) to O(perm(N)). We prove matching lower
bounds for embedding, breadth-first search, depth-first search, and single-
source shortest paths if no embedding is given. Our algorithms for the
above problems use a simple linear-I/O time-forward processing algorithm
for rooted trees whose vertices are stored in preorder.
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1 Introduction

1.1 Motivation

External-memory graph algorithms have received considerable attention because
massive graphs arise naturally in many large scale applications. Recent web
crawls, for instance, produce graphs consisting of 200 million nodes and 2 bil-
lion edges. Recent work in web modeling investigates the structure of the web
using depth-first search (DFS) and breadth-first search (BFS) and by comput-
ing shortest paths and connected components of the web graph. Massive graphs
are also often manipulated in geographic information systems (GIS). In these
applications, the graphs are derived from geometric structures; so they are often
planar or even outerplanar. Yet another example of a massive graph is AT&T’s
20TB phone call graph [8]. When working with such large data sets, the trans-
fer of data between internal and external memory, and not the internal-memory
computation, is often the bottleneck. Hence, I/O-efficient algorithms can lead
to considerable runtime improvements.

Breadth-first search (BFS), depth-first search (DFS), single-source shortest
paths (SSSP), and computing small separators are among the most fundamen-
tal problems in algorithmic graph theory; many graph algorithms use them
as primitive operations to investigate the structure of the given graph. While
I/O-efficient algorithms for BFS and DFS in dense graphs have been obtained
[7, 9, 25], no I/O-efficient algorithms for these problems on general sparse graphs
are known. In the above applications, however, the graphs are usually sparse.
This is true in GIS applications due to the planarity of the graph. For web
graphs and phone call graphs, sparseness is implied by the locality of refer-
ences; that is, usually every node has a rather small neighborhood to which it
is connected by direct links.

In this paper, we exploit the structure exhibited by outerplanar graphs to
develop I/O-efficient algorithms for graph problems that are hard on general
sparse graphs. Recently, a number of papers address the problems solved in
this paper for the more general classes of planar graphs [3, 4, 19, 24] and graphs
of bounded treewidth [23]. These algorithms can be applied to solve these prob-
lems on outerplanar graphs, as outerplanar graphs are planar and have treewidth
at most two. However, the algorithms presented here are much simpler, consid-
erably more efficient, and quite elegant. Moreover, given an embedding of the
graph (represented appropriately), we can solve all problems in this paper in
O(scan(N)) I/Os, while the algorithms of [3, 4, 19, 23, 24] perform O(sort(N))
I/Os.

Outerplanar graphs, though simple, have been found to have important ap-
plications for shortest-path computations in planar graphs and for network rout-
ing problems (e.g., see [14, 15, 16, 17, 28]). They can be seen as combinatorial
representations of triangulated simple polygons and their subgraphs. An effi-
cient separator algorithm for outerplanar graphs can for instance be used to
develop divide-and-conquer algorithms for simple polygons. Finally, every out-
erplanar graph is also planar. Thus, any lower bound that we can show for
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outerplanar graphs also holds for planar graphs.
In [33], an external-memory version of a shortest-path data structure for

planar graphs by Djidjev [13] has been proposed. Given the improved algo-
rithms for outerplanar graphs presented in this paper, this data structure can
be constructed more efficiently for these graphs. Because of the constant size of
the separator for outerplanar graphs, the space requirements of this data struc-
ture reduce to O

(
N
B log2 N

)
blocks as opposed to O

(
N3/2

B

)
blocks; the query

complexity becomes O
(

log2 N
DB

)
I/Os as opposed to O

(√
N

DB

)
I/Os for planar

graphs.

1.2 Model of Computation

When the data set to be handled becomes too large to fit into the main memory
of the computer, the transfer of data between fast internal memory and slow
external memory (disks) becomes a significant bottleneck. Existing internal-
memory algorithms usually access their data in a random fashion, thereby caus-
ing significantly more I/O-operations than necessary. Our goal in this paper is
to minimize the number of I/O-operations performed by our algorithms. Sev-
eral computational models for estimating the I/O-efficiency of algorithms have
been developed [1, 2, 11, 12, 18, 30, 31]. We adopt the parallel disk model
(PDM) [30] as our model of computation in this paper because it is simple and
our algorithms are sequential.

In the PDM, an external memory, consisting of D disks, is attached to a
machine whose main memory is capable of holding M data items. Each of these
disks is divided into blocks of B consecutive data items. Up to D blocks, at
most one per disk, can be transferred between internal and external memory in
a single I/O-operation (or I/O). The complexity of an algorithm is the number
of I/O-operations it performs.

Sorting, permuting, and scanning a sequence of N consecutive data items
are primitive operations often used in external-memory algorithms. These oper-
ations take sort(N) = Θ

(
N

DB log M
B

N
B

)
, perm(N) = Θ(min(sort(N), N)), and

scan(N) = Θ
(

N
DB

)
I/Os, respectively [1, 29, 30].

1.3 Previous Work

For planar graphs, Lipton and Tarjan [21] present a linear-time algorithm for
finding a 2

3 -separator of size O
(√

N
)
. It is well-known that every outerplanar

graph has a 2
3 -separator of size two and that such a separator can be computed

in linear time. Mitchell [27] presents a linear-time algorithm for outerplanarity
testing. Embedding outerplanar graphs takes linear time. There are simple
linear-time algorithms for BFS and DFS in general graphs (see [10]). Freder-
ickson [14, 15, 16] studies outerplanar graphs in the context of shortest path
and network routing problems. Although these algorithms are efficient in the
RAM-model, their performance deteriorates drastically in models where ran-
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dom access is expensive, such as the PDM. Refer to [17] and [28] for a good
exposition of outerplanar graphs.

The currently best breadth-first search algorithm for general undirected

graphs takes O

(√
|V ||E|

B + sort(|V | + |E|)
)

I/Os [25]; for directed graphs, the

best known algorithm takes O((V + E/B) log2 V ) I/Os [7]. The best DFS-
algorithms for undirected and directed graphs take O((V + E/B) log2 V ) I/Os
[7, 9]. The best known SSSP-algorithm for general undirected graphs takes
O(|V |+(|E|/B) log2 |E|) I/Os [20]. For undirected graphs with edge weights in

the range [w,W ], an O

(√
|V ||E| log2(W/w)

B + sort(|V | + |E|)
)

-I/O shortest-path

algorithm is presented in [26]. No I/O-efficient algorithms for SSSP in general di-
rected graphs have been obtained. Chiang et al. [9] have developed O(sort(N))-
I/O algorithms for computing an open ear decomposition and the connected
and biconnected components of a given graph G = (V,E) with |E| = O(|V |)
and N = |V |. They also propose a technique, called time-forward processing,
that allows O(N) data items to be processed through a directed acyclic graph
of size N ; the I/O-complexity of the algorithms is O(sort(N)). They apply this
technique to develop an O(sort(N))-I/O algorithm for list-ranking.

In [24], we have shown how to compute a separator of size O
(
N/

√
h
)

whose
removal partitions a given planar graph into O(N/h) subgraphs of size at most h
and boundary size at most

√
h. The algorithm takes O(sort(N)) I/Os, pro-

vided that h log2(DB) ≤ M . Together with the algorithm of [3], this leads to
O(sort(N))-I/O algorithms for single-source shortest paths and BFS in embed-
ded undirected planar graphs. By applying the reduction algorithm of [4], it also
allows the computation of a DFS-tree of an embedded undirected planar graph
in O(sort(N)) I/Os. Recently, the shortest-path and BFS-algorithms for undi-
rected planar graphs have been generalized to the directed case [5]. Directed
planar DFS takes O(sort(N) log2(N/M)) I/Os [6].

1.4 Our Results

We present O(scan(N))-I/O algorithms for the following problems on embedded
outerplanar graphs:

• Breadth-first search (BFS),

• Depth-first search (DFS),

• Single-source shortest paths (SSSP),

• Triangulating the graph, and

• Computing an ε-separator of size O(1/ε) for the given graph.

Clearly, these results are optimal if no additional preprocessing is allowed.
We also present an O(sort(N))-I/O algorithm to test whether a given graph
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G = (V,E) is outerplanar. The algorithm provides proof for its decision by pro-
viding an outerplanar embedding Ĝ of G if G is outerplanar, or by producing a
subgraph of G which is an edge-expansion of K4 or K2,3 if G is not outerplanar.
Together with the above results, we thus obtain O(sort(N))-I/O algorithms for
the above problems on outerplanar graphs if no embedding is given. As there
are linear-time internal-memory algorithms for all of these problems, we can use
a simple simulation technique to improve the I/O-complexities of our algorithms
to O(perm(N)). We prove matching lower bounds for BFS, DFS, SSSP, and em-
bedding. Our linear-I/O algorithms are based on a new linear-I/O time-forward
processing technique for rooted trees.

1.5 Organization of the Paper

In Section 2, we present the terminology and basic results from graph theory
that we use. In Section 3, we present our time-forward processing algorithm
for rooted trees. In Section 4, we describe our algorithm for testing whether
a given graph is outerplanar and for computing an outerplanar embedding. In
Section 5, we present an algorithm to triangulate a connected embedded outer-
planar graph. In Section 6, we provide an algorithm for computing separators
of embedded outerplanar graphs. In Section 7, we present algorithms for com-
puting breadth-first search, depth-first search, and single-source shortest path
trees of embedded outerplanar graphs. In Section 8, we prove lower bounds for
embedding, DFS, BFS, and SSSP on outerplanar graphs.

2 Preliminaries

An (undirected) graph G = (V,E) is a pair of sets, V and E; V is the vertex
set of G; E is the edge set of G and consists of unordered pairs {v, w}, where
v, w ∈ V . A subgraph of G is a graph G′ = (V ′, E′) with V ′ ⊆ V and E′ ⊆ E.
The neighborhood of v in G is defined as ΓG(v) = {w ∈ V : {v, w} ∈ E}. We
say that a vertex w ∈ ΓG(v) is adjacent to v; edge {v, w} is incident to v and w.
The degree of a vertex v is defined as degG(v) = |ΓG(v)|. In a directed graph
G = (V,E), the edges in E are ordered pairs (v, w), v, w ∈ V . We say that edge
(v, w) is directed from v to w, v is the source of edge (v, w), and w is the target.
The in-neighborhood of v in G is defined as Γ−

G(v) = {u ∈ V : (u, v) ∈ E}; the
out-neighborhood of v in G is defined as Γ+

G(v) = {w ∈ V : (v, w) ∈ E}. The
in-degree and out-degree of a vertex v in G are defined as deg−G(v) = |Γ−

G(v)|
and deg+

G(v) = |Γ+
G(v)|, respectively. The neighborhood of v in G is ΓG(v) =

Γ−
G(v) ∪ Γ+

G(v). The degree of v is defined as degG(v) = deg−G(v) + deg+
G(v).

Note that degG(v) ≥ |ΓG(v)|. Adjacency of vertices and incidence of edges and
vertices are defined as for undirected graphs.

For an undirected graph G = (V,E), we call the graph D(G) = (V,D(E))
with D(E) = {(v, w), (w, v) : {v, w} ∈ E} the directed equivalent of G. For
a directed graph G = (V,E), we call the graph U(G) = (V,U(E)), U(E) =
{{v, w} : (v, w) ∈ E}, the undirected equivalent of G. U(G) is also called the
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underlying undirected graph of G. Note that U(D(G)) = G, but not necessarily
D(U(G)) = G.

A walk in a directed (undirected) graph G is a subgraph P of G with vertex
set {v0, . . . , vk} and edge set {(vi−1, vi) : 1 ≤ i ≤ k} ({{vi−1, vi} : 1 ≤ i ≤ k}).
We call v0 and vk the endpoints of P and write P = (v0, . . . , vk). P is a path if
all vertices in P have degree at most two. P is a cycle if v0 = vk. P is a simple
cycle if it is a cycle and a path. In this case, we write P = (v0, . . . , vk−1).
(Note that edge {v0, vk−1} is represented implicitly in this list.) For a path
P = (v0, . . . , vk) and two vertices vi and vj , 0 ≤ i ≤ j ≤ k, let P (vi, vj) be the
subpath (vi, . . . , vj) of P .

An undirected graph is connected if there is a path between any pair of
vertices in G. An articulation point or cutpoint of an undirected graph G is a
vertex v such that G− v is disconnected. An undirected graph is biconnected if
it does not have any articulation points. A tree with N vertices is a connected
graph with N − 1 edges. The connected components of G are the maximal
connected subgraphs of G. The biconnected components (bicomps) of G are the
maximal biconnected subgraphs of G. A graph is planar, if it can be drawn in the
plane so that no two edges intersect except at their endpoints. Such a drawing
defines an order of the edges incident to every vertex v of G counterclockwise
around v. We call G embedded if we are given these orders for all vertices
of G. R

2 \ (V ∪ E) is a set of connected regions; we call these regions the faces
of G and denote the set of faces of G by F . A graph is outerplanar, if it can
be drawn in the plane so that there is a face that has all vertices of G on its
boundary. We assume w.l.o.g. that this is the outer face of the embedding. An
outerplanar graph with N vertices has at most 2N − 3 edges. The dual of an
embedded planar graph G = (V,E) with face set F is a graph G∗ = (V ∗, E∗),
where V ∗ = F and E∗ contains an edge between two vertices in V ∗ if the two
corresponding faces in G share an edge. For an embedded outerplanar graph G
whose interior faces are triangles, we define the dual tree of G to be the tree
obtained from the dual of G after removing the vertex f∗ dual to the outer
face f and all edges incident to f∗.

An ear decomposition E = 〈P0, . . . , Pk〉 of a biconnected graph G is a de-
composition of G into paths P0, . . . , Pk such that

⋃k
j=0 Pj = G; P0 consists of a

single edge; the endpoints of every Pi, i ≥ 1, are in Gi−1; and no other vertices
of Pi are in Gi−1, where Gi−1 =

⋃i−1
j=0 Pj . The paths Pj are called ears. An

open ear decomposition is an ear decomposition such that for every ear, the two
endpoints are distinct. We denote the two endpoints of ear Pi, 0 ≤ i ≤ k, as αi

and βi.

Lemma 1 (Whitney [32]) A graph G = (V,E) is biconnected if and only if
it has an open ear decomposition.

Let ω : V → R be an assignment of weights ω(v) to the vertices of G such
that

∑
v∈V ω(v) ≤ 1. The weight of a subgraph of G is the sum of the vertex

weights in this subgraph. An ε-separator of G is a set S such that none of the
connected components of G − S has weight exceeding ε.
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K4 K2,3

Figure 1: Illustrating the definition of K4 and K2,3.

The complete graph with n vertices (Figure 1) is defined as Kn = (V,E)
with V = {1, . . . , n} and E = {{i, j} : 1 ≤ i < j ≤ n}. The complete bipartite
graph with m + n vertices (Figure 1) is defined as Km,n = (V,E) with V =
{1, . . . , m + n} and E = {{i, j} : 1 ≤ i ≤ m < j ≤ m + n}. A graph G is an
edge-expansion of another graph H, if G can be obtained from H by replacing
edges in H with simple paths. Graph H is a minor of G if G contains a
subgraph that is an edge-expansion of H. We use the following characterization
of outerplanar graphs.

Theorem 1 (e.g., [17]) A graph G is outerplanar if and only if it does not
have either K2,3 or K4 as a minor.

In our algorithms, we represent a graph G = (V,E) as the two sets, V and
E. An embedded outerplanar graph is represented as the set V of vertices
sorted clockwise along the outer boundary of the graph; edges are represented
as adjacency lists stored with the vertices; each adjacency list is sorted coun-
terclockwise around the vertex, starting with the edge on the outer face of G
incident to v and preceding v in the clockwise traversal of the outer boundary
of the graph. In the lower bound proof for embedding, we use a slightly weaker
representation of an embedding. For the lower bound proof, we represent the
graph G as the two sets V and E and label every edge with its positions nv(e)
and nw(e) counterclockwise around v and w, respectively. This way we guar-
antee that the Ω(perm(N)) I/O lower bound is not just a consequence of the
requirement to arrange the vertices of G in the right order.

3 Time-Forward Processing for Rooted Trees

Time-forward processing was introduced in [9] as a technique to evaluate di-
rected acyclic graphs: Every vertex is initially labeled with a predicate φ(v). In
the end, we want to compute a predicate ψ(v), for every vertex v, which may
only depend on the predicate φ(v) and “input” received from the in-neighbors
of v. This technique requires O(sort(N + I)) I/Os, where N is the number of
vertices in G, and I is the total amount of information sent along all edges of G.
In this section, we show the following result.
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Algorithm 1 Top-down time-forward processing in a rooted tree.

Input: A rooted tree T whose edges are directed from parents to children and
whose vertices are stored in preorder and labeled with predicates φ(v).

Output: An assignment of labels ψ(v) to the vertices of T .

1: Let δ(r) be some dummy input for the root r of T .
2: Push(S, δ(r))
3: for every node v of T , in preorder do
4: δ(v) ← Pop(S)
5: Compute ψ(v) from δ(v) and φ(v).
6: Let w1, . . . , wk be the children of v sorted by increasing preorder numbers.
7: for i = k, k − 1, . . . , 1 do
8: Compute δ(wi) from ψ(v).
9: Push(S, δ(wi))

10: end for
11: end for

Theorem 2 Given a rooted tree T = (V,E) whose edges are directed and whose
vertices are sorted in preorder or postorder, T can be evaluated in O(scan(N+I))
I/Os and using O((N + I)/B) blocks of external memory, where I is the total
amount of information sent along the edges of T .

We use the following two lemmas to prove the theorem for the case when
the vertices are stored in preorder. The case when the vertices are stored in
postorder is similar because by reversing a postorder numbering one obtains a
preorder numbering.

Lemma 2 Given a rooted tree T = (V,E) whose edges are directed from parents
to children and whose vertices are sorted in preorder, T can be evaluated in
O(scan(N +I)) I/Os and using O((N +I)/B) blocks of external memory, where
I is the total amount of information sent along the edges of T .

Proof. Denote the data sent from the parent of a node v to node v by δ(v). We
use Algorithm 1 to evaluate T . This algorithm uses a stack S to implement the
sending of data from the parents to their children. To prove the correctness of
Algorithm 1, we need to show that δ(v) is indeed the top element of S in Line 4
of the iteration that evaluates vertex v. This follows almost immediately from
the following claim.

Claim 1 Let m be the number of elements on stack S before evaluating a vertex
v of T , and let Tv be the subtree of T rooted at v. Then there are never less
than m − 1 elements on the stack while subtree Tv is being evaluated. After the
evaluation of Tv, the stack holds exactly m − 1 elements.

Proof. We prove the claim by induction on the size |Tv| of Tv. If |Tv| = 1 (i.e., v
is a leaf), v removes the top entry from the stack in Line 4 and does not put any
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new entries onto the stack, as the loop in Lines 7–10 is never executed. Hence,
the claim is true.

So assume that |Tv| > 1. Then v has at least one child. Let w1, . . . , wk be
the children of v. The evaluation of tree Tv is done by evaluating v followed
by the evaluation of subtrees Tw1 , . . . , Twk

. Note that each subtree Twi
has size

|Twi
| < |Tv|; so the claim holds for Twi

, by the induction hypothesis.
Let S = (s1, . . . , sm) before the evaluation of v. After the evaluation of

v and before the evaluation of w1, S = (δ(w1), . . . , δ(wk), s2, . . . , sm). Induc-
tively, we claim that the stack S holds elements δ(wi), . . . , δ(wk), s2, . . . , sm

before the evaluation of node wi. As Claim 1 holds for Twi
, the evaluation

of Twi
never touches elements δ(wi+1), . . . , δ(wk), s2, . . . , sm and removes the

top element δ(wi) from the stack. Hence, after the evaluation of Twi
, S =

(δ(wi+1), . . . , δ(wk), s2, . . . , sm). In particular, after the evaluation of Twk
, S =

(s2, . . . , sm). But the evaluation of Twk
completes the evaluation of Tv. Hence,

after the evaluation of Tv, S = (s2, . . . , sm), as desired. Also, before the evalua-
tion of every subtree Twi

, |S| ≥ m. By the induction hypothesis, there are never
fewer than m − 1 elements on the stack during the evaluation of Twi

. Hence,
the same is true for the evaluation of Tv.

Claim 1 implies the correctness of the lemma: If node v is the root of T ,
then S = (δ(v)) immediately before the evaluation of node v. Otherwise, v has
a parent u with children w1, . . . , wk such that v = wi, for some i, 1 ≤ i ≤ k.
Immediately after the evaluation of u, S = (δ(w1), . . . , δ(wk), . . . ). By Claim 1,
the evaluation of every subtree T (wj), 1 ≤ j < i, removes the topmost element
from the stack and leaves the rest of S unchanged. Hence, the evaluation of
subtrees T (w1), . . . , T (wi−1) removes elements δ(w1), . . . , δ(wi−1) from S, and
δ(wi) is on the top of the stack before the evaluation of v = wi.

In order to see the I/O-bound, observe that we scan the vertex list of T
once, which takes O(scan(N)) I/Os. Data is sent along the tree edges using
the stack S. Every data item is pushed once and popped once, so that we
perform O(I) stack operations, at the cost of O(scan(I)) I/Os. In total, we
spend O(scan(N + I)) I/Os. The space requirements are clearly bounded by
O((N + I)/B) blocks of external memory, as this is the maximum number of
blocks accessible in the given number of I/Os.

Lemma 3 Given a rooted tree T = (V,E) whose edges are directed from chil-
dren to parents and whose vertices are sorted in preorder, T can be evaluated
in O(scan(N + I)) I/Os and using O((N + I)/B) blocks of external memory,
where I is the total amount of information sent along the edges of T .

Proof. The proof is similar to that of Lemma 2. We simply reverse the order in
which the nodes of T are processed.

Proof (of Theorem 2). The crucial observation to prove Theorem 2 is the fol-
lowing: A vertex v with an edge directed from v to v’s parent in T can only
receive input from its children. Consider the subgraph T ′ of T induced by all
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edges of T that are directed from children to parents. T ′ is a forest of rooted
trees. Then the following claim holds.

Claim 2 For every non-root vertex v in T ′, Γ−
T ′(v) = Γ−

T (v), that is, the in-
neighborhood of v is the same in T and T ′.

Proof. Let v ∈ T ′ be a vertex with Γ−
T ′(v) �= Γ−

T (v). All edges in Γ−
T (v) are

directed from children to parents except the edge from v’s parent to v (if it is
in Γ−

T (v)). Thus, this is the only edge that may not be in Γ−
T ′(v). However, if

the edge from v’s parent to v is directed from v’s parent to v, then v is a root
in T ′.

Claim 2 implies that we can use the algorithm of Lemma 3 to evaluate all
non-root vertices of T ′. Moreover, for every root v in T ′, all children have been
fully evaluated, so that they can provide their input to v. Hence, every node
that has not been evaluated yet is waiting only for the input from its parent.
Thus, we consider the subgraph T ′′ of T induced by all edges directed from
parents to children. Again, T ′′ is a forest of rooted trees. We apply Algorithm 1
to T ′′ to evaluate the remaining vertices.

By Lemmas 2 and 3, both phases of the algorithm take O(scan(N +I)) I/Os
and use O((N + I)/B) blocks of external memory.

4 Outerplanarity Testing and Outerplanar Em-
bedding

We divide the description of our algorithm for computing an outerplanar em-
bedding of a graph into three parts. In Section 4.1, we show how to find an
outerplanar embedding of a biconnected outerplanar graph G. Section 4.2 shows
how to augment the algorithm of Section 4.1 to deal with the general case. In
Section 4.3, we augment the algorithm of Section 4.1 so that it can test whether
a given graph G is outerplanar. If G is outerplanar, the algorithm produces
an outerplanar embedding of G. Otherwise, it outputs a subgraph of G that is
an edge-expansion of K4 or K2,3. Graphs are assumed to be undirected in this
section.

4.1 Outerplanar Embedding for Biconnected Graphs

We use Algorithm 2 to compute an outerplanar embedding Ĝ of a biconnected
outerplanar graph G. Next we describe the three steps of this algorithm in
detail.

Step 1: Computing an open ear decomposition. We use the algorithm
of [9] to compute an open ear decomposition of G in O(sort(N)) I/Os and using
O(N/B) blocks of external memory.
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Algorithm 2 Embedding a biconnected outerplanar graph.

Input: A biconnected outerplanar graph G.
Output: An outerplanar embedding of G represented by sorted adjacency lists.

1: Compute an open ear decomposition E = (P0, . . . , Pk) of G.
2: Compute the cycle C clockwise along the outer boundary of an outerplanar

embedding Ĝ of G.
3: Compute for each vertex v of G, its adjacency list sorted counterclockwise

around v, starting with the predecessor of v in C and ending with the
successor of v in C.

Step 2: Computing the boundary cycle. This step computes the bound-
ary cycle C of an outerplanar embedding Ĝ of G, that is, the boundary cycle of
the outer face of the embedding, which contains all vertices of G. The following
lemma shows that C is the only simple cycle containing all vertices of G; hence,
we can compute C by computing any simple cycle with this property.

Lemma 4 Every biconnected outerplanar graph G contains a unique simple
cycle containing all vertices of G.

Proof. The existence of cycle C follows immediately from the outerplanarity
and biconnectivity of G. In particular, the boundary of the outer face of an
outerplanar embedding Ĝ of G is such a simple cycle.

So assume that there exists another simple cycle C ′ that contains all vertices
of G. Let a and b be two vertices that are consecutive in C, but not in C ′ (see
Figure 2). Then we can break C ′ into two internally vertex-disjoint paths P1

and P2 from a to b, both of them containing at least one internal vertex. Let c
be an internal vertex of P1, and let d be an internal vertex of P2. As a and b are
connected by an edge in C, there must be a subpath P3 of C between c and d
that contains neither a nor b. Consider all vertices on P3 that are also contained
in P1. Let c′ be such a vertex that is furthest away from c along P3. Analogously,
we define d′ to be the vertex closest to c which is shared by P3 and P2. Let P ′

3

be the subpath of P3 between c′ and d′. Let H be the subgraph of G defined
as the union of cycle C ′, edge {a, b}, and path P ′

3. Cycle C ′, edge {a, b}, and
path P ′

3 are internally vertex-disjoint. Thus, H is an edge-expansion of K4,
which contradicts the outerplanarity of G.

Let E = 〈P0, . . . , Pk〉 be the open ear decomposition computed in Step 1.
We call an ear Pi, i ≥ 1, trivial if it consists of a single edge. Otherwise, we call
it non-trivial. Also, ear P0 is defined to be non-trivial. During the construction
of C, we restrict our attention to the non-trivial ears Pi0 , Pi1 , . . . , Piq

, 0 = i0 <
i1 < · · · < iq, in E , as a trivial ear does not contribute new vertices to the graph
consisting of all previous ears. For the sake of simplicity, we write Qj = Pij

,
σj = αij

, and τj = βij
, for 0 ≤ i ≤ q. Let G1, . . . , Gq be subgraphs of G defined
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Figure 2: Proof of the uniqueness of the boundary cycle of a biconnected out-
erplanar graph.

as follows: G1 = Q0 ∪ Q1. For 1 < i ≤ q, Gi is obtained by removing edge
{σi, τi} from Gi−1 and adding Qi to the resulting graph.

Lemma 5 Graphs G1, . . . , Gq are simple cycles.

Proof. If i = 1, Gi is a simple cycle because Q1 is a simple path and Q0 is an
edge connecting the two endpoints of Q1. So assume that Gi is a simple cycle,
for 1 ≤ i < k. We show that Gk is a simple cycle.

The crucial observation is that the endpoints σk and τk of Qk are adjacent
in Gk−1. Assume the contrary. Then Gk−1 consists of two internally vertex-
disjoint paths P and P ′ between σk and τk, each containing at least one internal
vertex (see Figure 3a). Let γ be an internal vertex of P , let γ′ be an internal
vertex of P ′, and let γk be an internal vertex of Qk. Vertex γk exists because
Qk is non-trivial and k > 0. Then paths Qk(σk, γk), Qk(τk, γk), P (σk, γ),
P (τk, γ), P ′(σk, γ′), and P ′(τk, γ′) are internally vertex disjoint, so that the
graph Qk ∪Gk−1, which is a subgraph of G, is an edge-expansion of K2,3. This
contradicts the outerplanarity of G.

Given that vertices σk and τk are adjacent in Gk−1, the removal of edge
{σk, τk} from Gk−1 creates a simple path G′, so that G′ and Qk are two inter-
nally vertex disjoint simple paths sharing their endpoints (see Figure 3b). Thus,
Gk = G′ ∪ Qk is a simple cycle.

By Lemmas 4 and 5, Gq = C. It remains to show how to construct the graph
Gq, in order to finish this step. Graph Gq is obtained from G by removing all
trivial ears and all edges {σi, τi}, 2 ≤ i ≤ q. Given an open ear decomposition
E of G, we scan E to identify all trivial ears and edges {σi, τi}, 2 ≤ i ≤ q. Given
this list of edges, we sort and scan the edge list of G to remove these edges from
G. This takes O(sort(N)) I/Os and O(N/B) blocks of external memory. The
resulting graph is C.

In order to complete this phase, we need to establish an ordering of the
vertices in C along the outer boundary of Ĝ. By removing an arbitrary edge
from C, we obtain a simple path C ′. We compute the distance of each vertex
in C ′ from one endpoint of C ′ using the Euler tour technique and list-ranking [9].
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Figure 3: (a) The attachment vertices of Qk are adjacent in Gk−1. (b) This
implies that Gk is a simple cycle.

These distances give the desired ordering of the vertices in C along the outer
boundary of Ĝ. As shown in [9], these two techniques take O(sort(N)) I/Os
and use O(N/B) blocks of external memory.

Step 3: Embedding the diagonals. Let C = (v1, . . . , vN ) be the boundary
cycle computed in the previous step. In order to compute a complete embedding
of G, we have to embed the diagonals of Ĝ, that is, all edges of G that are not
in C. Assuming that the order of the vertices in C computed in the previous step
is clockwise around the outer boundary of Ĝ, we compute such an embedding of
the diagonals by sorting the adjacency list A(vi) of every vertex vi, 1 ≤ i ≤ N ,
counterclockwise around vi, starting with vi−1 and ending with vi+1, where we
define v0 = vN and vN+1 = v1.

We denote ν(vi) = i as the index of vertex vi, 1 ≤ i ≤ N . We sort the
vertices in each list A(vi) by decreasing indices. Let A(vi) = 〈w1, . . . , wt〉 be the
resulting list for vertex vi. We find vertex wj = vi−1 and rearrange the vertices
in A(vi) as the list 〈wj , . . . , wt, w1, . . . wj−1〉. Clearly, this step takes O(sort(N))
I/Os and uses O(N/B) blocks of external memory. Let A(vi) = 〈w′

1, . . . , w
′
t〉.

We define νi(w′
j) = j. The following lemma proves that the counterclockwise

order of the vertices in A(vi) is computed correctly by sorting A(vi) as just
described.

Lemma 6 Let wj and wk be two vertices in A(vi), 1 ≤ i ≤ N , with νi(wj) <
νi(wk). Then vi−1, wj, wk, vi+1 appear in this order counterclockwise around
vi in the outerplanar embedding Ĝ of G that is defined by arranging the vertices
of G in the order v1, . . . , vN clockwise along the outer face.

Proof. Consider the planar subdivision D induced by C and edge {vi, wj} (see
Figure 4). D has three faces: the outer face, a face fl bounded by the path from
vi to wj clockwise along C and edge {vi, wj}, and a face fr bounded by the
path from vi to wj counterclockwise along C and edge {vi, wj}. If wk appears
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clockwise around vi from wj , then wk is on the boundary of fr, as edge {vi, wk}
and the boundary cycle of fr cannot intersect, except in vertices vi and wk.
Depending on where the vertex x with ν(x) = 0 appears along C relative to
vi−1, vi, wj , and wk, one of the following is true:

ν(vi−1) < ν(vi) < ν(wj) < ν(wk)
ν(vi) < ν(wj) < ν(wk) < ν(vi−1)
ν(wj) < ν(wk) < ν(vi−1) < ν(vi)
ν(wk) < ν(vi−1) < ν(vi) < ν(wj)

It is easy to verify that in all four cases, νi(wk) < νi(wj), contradicting the
assumption made in the lemma. Thus, wk appears counterclockwise from wj

around vi.

vi

wj

wk

fl fr

Figure 4: Proof of Lemma 6.

We represent the computed embedding Ĝ of G as a list A that is the con-
catenation of lists A(vi), 1 ≤ i ≤ N , in this order. Every vertex w ∈ A(vi)
is marked as representing a vertex adjacent to vi, by storing it as the directed
edge (vi, w). This representation can easily be produced in O(sort(N)) I/Os.

4.2 Outerplanar Embedding — The General Case

If G is not connected, the connected components G1, . . . , Gk of G can be em-
bedded independently. An outerplanar embedding Ĝi of any component Gi,
1 ≤ i ≤ k, can be obtained from outerplanar embeddings of its biconnected
components Hi,1, . . . , Hi,li . In particular, the order of the edges around ev-
ery vertex v that is contained in only one biconnected component Hi,j is fully
determined by the embedding of Hi,j . For a cutpoint v contained in bicon-
nected components Hi,j1 , . . . , Hi,jq

, we obtain a valid ordering of the vertices
around v by concatenating the sorted adjacency lists A1(v), . . . , Aq(v) of v in
Ĥi,j1 , . . . , Ĥi,jq

.
Similar to the case where G is biconnected, we compute a list A which is

the concatenation of adjacency lists A(v), v ∈ G. List A is the concatenation
of lists A1, . . . ,Ak, one for each connected component Gi, 1 ≤ i ≤ k, of G. For
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Algorithm 3 Embedding an outerplanar graph.

Input: An outerplanar graph G.
Output: An outerplanar embedding of G represented by sorted adjacency lists.

1: for every connected component Gi of G do
2: Compute the list Ci of vertices visited in clockwise order around the outer

boundary of Gi, starting at an arbitrary vertex in Gi. (The number of
appearances of a vertex v ∈ Gi in Ci is equal to the number of biconnected
components of Gi that contain v.)

3: for every vertex v ∈ Gi do
4: Let u be the predecessor of the first appearance of v in Ci.
5: Let w be the successor of the first appearance of v in Ci.
6: Sort the vertices in adjacency list A(v) in counterclockwise order around

v, starting at u and ending at w.
7: Remove all but the last appearance of v from Ci.
8: end for
9: Let C ′

i = 〈v1, . . . , vs〉 be the resulting vertex list.
10: Compute list Ai as the concatenation of adjacency lists A(v1), . . . , A(vs).
11: end for
12: Compute list A as the concatenation of lists A1, . . . ,Ak.
13: Compute a list C as the concatenation of lists C ′

1, . . . , C
′
k.

14: Let C = 〈v1, . . . , vk〉. Then define ν(vi) = i; ν(vi) is called the index of vi.

the algorithms in Section 5 through 7 to run in O(scan(N)) I/Os, the adjacency
lists A(v) in each list Ai need to be arranged in an appropriate order. For the
biconnected case, this order is provided by the order of the vertices along the
outer boundary of Gi. In the general case, we have to do this arrangement more
carefully. Our algorithm for computing list A is sketched in Algorithm 3.

We use algorithms of [9] to identify the connected and biconnected compo-
nents of G. This takes O(sort(N)) I/Os and O(N/B) blocks of external memory.
Then we apply the algorithm of Section 4.1 to each of the biconnected compo-
nents Hi,j of G. This takes O(sort(|Hi,j |)) I/Os per biconnected component,
O(sort(N)) I/Os in total.

For each connected component Gi of G, we compute list Ai as follows: The
bicomp-cutpoint-tree Ti of Gi is a tree that contains all cutpoints of Gi and one
vertex v(H) per bicomp H of Gi. There is an edge {v, v(H)} in Ti, if cutpoint v
is contained in bicomp H. We choose one bicomp vertex v(Hr) as the root of Ti.
The parent cutpoint of a bicomp H is the cutpoint p(v(H)), where p(v) denotes
the parent of node v in Ti. The parent bicomp of bicomp H is the bicomp H ′

corresponding to node v(H ′) = p(p(v(H))).
Given the biconnected components of Gi, we sort and scan the vertex lists

of these biconnected components to find the cutpoints of Gi; these are the ver-
tices that are contained in more than one biconnected component. Given the
cutpoints of Gi and the bicomps containing each cutpoint, tree Ti is readily con-
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structed in O(sort(N)) I/Os. Using the Euler tour technique and list-ranking [9],
we compute the parent cutpoint and the parent bicomp for each bicomp H of Gi.

We are now ready to construct the adjacency lists of all vertices in Gi so that
they can be included in Ai. For every vertex v contained in only one bicomp H,
we take the adjacency list of v as computed when embedding H. If v is a
cutpoint, it is the parent cutpoint for all but one bicomp containing v. These
bicomps are the children of v in Ti. Let H1, . . . , Hq be the bicomps containing v,
visited in this order by the Euler tour used to root Ti; that is, v(H1) is v’s parent
in Ti. Then we compute A(v) as the concatenation of the adjacency lists of v
computed for bicomps H1,Hq,Hq−1, . . . , H2, in this order.

In order to compute C ′
i, we transform each bicomp of Gi into a path by

removing all edges not on its outer boundary and the edge between its par-
ent cutpoint and its counterclockwise neighbor along the outer boundary of the
bicomp. For the root bicomp, we remove an arbitrary edge on its boundary.
The resulting graph is a tree T ′

i . A preorder numbering of T ′
i that is consistent

with the previous Euler tour of Ti produces the order of the vertices in C ′
i.

Given the Euler tour, such a preorder numbering can easily be computed in
O(sort(N)) I/Os using list-ranking [9]. Given the preorder numbering and ad-
jacency lists A(v), v ∈ Gi, list Ai can now be constructed by replacing every
vertex in C ′

i by its adjacency list. These computations require sorting and scan-
ning the vertex and edge sets of Gi a constant number of times. Thus, this
algorithm takes O(sort(N)) I/Os and uses O(N/B) blocks of external memory.
We conclude this subsection with a number of definitions and two observations
that will be useful in proving the algorithms in Sections 5 through 7 correct.

Observation 1 For every adjacency list A(v) = 〈w1, . . . , wk〉 with ν(v) > 1,
there exists an index 1 ≤ j ≤ k such that ν(wj+1) > ν(wj+2) > · · · > ν(wk) >
ν(v) > ν(w1) > · · · > ν(wj). If ν(v) = 1, then ν(w1) > · · · > ν(wk) > ν(v).

We call a path P = (v0, . . . , vp) monotone if ν(v0) < · · · < ν(vp). We say
that in the computed embedding of G, a monotone path P = (s = v0, . . . , vp)
is to the left of another monotone path P ′ = (s = v′

0, . . . , v
′
p′) with the same

source s if P and P ′ share vertices s = w0, . . . , wt, that is, wk = vik
= v′

jk
,

for some indices ik and jk and 0 ≤ k ≤ t, and edges {wk, vik−1}, {wk, vik+1}
and {wk, v′

jk+1} appear in this order clockwise around wk, for 0 ≤ k ≤ t. This
definition is somewhat imprecise, as vertex v−1 is not defined; but we will apply
results based on this definition only to connected embedded outerplanar graphs
and to monotone paths in these graphs that start at the vertex r with ν(r) = 1.
In this case, we imagine v−1 to be an additional vertex embedded in the outer
face of the given outerplanar embedding of G and connected only to r through
a single edge {v−1, r}.

A lexicographical ordering “≺” of all monotone paths with the same source
is defined as follows: Let P = (v0, . . . , vp) and P ′ = (v′

0, . . . , v
′
p′) be two such

paths. Then there exists an index j > 0 such that vk = v′
k, for 0 ≤ k < j and

vj �= v′
j . We say that P ≺ P ′ if and only if ν(vj) < ν(v′

j).
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Lemma 7

(i) Let P and P ′ be two monotone paths with source s, ν(s) = 1. If P ≺ P ′,
then P ′ is not to the left of P .

(ii) Let P be a monotone path from s to some vertex v. Then there exists no
monotone path from s to a vertex w, ν(w) > ν(v), that is to the left of P .

Proof. (i) Let P = (s = v0, . . . , vp) and P ′ = (s = v′
0, . . . , v

′
p′) with P ≺ P ′, and

assume that P ′ is to the left of P . Let j > 0 be the index such that vi = v′
i, for

0 ≤ i < j, and ν(vj) < ν(v′
j). As P ′ is to the left of P , vertices vj−2, v′

j , and vj

appear in this order clockwise around vj−1. As the vertices of G are numbered
clockwise along the outer boundary of G, there has to exist a path P ′′ from s
to vj clockwise along the outer boundary that avoids v′

j . Let u be the vertex
closest to vj that is shared by P and P ′′. Then P (u, vj) and P ′′(u, vj) together
define a closed Jordan curve that encloses v′

j . This contradicts the assumption
that the orders of the edges around the vertices of G describe an outerplanar
embedding of G. See Figure 5.

s u vj−2

vj−1

v′
j

vj

vp

v′
p′

P ′

P

P ′′

Figure 5: Proof of Lemma 7.

(ii) Let P ′ = (s = v′
0, . . . , v

′
p′ = w) be a monotone path from s to w,

ν(w) > ν(v), and let P = (s = v0, . . . , vp = v). Assume that P ′ is to the left
of P . As ν(v) < ν(w), the path P ′′ from s to v along the outer boundary of G
does not contain w. Thus, similar to the proof of (i), we can construct a closed
Jordan curve that encloses w, which leads to a contradiction.

4.3 Outerplanarity Testing

We augment the embedding algorithm of the previous section in order to test
whether a given graph G = (V,E) is outerplanar. First we test whether
|E| ≤ 2|V | − 3. If not, G cannot be outerplanar. As a graph is outerplanar
if and only if its biconnected components are outerplanar, we only have to aug-
ment the algorithm of Section 4.1, which deals with the biconnected components
of G. If this algorithm produces a valid outerplanar embedding for every bi-
connected component of G, this is proof that G is outerplanar. Otherwise, the
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Algorithm 4 Test for intersecting diagonals.

Input: The list A computed for bicomp H by Algorithm 2.
Output: A decision whether H is outerplanar along with a proof for the deci-

sion, either in the form of a subgraph that is an edge-expansion of K4

or in the form of an outerplanar embedding of H.

1: Initialize stack S to be empty.
2: for each entry (v, w) ∈ A do
3: if ν(w) > ν(v) then
4: Push(S, {v, w})
5: else
6: {a, b} ← Pop(S)
7: if {a, b} �= {v, w} then
8: Report the graph consisting of C augmented with edges {a, b} and

{v, w} as proof that H is not outerplanar and stop.
9: end if

10: end if
11: end for
12: Report the embedding Ĥ of H represented by list A as proof for the outer-

planarity of H.

algorithm fails to produce a correct outerplanar embedding for at least one of
the biconnected components of G. Let H be such a bicomp.

The algorithm can fail in two ways. It may not be able to compute the
boundary cycle C, or it computes the boundary cycle C and then produces an
intersection between two edges when embedding the diagonals of H. We discuss
both cases in detail.

Given an open ear decomposition E = 〈P0, . . . , Pk〉 of H, the algorithm tries
to compute the boundary cycle C by producing a sequence of cycles G0, . . . , Gq,
where Gi+1 is obtained from Gi by replacing edge {σi+1, τi+1} in Gi with the
non-trivial ear Qi+1. If Gi contains edge {σi+1, τi+1}, for all 0 ≤ i < q, the algo-
rithm successfully computes C. The only way this construction can fail is that
there is a non-trivial ear Qi+1 such that Gi does not contain edge {σi+1, τi+1}.
As shown in the proof of Lemma 5, Gi ∪ Qi+1 is an edge-expansion of K2,3 in
this case. Thus, we output Gi ∪ Qi+1 as proof that G is not outerplanar.

Given the boundary cycle C, all edges of H that are not in C are diagonals
of H. We compute list A as described in Section 4.1 and use A and a stack S
to test for intersecting diagonals. The details are provided in Algorithm 4.

Lemma 8 Given a cycle C and a list A as computed by the embedding algo-
rithm, graph H is outerplanar if and only if Algorithm 4 confirms this.

Proof. First assume that Algorithm 4 reports a graph H ′ consisting of the cycle
C augmented with two edges {a, b} and {v, w} as proof that H is not outer-
planar. This can happen only if ν(w) < ν(v). Thus, edge {v, w} has been
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pushed on stack S before reporting H ′. As edge {v, w} cannot be successfully
removed from S before visiting v, edge {v, w} is still stored on S, below {a, b}.
That is, edge {a, b} has been pushed on the stack S after edge {v, w}, so that
ν(w) ≤ ν(a) ≤ ν(v). However, ν(a) �= ν(v) because otherwise edge {v, b} would
succeed edge {v, w} in the counterclockwise order around v and hence in A; that
is, the algorithm would try to pop edge {v, w} from S before pushing edge {v, b}
on the stack. Hence, ν(a) < ν(v). As edge {a, b} has not been popped from
the stack when the scan of C visits v, ν(v) < ν(b). This in turn implies that
ν(w) < ν(a) because otherwise edge {w, v} would succeed edge {w, b} in the
counterclockwise order of edges around w and hence in A; that is, edge {w, b}
would be pushed onto S before edge {w, v}. Hence, ν(w) < ν(a) < ν(v) < ν(b),
so that H ′ is an edge-expansion of K4, which proves that H is not outerplanar.

Now assume that H contains a subgraph that is an edge-expansion of K4.
Then there must be four vertices a, c, b, d, ν(a) < ν(c) < ν(b) < ν(d) such that
H contains edges {a, b} and {c, d}. (If there are no two such edges, A represents
a valid outerplanar embedding of H, so that H cannot have K4 as a minor.)
Edge {a, b} is pushed on the stack before edge {c, d} and Algorithm 4 tries to
remove edge {a, b} from the stack before removing edge {c, d} because b is visited
before d. This will lead to the reporting of a pair of intersecting diagonals. (Note
that these are not necessarily {a, b} and {c, d}, as the algorithm may find other
conflicts before finding the conflict between {a, b} and {c, d}.)

Finally, if H contains an edge-expansion H ′ of K2,3, but no edge-expansion
of K4, we have to distinguish a number of cases. Let the edge-expansion of K2,3

in H be induced by paths between vertices a, b and vertices c, d, e. W.l.o.g.,
ν(a) < ν(c) < ν(b) < ν(d). Assume the contrary. That is, either ν(a) < ν(b) <
ν(c) < ν(d) or ν(a) < ν(c) < ν(d) < ν(b). If ν(a) < ν(b) < ν(c) < ν(d),
there has to be an edge {v, w} on the path from a to c in H ′ such that ν(v) <
ν(b) < ν(w), as that path has to avoid b. Analogously, the path from b to d
has to avoid v and w, so that there has to be an edge {x, y} on this path with
either ν(v) < ν(x) < ν(w) < ν(y) or ν(y) < ν(v) < ν(x) < ν(w). In both
cases, |ν(v) − ν(w)| ≥ 2 and |ν(x) − ν(y)| ≥ 2. Thus, edges {v, w} and {x, y}
cannot be part of the boundary cycle C, so that C together with edges {v, w}
and {x, y} defines a subgraph of H that is an edge-expansion of K4. This leads
to a contradiction. The case ν(a) < ν(c) < ν(d) < ν(b) is similar.

Depending on ν(e), we obtain three cases now. If ν(e) < ν(a) < ν(b), then
ν(e) < ν(a) < ν(b) < ν(d). If ν(a) < ν(e) < ν(b), then ν(a) < ν(c), ν(e) < ν(b).
If ν(a) < ν(b) < ν(e), then ν(a) < ν(b) < ν(d), ν(e). By replacing c or d with e
in the construction of the previous paragraph, we obtain a contradiction in each
of these cases. Thus, the construction of cycle C would have failed if H has
K2,3 as a minor, but not K4.

The K2,3-test during the construction of the boundary cycle can be incor-
porated in the embedding algorithm without increasing the I/O-complexity of
that phase. Given list A, the test for intersecting diagonals takes O(scan(|A|)) =
O(scan(N)) I/Os. To see this, observe that every edge {v, w}, ν(v) < ν(w), in G
is pushed on the stack at most once, namely when the traversal visits vertex v,
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and removed at most once, namely when the traversal visits vertex w. Thus, we
perform O(N) stack operations, which takes O(scan(N)) I/Os. We have shown
the following theorem.

Theorem 3 It takes O(sort(N)) I/Os and O(N/B) blocks of external memory
to test whether a graph G = (V,E) of size N = |V | + |E| is outerplanar and to
provide proof for the decision of the algorithm by constructing an outerplanar
embedding of G or extracting a subgraph of G that is an edge-expansion of K2,3

or K4.

5 Triangulation

Before addressing the problems of DFS, BFS, SSSP, and computing graph sepa-
rators, we show how to triangulate an embedded connected outerplanar graph G
in a linear number of I/Os. This is an important (preprocessing) step in our
algorithms for the above problems. Our triangulation algorithm can easily be
extended to deal with disconnected graphs as follows: On encountering a ver-
tex v that has the smallest index ν(v) in its connected component, we add an
edge {u, v}, ν(u) = ν(v) − 1 to G. This can be done on the fly while triangu-
lating G and transforms G into a connected supergraph G′ whose triangulation
is also a triangulation of G.

Formally, a triangulation of an outerplanar graph G is a biconnected out-
erplanar supergraph ∆ of G with the same vertex set as G and all of whose
interior faces are triangles.1 We show how to compute a list D that represents
the embedding ∆̂ of ∆ from the list A that represents the embedding Ĝ of G.
From now on we will not distinguish between a graph and its embedding. All
graphs are considered to be embedded.

We need a few definitions to present our algorithm. An ordered triangulation
of G is a list T that represents the dual tree T of a triangulation ∆ of G and has
the following properties: (1) The vertices v1, . . . , vN , where ν(vi) < ν(vi+1), for
1 ≤ i < N , appear in this order in a clockwise traversal of the outer boundary
of ∆. (2) A clockwise traversal of the boundary from v1 to vN defines an Euler
tour of T , which in turn defines a postorder numbering of the vertices in T .
List T stores the vertices of T sorted according to this postorder numbering.

Let r ∈ G be the vertex with ν(r) = 1. An ordered partial triangulation of G
w.r.t. the shortest monotone path P = (r = v0, . . . , vp = v) from vertex r to
some vertex v is a list T = T1◦· · ·◦Tp, where list Ti is an ordered triangulation of
the subgraph of G defined by all edges {a, b} ∈ G, ν(vi−1) ≤ ν(a), ν(b) ≤ ν(vi).
(Note that list Ti is empty if ν(vi−1) + 1 = ν(vi).)

The fringe F(P ) of a monotone path P = (v0, . . . , vp) in graph G is a list of
directed edges 〈(v0, w0,0), . . . , (v0, w0,i0), (v1, w1,0), . . . , (v1, w1,i1), . . . , (vp, wp,0),

1This definition refers to the faces of ∆ without explicitly referring to an embedding ∆̂ of ∆
that defines these faces. The faces of a planar graph G are well-defined only if an embedding Ĝ
of G is given. It is easy to show, however, that the outerplanar embedding of a triangulation
as defined here is unique, except for flipping the whole graph (see Section 8).
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. . . , (vp, wp,ip
)〉, where for each 0 ≤ j < p, edges {vj , wj,k}, 0 ≤ k ≤ ij , are the

edges in G incident to vj with ν(vj+1) ≤ ν(wj,k). For vp, we require that
ν(vp) < ν(wp,k). The edges incident to every vertex vj are sorted so that
the path P = (v0, . . . , vj , wk) is to the left of path P = (v0, . . . , vj , wk−1), for
0 < k ≤ ij .

Our algorithm consists of two phases. The first phase (Algorithm 5) produces
an ordered triangulation of G. A vertex α of T is labeled with the vertices u, v, w
of G in clockwise order along the boundary of the triangle represented by α;
that is, we denote α as the vertex (u, v, w). The second phase (Algorithm 6)
uses list T to extract a list D that represents the embedding ∆̂ of ∆.

We say that Algorithm 5 visits vertex v when the for-loop inspects the first
edge (v, w) ∈ A (which is the first edge in A(v)).

Lemma 9 When Algorithm 5 visits vertex v ∈ G, the stack S represents the
fringe of the shortest monotone path P in G from r to u, where ν(u) = ν(v)−1.
List T is an ordered partial triangulation of G w.r.t. P .

Proof. We prove this claim by induction on ν(v). If ν(v) = 1, v = r is the first
vertex to be visited, so that S is empty, and the claim of the lemma trivially
holds. In this case, ν(w) > ν(v), for all edges (v, w) ∈ A(v). Thus, while
inspecting A(v), each iteration of the for loop executes Line 13, which pushes
edge (v, w) on the stack. By Observation 1, ν(w1) > ν(w2) > · · · > ν(wk),
where A(v) = 〈(v, w1), . . . , (v, wk)〉. Thus, the claim of the lemma holds also for
vertex v′ with ν(v′) = 2.

So assume that ν(v) > 2 and that the claim holds for u, ν(u) = ν(v) − 1.
By Observation 1, there exists an index j such that ν(wj+1) > · · · > ν(wk) >
ν(u) > ν(w1) > · · · > ν(wj), where A(u) = 〈(u,w1), . . . , (u,wk)〉. We split
the iterations inspecting A(u) into three phases. The first phase inspects edge
(u,w1). The second phase inspects edges (u,w2), . . . , (u,wj). The third phase
inspects edges (u,wj+1), . . . , (u,wk).

The iteration of the first phase executes Lines 4–10 of Algorithm 5. The
iterations of the second phase execute Lines 15–19. The iterations of the third
phase execute Line 13.

For the iteration of the first phase, vertex w1 is a vertex on the path P whose
fringe is stored on S. To see this, observe that P is a monotone path from r
to vertex y with ν(y) = ν(u) − 1. If w1 = y, we are done. So assume that
w1 �= y. In this case, ν(w1) < ν(y) because ν(w1) < ν(u) and ν(y) = ν(u) − 1.
Now observe that G contains a monotone path P ′ from r to w1, which can be
extended to a monotone path P ′′ from r to u by appending edge {w1, u}. Let x
be the last vertex on P which is in P ∩P ′′. If x = w1, then w1 ∈ P . Otherwise,
let P ′′′ = P (r, x) ◦ P ′′(x, u). Now either P is to the left of P ′′′(r, w1), or P ′′′

is to the left of P . In both cases, we obtain a contradiction to Lemma 7(ii)
because paths P , P ′′′, and P ′′′(r, w1) are monotone and ν(w1) < ν(y) < ν(u).

If ν(w1) = ν(u) − 1, edge (w1, u) is the last edge in the fringe F(P ) repre-
sented by the current stack. Assume that this is not the case. Then let (w1, z)
be the edge succeeding (w1, u) in F(P ), let P1 and P2 be the paths obtained
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Algorithm 5 Computing the dual of the triangulation.

Input: A list A that represents the embedding of an outerplanar graph G.
Output: A list T that represents an ordered triangulation of G.

1: Initialize stack S to be empty.
2: for each entry (v, w) ∈ A do
3: if the previous entry in A exists and is of the form (v′, w′), v′ �= v then
4: if ν(w) < ν(v) − 1 then
5: {Bridge cutpoints.}
6: repeat
7: (a, b) ← Pop(S)
8: Append vertex (a, b, v) to T .
9: until a = w

10: end if
11: else
12: if ν(v) < ν(w) then
13: Push(S, (v, w))
14: else
15: Pop(S) {Triangulate the interior faces of G.}
16: repeat
17: (a, b) ← Pop(S)
18: Append vertex (a, b, v) to T .
19: until a = w
20: end if
21: end if
22: end for
23: Let v be the last vertex visited within the loop.

{Bridge remaining cutpoints.}
24: Pop(S)
25: while S is not empty do
26: (a, b) ← Pop(S)
27: Append vertex (a, b, v) to T .
28: end while
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by appending edges (w1, z) and (w1, u) to P . Path P1 is to the left of P2; but
ν(z) > ν(u) because ν(z) > ν(w1) and ν(u) = ν(w1)+1. This would contradict
Lemma 7(i). Thus, S represents the fringe of a monotone path from r to u
whose edges {u,w}, ν(w) > ν(u), have been removed. T is an ordered partial
triangulation of G w.r.t. this path.

If ν(w1) < ν(u) − 1, there is no edge in F(P ) that is incident to a vertex
succeeding w1 along P and is not part of P itself. Assume the contrary. That
is, there is an edge (w2, v) ∈ F(P ) such that w2 succeeds w1 along P . If w2 = y,
then ν(v) > ν(y). But this implies that ν(v) > ν(u) because ν(u) = ν(y) + 1.
Thus, we obtain a contradiction to Lemma 7(ii) because either P ◦ {y, v} is to
the left of P (r, w1) ◦ {w1, u}, or P (r, w1) ◦ {w1, u} is to the left of P . If w2 �= y,
there are two cases. If ν(v) > ν(y), we obtain a contradiction as in the case
w2 = y. Otherwise, let w3 be the successor of w2 along P . Then P (r, w3) is to
the left of P (r, w2)◦{w2, v} because ν(v) > ν(w3). But this implies that P is to
the left of P (r, w2) ◦ {w2, v}, thereby leading to a contradiction to Lemma 7(ii)
because ν(y) > ν(v).

Thus, by adding an edge from u to the vertex y with ν(y) = ν(u) − 1
and triangulating the resulting face bounded by P (w1, y) and edges {y, u} and
{w1, u}, we obtain a partial triangulation of G w.r.t. the path P ′ defined as the
concatenation of P (r, w1) and edge {w, u}. The triangulation is ordered, as we
add the triangles from y towards w1 along P . Stack S now represents the fringe
F(P ′) of P ′ after removing edges {u,w}, ν(w) > ν(u).

For every edge (u,w) inspected in the second phase, edge (w, u) must be part
of the shortened fringe of P ′ represented by S. This can be shown using the same
argument as the one showing that vertex w1 in the iteration of the first phase is
part of P . By Observation 1, the edges inspected during the second phase are
inspected according to the order of their endpoints from w1 towards r along P .
Using the same arguments as the ones showing that (w1, u) is the last edge in
the fringe F(P ) if ν(w1) = ν(u) − 1, it can be shown that there cannot be any
edges {a, b}, ν(wj) < ν(a) and ν(b) �= ν(u), in the fringe of P ′, so that the top of
stack S represents the subpath P ′(wj , u) with dangling edges (wj , u), . . . , (w2, u)
attached. The iterations of the second phase now triangulate the faces defined
by P ′(wj , u) and edges {wj , u}, . . . , {w2, u}, so that, at the end of this phase,
stack S represents a monotone path P ′′ from r to u, and T represents an ordered
partial triangulation of G w.r.t. path P ′′. We argue as follows that path P ′′ is
the shortest monotone path from r to u in G:

If there were a shorter monotone path Q from r to u, this path would have
to pass through one of the biconnected components of the partial triangulation
represented by T or through one of the vertices not inspected yet. The latter
would result in a non-monotone path, as for each such vertex x, ν(x) > ν(u).
In the former case, if Q passes through the biconnected component defined by
vertices z ∈ G, where ν(x) ≤ ν(z) ≤ ν(y) and {x, y} is an edge in P ′′, replacing
the subpath Q(x, y) by edge {x, y} in Q would result in a shorter path Q′. Thus,
P ′′ is indeed the shortest monotone path from r to u.

The iterations of the third phase finally add edges {u,wj+1}, . . . , {u,wk} to
the stack S, so that the representation of the fringe F(P ′′) of P ′′ is complete,
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and the claim holds for v as well.

After the for-loop is finished inspecting all edges in A, the stack S represents
the fringe F(P ) of the shortest monotone path P in G from r to the last vertex v
with ν(v) = N , and T represents an ordered partial triangulation of G w.r.t. P .
In this case, F(P ) = P , because the adjacency lists of all vertices of G have
been inspected. Vertices v and r are not necessarily adjacent, so that the interior
vertices of P are cutpoints of the triangulation constructed so far. To complete
the triangulation, we have to make v adjacent to r and triangulate the resulting
face. This is done by the while-loop in Lines 24–28. Thus, Algorithm 5 does
indeed produce an ordered triangulation of G.

The following lemma shows that Algorithm 6 correctly constructs an embed-
ding of the triangulation ∆ represented by the list T computed by Algorithm 5.
For a triangle (a, b, c) ∈ T , let τ((a, b, c)) be its position in T . It follows from
the fact that T represents a postorder traversal of tree T that triangles (a, b, c)
with τ((a, b, c)) ≥ j, for some integer 1 ≤ j ≤ |T |, represent a subgraph ∆j of
∆ that is a triangulation. Let ∆̄j be the subgraph of ∆ induced by all triangles
(a, b, c), τ((a, b, c)) < j. We denote the set of edges shared by ∆j and ∆̄j by
∂∆j .

Lemma 10 After processing triangle (a, b, c) ∈ T with τ((a, b, c)) = j, the
concatenation of S and D represents an embedding of ∆j. For every edge
{x, y} ∈ ∂∆j, stack S stores an entry (x, y), where x and y appear clockwise
around the only triangle in ∆j containing both x and y.

Proof. We prove the claim by induction on j. If j = |T |, triangle (a, b, c) is
the first visited triangle. Thus, we execute Lines 5–11 of Algorithm 6. The
concatenation of S and D is of the form 〈(a, c), (a, b), (b, a), (b, c), (c, b), (c, a)〉,
where ν(a) = 1 and ν(c) = |G|. This represents an embedding of triangle
(a, b, c). Moreover, stack S stores edges (a, b) and (b, c), and edge {a, c} cannot
be shared by ∆j and ∆̄j because it is a boundary edge of ∆.

So assume that the claim holds for j > k. We prove the claim for j = k. In
this case, we execute Lines 13–21. By the induction hypothesis, the concatena-
tion of S and D represents an embedding of ∆k+1, and S stores an edge (b, a),
where edge {a, b} is shared by triangle (a, b, c) and triangulation ∆k+1. The
while-loop in Lines 13–16 transfers edges from S to D until the top of the stack
is of the form (b, a), (c, b), or (a, c). W.l.o.g. the top of the stack is (b, a). Lines
18–21 “insert” vertex c into the boundary cycle of ∆k+1, by inserting entries
(b, c), (c, b), (c, a), and (a, c) between entries (b, a) and (a, b) in the sequence
represented by S and D. The result is a valid embedding of ∆k.

The edges removed from the stack during the while-loop in Lines 13–16
cannot be in ∂∆k, as for every triangle (a′, b′, c′) sharing one of those edges
with ∆k+1, τ((a′, b′, c′)) > τ((a, b, c)). This follows from the fact that ∆ is an
ordered triangulation. Edge {a, b} cannot be in ∂∆k, as it is already shared by
∆k+1 and triangle (a, b, c). Thus, every edge in ∂∆k is either shared by ∆k+1

and ∆̄k or by triangle (a, b, c) and ∆̄k. We have just argued that the former
edges are not removed from S, and the latter edges can only be edges {a, c} or
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Algorithm 6 Extracting the embedding ∆̂ of ∆ from the tree T .

Input: An ordered triangulation T of G.
Output: A list D representing the embedding ∆̂ of the triangulation ∆ repre-

sented by T .

1: Initialize stack S to be empty.
2: Initialize list D to be empty.
3: for each vertex (a, b, c) ∈ T , in reverse order do
4: if (a, b, c) is the first visited vertex then
5: {Assume that ν(a) < ν(b) < ν(c).}
6: Prepend entry (c, a) to D.
7: Prepend entry (c, b) to D.
8: Push(S, (a, c))
9: Push(S, (a, b))

10: Push(S, (b, a))
11: Push(S, (b, c))
12: else
13: while the top of the stack S does not equal (b, a), (c, b) or (a, c) do
14: (d, e) ← Pop(S)
15: Prepend entry (d, e) to D.
16: end while
17: {Assume w.l.o.g. that the top of the stack is (b, a).}
18: Prepend entry (a, c) to D.
19: Push(S, (b, c))
20: Push(S, (c, b))
21: Push(S, (c, a))
22: end if
23: end for
24: while S is not empty do
25: (a, b) ← Pop(S)
26: Prepend entry (a, b) to D.
27: end while
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{b, c}, whose representations we have just put on the stack. Thus, the claim
also holds for j = k.

Lemma 10 implies that, after the for-loop has inspected all triangles in T , the
concatenation of S and D represents an embedding of ∆. Thus, after prepending
the entries in S to D, as done in Lines 24–27 of Algorithm 6, D represents
an embedding of ∆. Thus, Algorithms 5 and 6 correctly compute a list D
representing an embedding ∆̂ of a triangulation ∆ of G.

Theorem 4 Given a list A representing an embedding Ĝ of a connected outer-
planar graph G with N vertices, it takes O(scan(N)) I/Os and O(N/B) blocks
of external memory to compute a list D representing an embedding ∆̂ of a tri-
angulation ∆ of G.

Proof. We compute list D using Algorithms 5 and 6. The correctness of this
procedure follows from Lemmas 9 and 10.

To prove the I/O-bound, we observe that Algorithm 5 scans list A, writes
list T , and performs a number of stack operations. Since both A and T have size
O(N), scanning list A and writing list T take O(scan(N)) I/Os. The number
of stack operations performed by Algorithm 5 is twice the number of Push
operations it performs. However, every entry of list A causes at most one Push
operation to be performed, so that we perform O(|A|) = O(N) stack operations,
which takes O(scan(N)) I/Os.

Algorithm 6 scans the list T and writes list D. As both lists have size O(N),
this takes O(scan(N)) I/Os. The number of stack operations performed by
Algorithm 6 is O(|T |) = O(N), as each entry in T causes at most four Push
operations to be performed. Thus, Algorithm 6 also takes O(scan(N)) I/Os.

6 Computing Separators of Outerplanar Graphs

In this section, we discuss the problem of finding a small ε-separator of an out-
erplanar graph. Given a graph G = (V,E) and a weight function ω : V → R

+
0 ,

we define the weight ω(H) of a subgraph H of G as ω(H) =
∑

v∈H ω(v). We
assume that ω(G) ≤ 1. Then an ε-separator of G is a vertex set S ⊆ V such
that no connected component of G − S has weight exceeding ε. We show the
following result.

Theorem 5 Given an embedded outerplanar graph G = (V,E) with N vertices,
represented as a list A, a weight function ω : V → R

+
0 such that ω(G) ≤ 1, and

a constant 0 < ε < 1, it takes O(scan(N)) I/Os and O(N/B) blocks of external
memory to compute an ε-separator S of size O(1/ε) for G.

We assume that graph G is triangulated because this can easily be achieved
using the triangulation algorithm of Section 5; every separator of the resulting
triangulation is also a separator of G. Let T be its dual tree. Given an edge
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e ∈ T whose removal partitions T into two trees T1 and T2, trees T1 and T2

represent two subgraphs G1 and G2 of G such that G1 and G2 share a pair
of vertices, v and w. Let e∗ = {v, w} be the edge dual to edge e ∈ T . The
connected components of G − {v, w} are graphs G1 − {v, w} and G2 − {v, w}.

We choose a degree-1 vertex r of T as the root of T . For a vertex v ∈ T ,
let ∆(v) be the triangle of G represented by v, let Vv be the vertex set of ∆(v),
let T (v) be the subtree of T rooted at v, and let G(v) be the subgraph of G
defined as the union of all triangles ∆(w), w ∈ T (v). Then T (v) is the dual tree
of G(v). If v �= r, we let p(v) be the parent of v in T and ev = {v, p(v)} be the
edge connecting v to its parent p(v). We denote the endpoints of the dual edge
e∗v of ev as xv and yv.

Our algorithms proceeds in three phases. The first phase of our algorithm
computes weights ω(v) for the vertices of T such that ω(T ) = ω(G) and, for
v �= r, ω(T (v)) = ω(G(v) − {xv, yv}). The second phase of our algorithm
computes a small edge-separator of T w.r.t. these vertex weights. The third
phase of the algorithm computes the corresponding vertex separator of G. Next
we discuss these three phases in detail.

Phase 1: Computing the weights of the dual vertices. We define
weights ω(v) as follows: For the root r of T , we define ω(r) = ω(∆(r)). For
every other vertex v ∈ T , we define ω(v) = ω(zv), where zv ∈ Vv \ {xv, yv}.
Note that zv is unique. These vertex weights can be computed in O(scan(N))
I/Os by processing T top-down using the time-forward processing procedure of
Section 3 because Vv is stored with v in T and {xv, yv} = Vv ∩ Vp(v). The next
lemma, which is easy to prove by induction on the size of T (v), shows that the
vertex weights ω(v), v ∈ T , have the desired property.

Lemma 11 The weight of tree T is ω(T ) = ω(G). For every vertex v �= r,
ω(T (v)) = ω(G(v) − {xv, yv}).

Phase 2: Computing a small edge-separator of T. The next step of
our algorithm computes a set C of edges of T such that none of the connected
components T0, T1, . . . , Tk of T −C has weight exceeding ε, except possibly the
component T0 that contains the root r of T ; if ω(T0) > ε, then T0 = ({r}, ∅).
At this point, we have to assume that no vertex in T , except the root r, has
weight exceeding ε/2. We show how to ensure this condition when discussing
Phase 3 of our algorithm.

In order to compute C, we process T bottom-up and apply the following
rules: When visiting a leaf v of T , we define ω′(v) = ω(v). At an internal node
v �= r of T with children w1 and w2, we proceed as follows: If one of the children,
say w2, does not exist, we define ω′(w2) = 0. If ω(v) + ω′(w1) + ω′(w2) ≤ ε/2,
we define ω′(v) = ω(v) + ω′(w1) + ω′(w2). If ε/2 < ω(v) + ω′(w1) + ω′(w2) ≤ ε,
we define ω′(v) = 0 and add edge {v, p(v)} to C. If ε < ω(v) + ω′(w1) + ω′(w2),
we define ω′(v) = 0 and add edges {v, p(v)} and {v, w1} to C. If v = r, v has a
single child w. If ω(v) + ω′(w) > ε, we add edge {v, w} to C.
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This procedure takes O(scan(N)) I/Os using the time-forward processing
algorithm of Section 3. Instead of producing the list C explicitly, we label every
edge in T as either being contained in C or not. This representation makes
Phase 3 easier. The following two lemmas show that C is almost an ε-edge
separator of T , whose size is �2/ε�.

Lemma 12 Let T0, . . . , Tk be the connected components of T −C, and let r ∈
T0. Then ω(Ti) ≤ ε, for 1 ≤ i ≤ k. If ω(T0) > ε, then T0 = ({r}, ∅).

Proof. For every vertex v ∈ T , let Tv be the component Ti such that v ∈ Ti.
We show that ω(T (v) ∩ Tv) ≤ ε, for every vertex v �= r in T . This implies that
ω(Ti) ≤ ε, for 1 ≤ i ≤ k, because, for the root ri of Ti, T (ri) ∩ Ti = Ti.

In order to prove this claim, we show the following stronger result: If v
is the root of Tv, then ω(T (v) ∩ Tv) ≤ ε; if v is not the root of Tv, then
ω(T (v)∩Tv) ≤ ε/2 and ω′(v) = ω(T (v)∩Tv). We prove this claim by induction
on the size of tree T (v). If |T (v)| = 1, v is a leaf, and T (v) ∩ Tv = ({v}, ∅), so
that ω(T (v) ∩ Tv) = ω(v) ≤ ε/2.

If |T (v)| > 1, v is an internal vertex with children w1 and w2. If Tv =
Tw1 = Tw2 , then neither of w1 and w2 is the root of Tv. By the induction
hypothesis, this implies that ω′(w1) = ω(T (w1) ∩ Tv) ≤ ε/2 and ω′(w2) =
ω(T (w2)∩Tv) ≤ ε/2. This implies that ω(T (v)∩Tv) = ω(v) + ω′(w1) + ω′(w2).
If ω(T (v) ∩ Tv) > ε, we would have added edge {v, w1} to C, contradicting the
assumption that Tv = Tw1 . Thus, ω(T (v) ∩ Tv) ≤ ε. If ω(T (v) ∩ Tv) > ε/2, our
algorithm adds edge {v, p(v)} to C, so that v is the root of Tv.

If Tv = Tw2 �= Tw1 , w2 is not the root of Tv. Thus, ω′(w2) = ω(T (w1)∩Tv) ≤
ε/2. This immediately implies that ω(T (v) ∩ Tv) = ω(v) + ω(T (w2) ∩ Tv) ≤ ε.
If ω(T (v) ∩ Tv) > ε/2, we add edge {v, p(v)} to C, so that v is the root of Tv.

Finally, if Tv, Tw1 , and Tw2 are all distinct, vertices w1 and w2 are the roots
of trees Tw1 and Tw2 , so that our algorithm sets ω′(w1) = ω′(w2) = 0. This
implies that ω′(v) = ω(v) = ω(T (v) ∩ Tv).

In order to show that T0 = ({r}, ∅) if ω(T0) > ε, we argue as follows: Let w
be the child of r in T . If Tr = Tw, then vertex w is not the root of Tw, so that
ω′(w) = ω(T (w) ∩ Tr). If ω(Tr) = ω(r) + ω′(w) > ε, our algorithm would have
added edge {r, w} to C. Thus, ω(Tr) ≤ ε if Tr = Tw. If Tr �= Tw, Tr = ({r}, ∅),
because w is the only child of r.

Lemma 13 |C| ≤ �2ω(T )/ε�.

Proof. In order to show the lemma, we charge the edges in C to individual
subgraphs Ti of T − C or to pairs of subgraphs {Ti, Tj} of T − C. Every
subgraph Ti is charged at most once, either individually or as part of a pair of
subgraphs. Every individual graph that is charged has weight at least ε/2 and
is charged for one edge in C. Every pair of graphs that is charged has weight at
least ε and is charged for two edges in C. Thus, on average, we charge at most
one edge per ε/2 units of weight. Thus, |C| ≤ �2ω(T )/ε�. We have to show how
to distribute the charges.
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Consider the way edges in C are added to C. An edge {v, p(v)} that is
added to C while processing v is added either alone or along with an edge
{v, w1}, where w1 is a child of v. In the former case, ε/2 < ω(Tv) ≤ ε, and we
charge edge {v, p(v)} to graph Tv. If edge {v, p(v)} is added to C along with
edge {v, w1}, ε < ω(Tv) + ω(Tw1). Then we charge these two edges to the pair
{Tv, Tw1}. Every subgraph Ti with root ri is charged only for edge {ri, p(ri)}.
Thus, every subgraph Ti is charged at most once. If edge {r, w} is added to C
while processing the child w of the root r, then this edge is already covered by
this charging scheme. Otherwise, edge {r, w} is added because ω(r)+ω′(w) > ε.
In this case, we charge the edge to T0. Component T0 is never charged for any
other edges, as its root does not have a parent.

Phase 3: Computing the vertex-separator of G. In order to compute an
ε-separator of G, we have to ensure first that no vertex in the dual tree T , except
possibly the root, has weight more than ε/2. To ensure this, it is sufficient to
guarantee that no vertex in G has weight exceeding ε/2, as every vertex in T ,
except the root obtains its weight from a single vertex in G. Thus, we compute
the vertex separator as the union of two sets S1 and S2. Set S1 contains all
vertices of weight more than ε/2 in G. We set ω(v) = 0, for every vertex v ∈ S1

and compute the edge separator C of T w.r.t. these modified vertex weights.
Every edge e ∈ C corresponds to an edge e∗ = {x, y} in G. We add vertices x
and y to S2.

By Lemma 13, |C| ≤
⌊

2ω(T )
ε

⌋
=

⌊
2(ω(G)−ω(S1))

ε

⌋
≤

⌊
2(ω(G)− ε

2 |S1|)
ε

⌋
=⌊

2ω(G)
ε

⌋
−|S1|. Thus, |S2| ≤ 4ω(G)/ε−2|S1|, so that |S| ≤ |S1|+|S2| ≤ 4ω(G)/ε.

The computation of S1 requires O(scan(N)) I/Os. Given C, set S2 is easily com-
puted in O(scan(N)) I/Os using a preorder traversal of T . We have to show
that S is an ε-separator of G.

Lemma 14 Vertex set S is an ε-separator of G.

Proof. Let T0, . . . , Tk be the connected components of T − C. Let G0, . . . , Gk

be the subgraphs of G such that Gi is the union of all triangles ∆(v), v ∈ Ti.
We show that every connected component of G − S is completely contained in
a subgraph Gi and that ω(Gi − S) ≤ ε.

The first claim is easy to see. Indeed, all edges e = {v, w} ∈ T , v ∈ Ti,
w �∈ Ti, are in C, so that the endpoints of their dual edges are in S; hence, there
is no path from a vertex not in Gi to a vertex in Gi that does not contain a
vertex in S.

In order to prove the second claim, we observe that, for i = 0, ω(T0) = ω(G0),
by the definition of weights ω(v), v ∈ T . If ω(T0) ≤ ε, then ω(G0 − S) ≤ ε.
Otherwise, T0 = ({r}, ∅) and G0 −S contains at most one vertex, whose weight
is no more than ε/2.

For i > 0, let ri be the root of tree Ti. Then ω(Ti) = ω(Gi − {xri
, yri

}) ≥
ω(Gi − S), as xri

, yri
∈ S. But, ω(Ti) ≤ ε, by Lemma 12.



Maheshwari and Zeh, I/O-Optimal Algorithms, JGAA, 8(1) 47–87 (2004) 76

7 DFS, BFS, and Single-Source Shortest Paths

The problem of computing a DFS-tree of an embedded outerplanar graph G
can easily be solved in O(scan(N)) I/Os, provided that the choice of the root
of the tree is left to the algorithm: We choose the vertex r with ν(r) = 1 as
the root of the tree. A DFS-tree with this root is already encoded in the list A
representing the embedding of G and can easily be extracted in O(scan(N))
I/Os. If the DFS-tree has to have a particular root r, a simple stack algorithm
can be used to extract the desired DFS-tree from the embedding of G. However,
while the algorithm is simple, its correctness proof is tedious.

Theorem 6 Given a list A that represents an outerplanar embedding of a con-
nected outerplanar graph G with N vertices, it takes O(scan(N)) I/Os and
O(N/B) blocks of external memory to compute a DFS-tree for G.

In the rest of this section, we present a linear-I/O algorithm to solve the
single-source shortest path problem for an embedded connected outerplanar
graph G. Since breadth-first search is the same as single-source shortest paths
after assigning unit weights to the edges of G, this algorithm can also be used
to compute a BFS-tree for G. The algorithm presented here differs from the
one presented in [22] in a number of ways. Most importantly, we consider
the algorithm presented here to be much simpler than the one in [22] and the
algorithm in [22] could not be used to solve the SSSP-problem. We describe
our algorithm assuming that graph G is undirected. However, it generalizes in
a straightforward manner to the directed case.

The first step in our algorithm is to triangulate the given graph G. Let ∆
be the resulting triangulation. To ensure that the shortest path between two
vertices in ∆ is the same as the shortest path between these two vertices in G,
we give all edges that are added to G in order to obtain ∆ infinite weight. The
triangulation algorithm of Section 5 can easily be augmented to maintain edge
weights. Now recall that the triangulation algorithm first computes a list T of
the triangles in ∆ sorted according to a postorder traversal of the dual tree T
of ∆. This representation of ∆ is more useful for our SSSP-algorithm than the
list D that represents the embedding of ∆.

We denote the weight of an edge e by ω(e). Given a source vertex s, we
proceed as follows: We choose a root vertex s′ of T so that the triangle ∆(s′)
has s as one of its vertices. For every edge e of T , let Te be the subtree of T
induced by all vertices v so that the path from s′ to v in T contains edge e;
that is, intuitively, tree Te is connected to the rest of T through edge e. Let
T̄e be the subtree T − Te of T . Let Ge be the union of triangles ∆(v), for all
vertices v ∈ Te; graph Ḡe is defined analogously for T̄e. Then G = Ge ∪ Ḡe

and Ge ∩ Ḡe = ({xe, ye}, {e∗}); that is, Ge and Ḡe share only the dual edge e∗

of e; the endpoints xe and ye of e∗ form a separator of G. Any simple path P
from s to a vertex v ∈ Ḡe either does not contain a vertex of Ge − {xe, ye}, or
it contains both xe and ye. These observations suggest the following strategy:

First we compute weights ω′(e) for the edges of G. If there exists an edge
e∗ ∈ T such that e is dual to e∗, we define ω′(e) as the length of the shortest
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path in Ge∗ between the endpoints xe∗ and ye∗ of e. Otherwise, we define
ω′(e) = ω(e). In the second step, let xv be the vertex of T closest to s so that
v ∈ ∆(xv), for all v ∈ G. Let w1 and w2 be the two children of xv. Then
we compute the distance d′(s, v) from s to v in the graph Ḡ{xv,w1} ∩ Ḡ{xv,w2}
w.r.t. the weights ω′(e) computed in the first step. As we show below, d′(s, v) =
dG(s, v), so that this strategy correctly computes the distances of all vertices
in G from s. At the end of this section, we show how to augment the algorithm
so that it computes a shortest-path tree.

Rooting T. In order to implement the remaining steps in the algorithm in
O(scan(N)) I/Os, using the time-forward processing procedure from Section 3,
we need to ensure that tree T is rooted at a vertex s′ such that the source s
of the shortest-path computation is a vertex of ∆(s′), and that the vertices
of T are sorted according to a preorder (or postorder) traversal of T . After
applying the triangulation algorithm of Section 5, the vertices of T are stored
in postorder, but the current root of T may not represent a triangle that has s
on its boundary.

As the reversal of a postorder numbering of T is a preorder numbering of T ,
we assume w.l.o.g. that the vertices of T are stored in preorder. The first step
of our algorithm is to extract an Euler-tour of T , that is, a traversal of tree T
such that every edge of T is traversed exactly twice, once from the parent to
the child and once the other way. Let e1, . . . , ek be the list of edges in the Euler
tour. Then we represent the tour by a list E containing the source vertices
of edges e1, . . . , ek in order. We transform list E = 〈x1, . . . , xt〉 into a list
E ′ = 〈xk . . . , xt, x1, . . . , xk−1〉, where xk = s′. List E ′ represents an Euler tour
of T starting at vertex s′. The final step of our algorithm is to extract the
vertices of T in preorder. Algorithm 7 contains the details of this procedure.

In order to show the correctness of Algorithm 7, we show that the list E
produced by Lines 1–21 describes an Euler tour of T starting at the current
root r of T . This implies that list E ′ represents an Euler tour of T starting
at s′. Using this fact, we show that Lines 23–32 produce a list T ′ that stores
the vertices of T , when rooted at s′, in preorder.

Lemma 15 The list E computed by Lines 1–21 of Algorithm 7 describes an
Euler tour of T that starts at vertex r.

Proof. In this proof, we refer to each vertex v ∈ T by its preorder number. In
order to prove the lemma, we show that the for-loop of Lines 2–14 maintains
the following invariant: Stack S stores the vertices on the path from the root r
to the current vertex v. List E represents a traversal of T from s to v such
that, for every vertex u < v, u �∈ S, edge {u, p(u)} is traversed twice, once in
each direction, and for every vertex u ∈ S, u �= r, edge {u, p(u)} is traversed
exactly once, from p(u) to u. This implies that, after the for-loop is finished,
list E represents a tour from s′ to the last vertex in T such that all edges are
traversed twice, except the edges between the vertices on stack S. These edges
have to be traversed once more, from children towards their parents. This is
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Algorithm 7 Rooting tree T at vertex s′.

Input: A list T that stores the vertices of the dual tree T of ∆ rooted at
vertex r with ν(r) = 1 in preorder.

Output: A list T ′ that stores the vertices of the dual tree T of ∆ rooted at
vertex s′ in preorder.

1: Initialize stack S to be empty.
2: for each vertex v ∈ T do
3: if v is the first vertex (i.e., the current root of T ) then
4: Push(S, v)
5: Append v to E
6: else
7: while the top of stack S is not equal to p(v) do
8: Pop(S)
9: Append the top of stack S to E

10: end while
11: Push(S, v)
12: Append v to E
13: end if
14: end for
15: while S is not empty do
16: Pop(S)
17: if S is not empty then
18: Append the top of stack S to E
19: end if
20: end while
21: Remove the last element from E
22: Scan E to find the first index k in list E = 〈x1, . . . , xt〉 such that xk = s′.

While scanning, append elements x1, . . . , xk−1 to a queue Q and delete them
from E . Once xk has been found, move elements x1, . . . , xk−1 from Q to the
end of the list 〈xk, . . . , xt〉. Call the resulting list E ′ = 〈x′

1, . . . , x
′
t〉.

23: for each element x′
i ∈ E ′ do

24: if S is empty or the top of stack S is not of the form (x′
i, x

′
j) then

25: Append the pair (x′
i, x

′
i−1) to list T ′. {x′

i−1 is the parent of x′
i in the

tree T rooted at s′; for x′
1, we define x′

0 = nil.}
26: if x′

i+1 �= x′
i−1 then

27: Push(S, (x′
i, x

′
i−1))

28: end if
29: else if x′

i+1 = x′
j then

30: Pop(S)
31: end if
32: end for
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accomplished in the while-loop in Lines 15–20. The root s′ is added to the
end of E by this while-loop; hence, we have to remove it, in order not to store
vertex s′ one more time in the list than it is visited in the Euler tour. We have
to show the invariant of the for-loop.

We show the invariant by induction on the preorder number of v. If v = 1,
then v = r. We execute Lines 4 and 5 of the loop. As a result, stack S stores the
path from r to r. There are no vertices v < r, and there are no edges between
vertices on S. Thus, the remainder of the invariant is trivially true.

If v > 1, we execute Lines 7–12. In Lines 7–9, we remove vertices from the
stack and append their parents to E until the top of the stack stores the parent
of v. This is equivalent to traversing edge {u, p(u)}, for each removed vertex u,
so that we maintain the invariant that for each vertex u < v, u �∈ S, edge
{u, p(u)} is traversed twice by the tour described by E . After Line 9, stack S
represents a path from r to p(v), and the tour described by E traverses T from r
to p(v) and visits all edges between vertices on stack S exactly once. Lines 11
and 12 add v to S and E , so that stack S now represents the path from r to v,
and edge {p(v), v} is traversed by the tour described by list E .

In order to complete the proof, we need to show that, for each vertex v,
p(v) ∈ S before the iteration for vertex v is entered. In order to show this,
we have to show that p(v) is an ancestor of v − 1. If this were not true, then
p(v) < v − 1 < v, v is in the subtree of T rooted at p(v), and v − 1 is not. This
contradicts the fact that a preorder numbering assigns consecutive numbers to
the vertices in each subtree rooted at some vertex x.

Lemma 16 List T ′ stores the vertices of tree T , rooted at s′, sorted in preorder.
Every vertex in T ′ is labeled with its parent in T .

Proof. By definition, a preorder numbering of T is a numbering of the vertices
in T according to the order of their first appearances in an Euler tour of T .
Thus, we only have to show that Lines 23–32 of Algorithm 7 extract the first
appearance of each vertex from E ′. Also, the first appearance of every vertex v
in an Euler tour of T is preceded by an appearance of the parent of v. Thus, if
we extract only the first appearance of each vertex, we also compute its parent
correctly.

A vertex is extracted from E ′ if it is not equal to the top of the stack. This
is true for the first appearance of each vertex in E ′, as we push a vertex on
the stack only when it is visited. We have to show that every vertex of T is
extracted exactly once. In order to do that, we show that each but the first
appearance of every vertex v finds v on the top of the stack, so that v is not
appended to T ′ again. The proof is by induction on the size of the subtree T (v)
of T rooted at v.

If |T (v)| = 1, v is a leaf, and v appears only once in any Euler tour of T .
Also, v is never pushed on the stack S, because its successor in E ′ is p(v).

If |T (v)| > 1, v is an internal node. Let w1, . . . , wk (k ≤ 3) be the children of
v in T . Then, by the induction hypothesis, each but the first appearance of wi

finds wi on the top of the stack. In particular, the top of S looks like 〈wi, v, . . . 〉
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when wi is visited, except during the first visit. Now, the first appearance of v
precedes w1, while every other appearance of v immediately succeeds the last
appearance of one of v’s children wi. As each such last appearance of a child
of v is succeeded by p(wi) = v, wi is removed from S when visiting the last
appearance of wi, so that before visiting the next appearance of v, v is on the
top of stack S. This proves the correctness of Algorithm 7.

Pruning subtrees. Having changed the order of the vertices in T so that
they are sorted according to a preorder numbering of T starting at s′, we now
move to the second phase of our algorithm, which computes a weight ω′(e), for
every edge e = {x, y} ∈ G, so that ω′(e) = dGe∗ (x, y).

For every exterior edge e of G, we define ω′(e) = ω(e). Next we compute
the edge weights ω′(e), for all diagonals e of G. We do this by processing T
bottom-up. For a vertex v �= s′ of T , let e = {v, p(v)}, e∗ = {xe, ye}, and
z ∈ Vv \ {xe, ye}. Then we define ω′(e∗) = min(ω(e∗), ω′({xe, z}) + ω′({ye, z})).

This computation takes O(scan(N)) I/Os using the time-forward processing
procedure of Section 3. The following lemma shows that it produces the correct
result.

Lemma 17 For every edge e ∈ T , ω′(e∗) = dGe
(xe, ye).

Proof. We prove this claim by induction on the size of Te. If |Te| = 1, then
e = {v, p(v)}, where v is a leaf of T . In this case, Ge = ∆(v), and the shortest
path from xe to ye in Ge is either the edge e∗ = {xe, ye} itself, or it is the path
P = (xe, z, ye), where z is the third vertex of ∆(v). Edges e1 = {xe, z} and
e2 = {ye, z} are exterior edges of G, so that ω′(e1) = ω(e1) and ω′(e2) = ω(e2).
Thus, ω′(e∗) is correctly computed as the minimum of the weights of edge e∗

and path P .
If |Te| > 1, let e = {v, p(v)}, let w1 and w2 be the children of v in T ,

and let e1 and e2 be the edges {v, w1} and {v, w2}. Let e∗1 = {xe1 , ye1} and
e∗2 = {xe2 , ye2}, where xe1 = xe, ye2 = ye, and ye1 = xe2 . If vertex w2 does
not exist, we assume that e2 is a tree-edge connecting v to an artificial vertex
in the outer face of G and Ge2 = ({xe2 , ye2}, {{xe2 , ye2}}). Then Ge = Ge1 ∪
Ge2 ∪ ({xe, ye}, e∗). By the induction hypothesis, ω′({xe, ye1}) = dGe1

(xe, ye1)
and ω′({xe2 , ye}) = dGe2

(xe2 , ye). Thus, ω′(e∗) = min{ω(e∗), ω′({xe, ye1}) +
ω′({xe2 , ye}) = dGe

(xe, ye).

Computing distances from the source. In order to compute dG(s, v), for
every vertex v ∈ G, we process tree T top-down, maintaining the invariant that,
after processing vertex v ∈ T , the distances d(s, x) have been computed for all
vertices x ∈ ∆(v). At the root s′ of T , we have that s ∈ ∆(s′). For the other two
vertices v and w of ∆(s′), we compute dG(s, v) = min(ω′({s, v}), ω′({s, w}) +
ω′({v, w})) and dG(s, v) = min(ω′({s, v}), ω′({s, w})+ω′({v, w})). At any other
vertex v ∈ T , let e = {v, p(v)}. Then ∆(v) has vertices xe, ye, and a third
vertex z. After processing the parent of v, dG(s, xe) and dG(s, ye) are known.
Thus, we compute dG(s, z) = min(dG(s, xe)+ω′({xe, z}), dG(s, ye)+ω′({ye, z})).
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Again, this procedure takes O(scan(N)) I/Os using the time-forward pro-
cessing procedure from Section 3. The following lemma shows that it produces
the correct result.

Lemma 18 The above procedure computes dG(s, v) correctly, for all v ∈ G.

Proof. Observe that the distance dG(s, v) is computed when processing a node
xv ∈ T such that v ∈ ∆(xv), and v �∈ ∆(p(xv)). We prove by induction on
dT (s′, xv) that dG(s, v) is computed correctly. If dT (s′, xv) = 0, then v ∈ ∆(s′).
If s = v, then dG(s, v) = 0 is computed correctly by our algorithm. Oth-
erwise, let the vertex set of ∆(s′) be {s, v, x}, and let the edges of ∆(s′)
be e∗1 = {s, v}, e∗2 = {s, x}, and e∗3 = {x, v}. By Lemma 17, ω′(e∗1) =
dGe1

(s, v), ω′(e∗2) = dGe2
(s, x), and ω′(e∗3) = dGe3

(x, v). Thus, dG(s, v) =
min(dGe1

(s, v), dGe2
(s, x) + dGe3

(x, v)) = min{ω′(e∗1), ω
′(e∗2) + ω′(e∗3)), as com-

puted by our algorithm.
If dT (s′, xv) = k > 0, assume that the distances are computed correctly for

all vertices w with dT (s′, xw) < k. Let e = {xv, p(xv)}. Then the vertex set of
∆(xv) is {xe, ye, v}, and dT (s′, xxe

) < k and dT (s′, xye
) < k. Thus, the distances

d(s, xe) and d(s, ye) have already been computed correctly. Let e∗1 = {xe, v},
and e∗2 = {ye, v}. The shortest path from s to v is either the concatenation of
the shortest path from s to xe, followed by the shortest path from xe to v in Ge1 ,
or the shortest path from s to ye, followed by the shortest path from ye to v
in Ge2 . Thus, dG(s, v) = min(dG(s, xe) + dGe1

(xe, v), dG(s, ye) + dGe2
(ye, v)) =

min(dG(s, xe) + ω′(e∗1), dG(s, ye) + ω′(e∗2)), as computed by our algorithm.

Extracting a shortest-path tree. In order to extract a shortest-path tree
from s to all other vertices in G, we augment our algorithm as follows. The first
phase, which roots tree T at root s′, does not need to be changed. We augment
the second phase as follows:

For every tree edge e ∈ T , let e = {v, p(v)}, and z ∈ ∆(v) − {xe, ye}.
Depending on whether we computed ω′(e∗) as ω(e∗) or ω′({xe, z})+ω′({z, ye}),
the shortest path from xe to ye in Ge is either edge e∗ or the concatenation of
the shortest paths from xe to z and from z to ye in Ge. We store a flag with
edge e distinguishing between these two possibilities.

In the third phase of our algorithm, we proceed as follows: Let dG(s, v) =
dG(s, x) + ω′({x, v}), and assume that we have not computed a parent for
vertex v yet. If {x, v} is an external edge of G, we add edge {x, v} to the
shortest-path tree and set p(v) = x. Otherwise, there are two possibilities.
If ω′({x, v}) = ω({x, v}), we add edge {x, v} to the shortest-path tree, set
p(v) = x, and inform all descendants w of xv such that v ∈ ∆(w) that the
parent of v has already been computed. Otherwise, we inform the descendant w
of xv such that {x, v} = {w, xv}∗ that v’s parent lies in G{w,xv} and still needs
to be computed.

The correctness of this procedure is easily verified, given that the above algo-
rithm computes distances dG(s, v) correctly. Thus, we have shown the following
theorem.
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Theorem 7 Given a list A representing an outerplanar embedding Ĝ of an
outerplanar graph G = (V,E) and a weight function ω : E → R

+, it takes
O(scan(N)) I/Os to compute a BFS-tree for G or to solve the single-source
shortest path problem for G.

Proof. The correctness of our algorithm follows from the above discussion. All
but the first step of the algorithm process a tree T of size O(N) using the
linear-I/O time-forward processing procedure of Section 3. Thus, they take
O(scan(N)) I/Os. As for the first step, Lines 1–21 of Algorithm 7 read list T
and produce list E . The size of E is bounded by the number of stack operations
performed, as we add at most one element to E per stack operation. The number
of Pop operations is bounded by the number of Push operations, which in turn
is bounded by |T |, as we push each element in T on the stack at most once.
Thus, |E| = O(N), and we perform O(N) stack operations. Hence, Lines 1–21
take O(scan(N)) I/Os. Given that |E| = O(N), |E ′| = O(N), and Line 22 takes
O(scan(N)) I/Os. In Lines 23–32, list E ′ is scanned, and list T ′ is written. Every
element in E ′ causes at most one element to be appended to T ′ and at most
one element to be pushed on the stack. Thus, |T ′| = O(N), and we perform
O(N) stack operations. Hence, Lines 23–32 also take O(scan(N)) I/Os. This
shows that the whole algorithm takes O(scan(N)) I/Os to solve the single-source
shortest path problem. In order to compute a BFS-tree, we give all edges in G
unit weight.

8 Lower Bounds

In this section, we address the question whether the algorithms presented in
this paper are optimal. Note that all the problems in this paper require at
least Ω(scan(N)) I/Os. Given an outerplanar embedding, we present optimal
O(scan(N)) I/Os algorithm for these problems. However, if no outerplanar
embedding of the graph is given, we spend O(perm(N)) I/Os to solve any of
the problems discussed in this paper, as we first embed the graph and then apply
one of our linear-I/O algorithms to solve the actual problem. Now the question
is whether the embedding step can be avoided, in order to obtain true linear-I/O
algorithms for BFS, DFS, SSSP, triangulation, or outerplanar separators.

In order to be able to show a lower bound for any of these problems, we have
to define exactly how the output of an algorithm solving the problem is to be
represented. For most of the problems discussed here, such a representation of
the output is far from well-defined. For instance, a graph is said to be embedded
if the circular order of the edges incident to each vertex is given. How this order
is to be represented is left to the particular algorithm. We may represent this
order by numbering or sorting the edges clockwise around the vertex, or by
having each edge store pointers to its successors clockwise around each of its
endpoints. The output of a BFS-algorithm may be a labeling of every vertex
with its distance to the root of the BFS-tree, or just a representation of the
BFS-tree by computing for every vertex, its parent in the BFS-tree.
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Even though we believe that, if no embedding of the graph is given as part
of the input, Ω(perm(N)) is a lower bound on the number of I/Os required to
compute an embedding, BFS-tree, DFS-tree, or shortest-path tree of an outer-
planar graph G, independent of which representation of the output is chosen,
we are only able to prove such a lower bound, if we place certain restrictions
on the output representation of the respective algorithm. These restrictions are
satisfied by our algorithms. We discuss these restrictions next.

For each vertex v ∈ G, let A(v) be its adjacency list. Then we require that
an algorithm computing an outerplanar embedding of G either numbers the
vertices in A(v) from 1 to |A(v)| clockwise or counterclockwise around v, or
produces a representation that can be transformed into this representation of
the embedding in o(perm(N)) I/Os. Our algorithm produces lists A(v) sorted
counterclockwise around v. Scanning all lists A(v), we can transform such a
representation into a numbering of the vertices in A(v).

A BFS, DFS, or SSSP-algorithm is required to label every vertex v ∈ G
with the length of the shortest path in T from the root of T to v, or produce an
output that allows the computation of such distance labels in o(perm(N)) I/Os.
Our algorithms represent the computed spanning trees T by lists T storing their
vertices in preorder. Using the linear-I/O time-forward processing procedure of
Section 3, we can then easily compute distance labels for the vertices of T .

All our lower bounds use a rather straightforward linear-I/O reduction from
list-ranking to the problem whose lower bound we want to show. This implies
that the problem requires Ω(perm(N)) I/Os to be solved, as list-ranking has an
Ω(perm(N)) I/O lower bound [9]. List-ranking is the following problem:

Given a list L = 〈x1, . . . , xN 〉, where succ(xi) = xi+1, for 1 ≤ i < N ,
label the vertices of L with their distances from the tail of the list,
that is, compute a labeling δ : L → N, where δ(xi) = N − i. We call
δ the ranking of list L.

Lemma 19 Given a list L of size N , it takes O(scan(N)) I/Os to construct
an outerplanar graph GL of size O(N) and extract a ranking δ of L from an
outerplanar embedding of GL.

Proof. We define graph GL = (VL, EL) as follows: The vertex set of GL is
defined as the set VL = {x1, . . . , xN , y}. The edge set of GL is defined as
EL = {{xi, xi+1 : 1 ≤ i < N} ∪ {{y, xi} : 1 ≤ i ≤ N}. Graph GL can easily
be constructed from list L in O(scan(N)) I/Os. Figure 6 shows an outerplanar

x1 x2 x3 x4 x5 x6 x7 x8

y

Figure 6: The proof of the lower bound for outerplanar embedding.
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embedding of GL. By Lemma 4, this is the only possible embedding of GL,
except for flipping the whole graph. Thus, an algorithm numbering the vertices
in A(y) clockwise around y produces a labeling δ′ : L → N such that either
δ′(xi) = (i + c) mod N , where c ∈ N is a constant, or δ′(xi) = (c − i) mod N .
It is straightforward to decide which of the two cases applies and to determine
constant c, based on the labels δ′(x1) and δ′(xN ). Then a single scan of the
vertices in L suffices to transform the labeling δ′ into the desired labeling δ.

The following simple reduction shows that any algorithm computing a BFS,
DFS, or shortest-path tree for an outerplanar graph G requires Ω(perm(N))
I/Os, even if we leave the choice of the root vertex to the algorithm.

Lemma 20 Given a list L containing N elements, it takes O(scan(N)) I/Os to
extract a ranking δ of L from a BFS-tree, DFS-tree, or shortest-path tree of L,
when viewed as an undirected graph GL.

Proof. We represent list L as the graph GL = (VL, EL), VL = {x1, . . . , xN},
EL = {{xi, xi+1} : 1 ≤ i < N}. For the SSSP-problem we assign unit weights
to the edges of GL. If the algorithm chooses vertex xk, for some 1 ≤ k ≤ N ,
as the root of the spanning tree it computes, the vertices of GL are labeled
with their distances δ′(xi) from xk. In particular, δ′(xi) = k − i if 1 ≤ i ≤ k,
and δ′(xi) = i − k if k < i ≤ N . The distance label δ′(x1) is sufficient to
determine index k. Then it takes a single scan of the vertices in L to transform
the labeling δ′ into the desired labeling δ.

Together with the Ω(perm(N)) I/O lower bound for list-ranking, Lemmas 19
and 20 imply the following result.

Theorem 8 Given an outerplanar graph G = (V,E) with N vertices, repre-
sented as vertex and edge lists, it takes Ω(perm(N)) I/Os to compute an out-
erplanar embedding, DFS-tree, or BFS-tree of G, or to solve the single-source
shortest path problem for G.
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