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Abstract

We show that the minimum fill-in and the minimum interval graph
completion of a d-trapezoid graph can be computed in time O(nd). We
also show that the treewidth and the pathwidth of a d-trapezoid graph
can be computed in time O(n tw(G)d−1). In both cases, d is supposed to
be a fixed positive integer and it is required that a suitable intersection
model of the given d-trapezoid graph is part of the input.

As a consequence, each of the four graph parameters can be computed
in time O(n2) for trapezoid graphs and thus for permutation graphs even
if no intersection model is part of the input.

Communicated by S. Khuller: submitted August 1996; revised March 1998.
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1 Introduction

The notions of treewidth and pathwidth have come to play a central role in
several recent investigations in algorithmic graph theory, due to several appli-
cations in graph theory and other areas. One reason for this interest is that
many well known and important graph problems become polynomial time, and
usually even linear time solvable (and become member of NC), when restricted
to a class of graphs with bounded tree- or pathwidth [1, 3, 4, 5, 7]. In general,
such algorithms need to have a tree-decomposition or path-decomposition of
suitable width given together with the input graph. Hence, an important prob-
lem is to find tree-decompositions (or path-decompositions) of minimum width.
When the desired width of the tree-decomposition is bounded by a constant,
then this problem can be solved in linear time [6]. However, the constant fac-
tor of this algorithm is exponential in the treewidth (of yes-instances), which
limits its practicality. Thus, it is interesting for special classes of graphs to find
algorithms, which are also polynomial in the treewidth.

A related graph problem is the Minimum Fill-in problem. In this problem,
we want to add as few edges as possible to a given graph to make it chordal. The
importance of this problem lies mainly in the fact that it is equivalent to finding
an order of Gaussian elimination steps of a (usually sparse) symmetric matrix,
minimizing the number of generated non-zero entries [29]. Due to the lack of
efficient algorithms for finding an optimal solution, in practice one usually has
to work with certain heuristics.

By now there is a large number of results on the algorithmic complexity of the
problems Treewidth and Pathwidth when restricted to special graph classes.
The Treewidth (resp. Pathwidth) problem ‘Given a graph G and a positive
integer k, decide whether the treewidth (resp. pathwidth) of G is at most k’
remains NP-complete on cobipartite graphs [2] and on bipartite graphs [21].
(For information on graph classes we refer to [11, 19]. For other definitions we
refer to Section 2.) For various special classes of graphs, it has been shown
that the treewidth can be computed in polynomial time, as e.g. cographs [10],
circular-arc graphs [32], chordal bipartite graphs [22], permutation graphs [9],
circle graphs [20] and cointerval graphs [17].

The knowledge on the algorithmic complexity of the Minimum Fill-in prob-
lem when restricted to special graph classes is relatively small compared to that
of Treewidth and Pathwidth. The Minimum Fill-in problem ‘Given a
graph G and a positive integer k, decide whether there is a fill-in of G with at
most k edges’ remains NP-complete on cobipartite graphs [36] and on bipartite
graphs [33]. The only graph classes for which the Minimum Fill-in problem
were known to be polynomial time solvable were for almost ten years the rela-
tively small classes of cographs [13] and bipartite permutation graphs [31]. Now
polynomial time algorithms for chordal bipartite graphs [12], multitolerance
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graphs [27] as well as circle and circular-arc graphs [24] are available.

Our paper is organized as follows. Preliminaries on treewidth, pathwidth,
minimum fill-in, minimal separators and triangulations are given in Section 2.
In Section 3 we define d-trapezoid graphs and we summarize some of their struc-
tural and algorithmic properties. d-trapezoid graphs are a common generaliza-
tion of interval, permutation and trapezoid graphs such that 1-trapezoid graphs
coincide with interval graphs and 2-trapezoid graphs coincide with trapezoid
graphs. d-trapezoid graphs are intersection graphs of d-trapezoids in a so-called
d-trapezoid diagram which consists of d parallel lines in which a d-trapezoid
is defined by a collection of d intervals, one interval on each of the parallel
lines (For more details see Definition 12.) In Section 4 we present the major
structural results of the paper on which our efficient algorithms are based. In
Theorem 17 we establish a representation theorem of minimal triangulations
of a d-trapezoid graph G in terms of scanlines of a d-trapezoid diagram D(G).
Hence in contrast to previous work in this area as e.g. [9, 20, 28, 32], our algo-
rithms are based on a general representation theorem that enables the design of
an algorithm for Treewith, Minimum Fill-in and possibly related problems
(concerning the optimization of a graph parameter over all minimal triangula-
tions of the graph). A similar representation theorem is given in [24] for circle
and circular-arc graphs. In Section 5 we introduce so-called small scanlines and
dense sequences of scanlines as tools to obtain significantly faster algorithms
than by a straightforward application of the representation theorem.

In Section 6 we present our polynomial time algorithms to solve NP-complete
graph problems when their input is restricted to d-trapezoid graphs. Both
algorithms require that d is a constant and that a d-trapezoid diagram of the
given graph is part of the input. The algorithm to compute the treewidth and
the pathwidth has running time O(n tw(G)d−1). The algorithm to compute the
minimum fill-in and the minimum interval completion has running time O(nd).
Up to now the best known algorithms for all four problems had running time
O(max(n2.376 d, n2d+2)) [28].

Our algorithms are simple and efficient for trapezoid graphs (d = 2). In that
case they do not even require a trapezoid diagram as part of the input. We
obtain O(n2) algorithms to compute all the four graph parameters on trapezoid
graphs (compared to running time O(n6) of the algorithm in [28]). Furthermore
we obtain an O(n2) algorithm to compute the minimum fill-in of permutation
graphs (compared to running time O(n5) of the algorithm for bipartite permu-
tation graphs in [31]). A similar algorithm to compute the treewidth and the
pathwidth for permutation graphs has been presented in [9].

For d ≥ 3, our algorithms for d-trapezoid graphs require an intersection
model as part of the input. This is clearly a disadvantage although it is a
quite natural assumption. On one hand, all four problems that we consider are
NP-complete on cocomparability graphs [2, 36], hence there is no polynomial
time algorithm for d-trapezoid graphs if the parameter d is unbounded, unless
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P=NP. On the other hand, the recognition problem for d-trapezoid graphs is
NP-complete for any fixed d ≥ 3 [35]. Thus, for d ≥ 3, to compute a d-trapezoid
diagram, whenever the input graph is a d-trapezoid graph, means to solve an
NP-complete problem.

Fortunately, a d-trapezoid diagram as part of the input is not a necessary
assumption to establish algorithms with polynomial running time. O(n5 R +
n3 R3) time algorithms to compute the treewidth and minimum fill-in of a given
asteroidal triple-free graph on n vertices with R minimal separators imply that
the treewidth, pathwidth, minimum fill-in and minimum interval completion of
a d-trapezoid graph can be computed in time O(n3d+3) without an intersection
model as part of the input [23].

2 Preliminaries

2.1 Preliminaries on treewidth, pathwidth and minimum
fill-in

The concept of a chordal graph is fundamental for the treewidth and the mini-
mum fill-in of graphs.

Definition 1 A graph is chordal if it has no induced chordless cycle of length
at least four.

Chordal graphs (also called triangulated graphs) form a well-known class of
graphs. For detailed information on chordal graphs and other special classes of
graphs we refer to [11, 19]. (For more information on chordal graphs see also
Subsection 2.3.)

There are different ways to define the treewidth of a graph. The original defini-
tion by Robertson and Seymour uses the concept of a tree-decomposition. For
more information on tree-decompositions the reader is referred to the survey
paper [7]. In this paper we introduce the treewidth by means of triangulations.

Definition 2 A triangulation of a graph G is a graph H with the same vertex
set as G, such that G is a subgraph of H and H is chordal.

We denote the maximum cardinality of a clique in a graph G by ω(G).

Definition 3 The treewidth of a graph G, denoted by tw(G), is the minimum
of ω(H) − 1 where H ranges over all triangulations of G.

The pathwidth can be defined in terms of triangulations of a special kind.

Definition 4 An interval graph is a graph of which the vertices can be put into
one-to-one correspondence with closed intervals on the real line, such that two
vertices are adjacent if and only if the corresponding intervals have a nonempty
intersection.
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Notice that every interval graph is chordal [19].

Definition 5 The pathwidth of a graph G, denoted by pw(G), is the minimum
of ω(H) − 1 where H ranges over all triangulations of G which are interval
graphs.

Definition 6 A path-decomposition of a graph G = (V, E) is a sequence of
subsets of V , (X1, . . . , Xr), such that

⋃
1≤i≤r Xi = V , for all {v, w} ∈ E, there

is an i, 1 ≤ i ≤ r, v, w ∈ Xi, and for all v ∈ V , there are lv, rv, such that for
all integers j, 1 ≤ lv ≤ j ≤ rv ≤ r ⇔ v ∈ Xj. The width of path-decomposition
(X1, . . . , Xr) is max1≤i≤r |Xi| − 1.

The following lemma shows the equivalence of the above definition of path-
width and the original one in terms of path-decompositions by Robertson and
Seymour. For a proof see for example [21, Lemma 2.2.8].

Lemma 1 A graph G has a path-decomposition of width at most k if and only
if there is a triangulation of G into an interval graph H such that ω(H) ≤ k+1.

The following characterization of interval graphs is due to Gilmore and Hoff-
man [18].

Theorem 2 G is an interval graph if and only if the maximal cliques of G can
be ordered C1, C2, . . . , Ct so that for every vertex the maximal cliques containing
it occur consecutively.

Such an ordering of the maximal cliques is said to be a consecutive clique ar-
rangement of G. By assigning to each vertex v ∈ V the interval [min{i | v ∈
Xi}, max{i | v ∈ Xi}], we directly get the following result.

Lemma 3 Let (X1, . . . , Xr) be a path-decomposition of G = (V, E). The graph
H = (V, F ), obtained by making each set Xi, 1 ≤ i ≤ r a clique, (i.e., for
all v, w ∈ V, v 6= w: {v, w} ∈ F ⇔ ∃i : v, w ∈ Xi), is an interval graph that
contains G as a subgraph.

The decision problems Treewidth and Pathwidth are NP-complete [2]. How-
ever, for constant k, graphs with treewidth or pathwidth at most k are recog-
nizable in O(n) time [6, 8]. The large constants depending on k involved in
these algorithms make them usually not practical. It is therefore of importance
to find polynomial algorithms to compute the treewidth and the pathwidth for
special classes of graphs which are as large as possible, where the treewidth
(resp. pathwidth) of input graphs is not supposed to be bounded by a constant
k. The aim of this paper is to present fast algorithms to compute the treewidth
and the pathwidth as well as the minimum fill-in and the minimum interval
graph completion on a relatively large parameterized class of graphs.
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Definition 7 A fill-in of the graph G = (V, E) is a set F of edges of the com-
plement of G such that H = (V, E ∪ F ) is chordal. The minimum fill-in of a
graph G, denoted by mfi(G), is the minimum of |E(H)|−|E(G)| where H ranges
over all triangulations of G.

An interval graph completion of the graph G = (V, E) is a set F of edges
of the complement of G such that H = (V, E ∪ F ) is an interval graph. The
minimum interval graph completion of a graph G, denoted by mic(G), is the
minimum of |E(H)|− |E(G)| where H ranges over all triangulations of G which
are interval graphs.

Hence solving the Minimum Fill-in (resp. Minimum Interval Graph Com-
pletion) problem on a graph G is equivalent to finding a triangulation H of G
(such that H is an interval graph) that has as few edges as possible.

2.2 Preliminaries on minimal separators and triangula-
tions

One of the main reasons why there exist fast algorithms for many problems
when restricted to graphs with bounded treewidth, is the existence of vertex
separators of bounded size. For designing efficient treewidth algorithms on
special graph classes that do not have bounded treewidth, vertex separators of
bounded size have been replaced by minimal separators (see, e.g., [9, 21]).

Definition 8 Let G = (V, E) be a graph. A subset S ⊂ V is an a, b-separator
for nonadjacent vertices a and b, if the removal of S separates a and b in distinct
connected components. If no proper subset of the a, b-separator S is itself an a, b-
separator then S is a minimal a, b-separator. A minimal separator S is a subset
S ⊂ V such that S is a minimal a, b-separator for some nonadjacent vertices a
and b.

The following well-known lemma gives a useful characterization of minimal sep-
arators.

Lemma 4 Let G = (V, E) be a graph and S ⊆ V . Let Ca and Cb be the
components of G[V \ S], containing a and b respectively. Then S is a minimal
a, b-separator of G if and only if every vertex of S has a neighbor in Ca and a
neighbor in Cb.

Using the characterization in Theorem 2, one can easily identify the minimal
separators of an interval graph which has been shown in [23].

Lemma 5 Let A1, A2, . . . , Aq be a consecutive clique arrangement of an in-
terval graph G. Then the minimal separators of G are the sets Ai ∩ Ai+1,
i ∈ {1, 2, . . . , q − 1}.
Various types of triangulations are of importance in algorithms to compute the
treewidth or the minimum fill-in for special graph classes.
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Definition 9 A triangulation H of a graph G is a minimal triangulation of G
if no proper subgraph of H is a triangulation of G.

In 1976 Rose, Tarjan and Lueker have given the following characterization of
minimal triangulations [30].

Theorem 6 Let H be a triangulation of a graph G. Then H is a minimal
triangulation of G if and only if for all edges e ∈ E(H) \E(G) the graph H − e
is not chordal.

Theorem 7 provides another characterization of minimal triangulations
(see [23]).

Definition 10 Let G = (V, E) be a graph. For any collection M of subsets of
V , we denote by GM the graph obtained from G by adding edges between all
pairs of nonadjacent vertices x and y of G for which an S ∈ M with {x, y} ⊆ S
exists. We denote by Sep(G) the set of all minimal separators of G.

Notice that any set S ∈ M is a clique in GM.

Theorem 7 Let H be a triangulation of the graph G. Then H is a minimal
triangulation of G if and only if H = GSep(H).

The following theorem is an immediate consequence of [21, Theorem 2.1.2],

Theorem 8 Let H be a minimal triangulation of the graph G = (V, E). Then
the following two conditions are satisfied.

1. If a and b are nonadjacent vertices in H then every minimal a, b-separator
in H is also a minimal a, b-separator in G.

2. If S is a minimal separator in H and V (C) is the vertex set of a connected
component C of H [V \S] then G[V (C)] is a connected component of G[V \
S].

The following theorem of Möhring in [26] considers asteroidal-triple free graphs,
which form a graph class containing interval, permutation, trapezoid and co-
comparability graphs. (For information on asteroidal triple-free graphs see [14].)

Theorem 9 Any minimal triangulation of an asteroidal triple-free graph is an
interval graph. Hence pw(G) = tw(G) and mfi(G) = mic(G) for each asteroidal
triple-free graph.

Any d-trapezoid graph is a cocomparability graph (see Section 3) and thus
asteroidal triple-free.

Corollary 10 Any minimal triangulation of an d-trapezoid graph is an interval
graph. Hence pw(G) = tw(G) and mfi(G) = mic(G) for each d-trapezoid graph
G.

Therefore we may restrict ourselves to algorithms to compute the treewidth and
the minimum fill-in for d-trapezoid graphs.
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2.3 Preliminaries on chordal graphs and simplicial ver-
tices

In 1961 Dirac established some of the fundamental structural properties of
chordal graphs [15] (see also [19]).

Definition 11 A vertex v of a graph G = (V, E) is simplicial if N [v] is a clique
in G.

Theorem 11 Let G = (V, E) be a graph. Then the following conditions are
equivalent:

(i) G is chordal.

(ii) Every minimal separator of G is a clique.

(iii) Every induced subgraph of G has a simplicial vertex.

Theorem 12 Let G = (V, E) be a chordal graph and let S be a minimal sepa-
rator of G. Then every component C of G[V \ S] contains a simplicial vertex
of the graph G.

The following lemma is of importance for the proof of our main structural the-
orem (Theorem 17).

Lemma 13 Let G = (V, E) be a graph. Then no simplicial vertex of G is
contained in a minimal separator of G. Furthermore no minimal triangulation
H of G contains an edge e ∈ E(H) \ E(G) such that an endpoint of e is a
simplicial vertex of G.

Proof. Let S be a minimal a, b-separator of G and s ∈ S. Then s has a neighbor
sa in Ca and a neighbor sb in Cb by Lemma 4. Clearly sa and sb are not
adjacent. Hence s is not simplicial.

Now assume that H is a minimal triangulation of G. Then H = GSep(H) by
Theorem 7. Thus no edge incident to a simplicial vertex is added to obtain H
from G, since Sep(H) ⊆ Sep(G) by Theorem 8 and since no simplicial vertex
is contained in a minimal separator of G. 2

3 d-Trapezoid graphs

Flotow introduced d-trapezoid graphs in [16].

Definition 12 Let d be a positive integer. A d-trapezoid diagram of a graph
G = (V, E) assigns to each vertex v of G a collection of d intervals

I(v) = 〈[liv, ri
v] : liv, r

i
v ∈ {1, 2, . . . , 2n}, liv < ri

v, i ∈ {1, 2, . . . d}〉
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Figure 1: A 3-trapezoid graph G and a 3-trapezoid model D(G)

such that for each i ∈ {1, 2, . . . d} and any pair of different vertices v, w ∈ V
the intervals [liv, ri

v] and [liw, ri
w] have no endpoint in common. Furthermore,

{v, w} ∈ E if and only if either there is an i ∈ {1, 2, . . . , d} such that [liv, r
i
v]

and [liw, ri
w] have nonempty intersection or there are i ∈ {2, 3, . . . , d} such that

li−1
v < ri−1

v < li−1
w < ri−1

w and liw < ri
w < liv < ri

v.

We use the following visualizing of a d-trapezoid diagram. Draw d parallel
horizontal lines labeled D1, D2, . . . Dd from bottom to the top. Identify points
1, 2, . . . , 2n in unit distance from left to right on each of the horizontal lines.
Then for any vertex v ∈ V we obtain a polygon Qv by drawing line segments be-
tween consecutive points in the chain l1v, l

2
v, . . . l

d
v, rd

v , rd−1
v , . . . , r1

v, l1v. The poly-
gon Qv is said to be a d-trapezoid . Consequently {v, w} ∈ E if and only if Qv

and Qw have nonempty intersection. (See Fig. 1 for an example.)

Definition 13 A graph G is a d-trapezoid graph if it has a d-trapezoid diagram.

The following theorem is a consequence of Definition 12 (see [16]).

Theorem 14 The d-trapezoid graphs are exactly the cocomparability graphs of
partially ordered sets of interval dimension at most d.

Unfortunately, the problem ‘Given a partially ordered set P , decide whether the
interval dimension of P is at most d’ is NP-complete for any fixed d ≥ 3 [35].
Hence for fixed d ≥ 3, to compute a d-trapezoid diagram of the given graph,
if it is indeed a d-trapezoid graph, means to solve an NP-complete problem.
Moreover, at present not even reasonable approximation algorithms for the in-
terval dimension of a partially ordered set are known. Thus to assume for d ≥ 3
that a d-trapezoid diagram is part of the input is a strong assumption. Theo-
rem 14 also shows that for any fixed d the d-trapezoid graphs form a subclass of
the cocomparability graphs. Hence every d-trapezoid graph is asteroidal triple-
free. Consequently as already mentioned in Corollary 10, the treewidth and
pathwidth of a d-trapezoid graph coincide, and the minimum fill-in and the
minimum interval graph completion of a d-trapezoid graph coincide.

Details about the terminology used in Theorem 14 and the remarks above
can be found in [34].

The definition of a d-trapezoid diagram implies that 1-trapezoid graphs and
interval graphs coincide and that 2-trapezoid graphs and trapezoid graphs coin-
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cide. Furthermore permutation graphs are exactly those 2-trapezoid graphs hav-
ing a 2-trapezoid diagram satisfying ri

v − liv = 1 for all vertices v and i ∈ {1, 2}.
For d = 2 we can drop the requirement that a 2-trapezoid diagram must be
part of the input since there is an O(n2) recognition algorithm for trapezoid
graphs that also computes a trapezoid model if the input graph is a trapezoid
graph [25]. (Notice that interval graphs are of no interest to us since the four
problems of this paper are easy for interval graphs.)

Scanlines as a tool to represent all minimal separators of a graph have been used
in various efficient algorithms to compute the treewidth or the minimum fill-in
for special classes of intersection graphs, among them permutation, d-trapezoid,
circle and circular-arc graphs [9, 20, 21, 24, 28].

Definition 14 Let G = (V, E) be a graph on n vertices with d-trapezoid diagram
D(G). On each of the horizontal lines D1, D2, . . . , Dd of D(G), identify 2n + 1
unit distance apart points 0.5, 1.5, . . . , 2n + 0.5 from left to right, such that the
point j is between the points j − 0.5 and j + 0.5 for all j ∈ {1, 2, . . . , 2n}.

A scanline s of the d-trapezoid diagram D(G) is a sequence (s1, s2, . . . , sd)
of d scanpoints si ∈ {0.5, 1.5, . . . , 2n + 0.5}, i ∈ {1, 2, . . . , d}.
In the d-trapezoid diagram D(G) we represent the scanpoint si as point on the
horizontal line Di. The scanline s is represented by drawing a line segment
between pairs of scanpoints on consecutive horizontal lines.

Definition 15 Let D(G) be a d-trapezoid diagram. Let s1 and s2 be two dif-
ferent scanlines and let Qu and Qv be two different d-trapezoids of D(G). The
scanline s1 is left of s2 if si

1 ≤ si
2 for all i ∈ {1, 2, . . . d}. Note that a scanline

s1, that is left of a scanline s2, may share scanpoints with s2.
The d-trapezoid Qu is left of Qv if ri

u < liv for all i ∈ {1, 2, . . . , d}. The
d-trapezoid Qv is between the scanlines s1 and s2 if si

1 < liv < ri
v < si

2 for all
i ∈ {1, 2, . . . , d}. The scanline s1 is between Qu and Qv if either ri

u < si
1 < liv,

for all i ∈ {1, 2, . . . , d}, or ri
v < si

1 < liu, for all i ∈ {1, 2, . . . , d}.
The following results extend corresponding ones for permutation graphs given
in [9]. Some ideas of the proof of Theorem 15 will be reused in the proof of our
main structural theorem in Section 4.

Definition 16 Let s be a scanline of a d-trapezoid diagram D(G). We denote
by S(s) the set of those vertices v of G for which s has nonempty intersection
with the d-trapezoid Qv in D(G).

Theorem 15 Let G be a d-trapezoid graph and let D(G) be a d-trapezoid di-
agram of G. For every minimal x, y-separator S of G there is a scanline s of
D(G), which is between the d-trapezoids Qx and Qy, such that S = S(s).

Proof. Let S be a minimal x, y-separator of G. Consider the d-trapezoid diagram
D(G[V \ S]), obtained from D(G) by removing all d-trapezoids Qv with v ∈ S.
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For each connected component C of G[V \ S], there is a generalized d-trapezoid
QC in D(G[V \ S]) defined by liC := minz∈C liz and ri

C := maxz∈C ri
z , for all

i ∈ {1, 2, . . . , d}. The generalized d-trapezoid contains all d-trapezoids Qz for
which z is a vertex of C and QC has empty intersection with Qw for all w ∈
V \ (S ∪C). Hence QC and QC′ have empty intersection for any pair C and C′

of different components of G[V \ S]. By the construction of the scanpoints in
D(G), this implies that for any two different components of G[V \ S], there is a
scanline s in D(G) between the generalized d-trapezoids QC and QC′ .

Now let Cx and Cy be the components of G[V \ S] containing x and y
respectively. Without loss of generality we may assume that QCx is left of QCy

in D(G[V \S]). We can choose a scanline s between QCx and QCy in D(G[V \S])
such that s does not intersect any generalized d-trapezoid QC of a component C
of G[V \S]. Hence for all d-trapezoids Qv that intersect the scanline s in D(G),
v must be a vertex of S. This implies that S(s), i.e. the set of those vertices v of
G for which s has nonempty intersection with Qv in D(G), is a subset of S. On
the other hand, every vertex of S is adjacent to some vertex in Cx and to some
vertex in Cy by Lemma 4. Hence Qv intersects the scanline s for every vertex
v ∈ S, since Qv intersects a d-trapezoid, which is left of s, and a d-trapezoid,
which is right of s. Hence S = S(s). 2

Corollary 16 The number of minimal separators of a d-trapezoid graph G on
n ≥ 2 vertices is at most (2n − 3)d.

To avoid confusion let us emphasize that a scanline depends on a d-trapezoid
diagram. When we study scanlines we always assume that a fixed d-trapezoid
diagram of the graph under consideration is given.

Throughout the rest of the paper we assume that G = (V, E) is a d-trapezoid
graph and that D(G) is a fixed d-trapezoid diagram of G.

4 Minimal triangulations of d-trapezoid graphs

The main structural result of this paper is a representation theorem for minimal
triangulations of a d-trapezoid graph G in terms of scanlines of its d-trapezoid
diagram D(G). The approach taken to prove this theorem differs completely
from the techniques used to prove related theorems in previous work as e.g. [9,
20, 24].

Definition 17 Let D(G) be a d-trapezoid diagram of a graph G. A sequence of
scanlines s0, s1, s2, . . . , sr−1, sr of D(G) is non-crossing if si is left of si+1 for
each i ∈ {0, 1, . . . , r − 1}.
We need some additional notations. Consider a d-trapezoid diagram D(G). We
denote by sL the leftmost scanline in D(G), i.e., sL = (0.5, 0.5, . . . , 0.5), and by
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sR the rightmost scanline in D(G), i.e., sR = (2n + 0.5, . . . , 2n + 0.5). For a
non-crossing sequence of scanlines s0, s1, s2, . . . , sr−1, sr of D(G), we denote by
Gs0,s1,...,sr the graph obtained from G by adding an edge between any pair of
nonadjacent vertices u and v of G for which there is an i ∈ {0, 1, . . . , r} such
that Qu and Qv intersect si in D(G).

Definition 18 Let s and s′ be scanlines of D(G) such that s is left of s′. Then
V(s, s′) is the set of all vertices v for which Qv is either between the scanlines s
and s′ or has a nonempty intersection with s or with s′ in D(G).

Theorem 17 Let G = (V, E) be a d-trapezoid graph and let D(G) be a d-
trapezoid diagram of G. Let H be any minimal triangulation of G and let
Sep(H) be the set of all minimal separators of H. Then there is a non-crossing
sequence of scanlines sL = s0, s1, s2, . . . , sr−1, sr = sR of D(G) for which

(i) V(s0, s1),V(s1, s2), . . . ,V(sr−1, sr) is a consecutive clique arrangement of
the interval graph H,

(ii) Sep(H) = {S(s1), S(s2), . . . , S(sr−1)}, and

(iii) H = Gs0,s1,...,sr .

Proof. The main property is (i) which easily implies the other two. To see
this note that (i) implies (ii) by Lemma 5. Furthermore Theorem 7 and prop-
erty (ii) imply H = G{S(s1),S(s2),...,S(sr−1)}. Thus the definition of Gs0,s1,...,sr

immediately implies (iii). Hence it suffices to prove property (i).

Let H be any minimal triangulation of the d-trapezoid graph G with d-
trapezoid diagram D(G). By Corollary 10, H is an interval graph, and thus
chordal. Let H̃ be the subgraph of H induced by the set of all simplicial vertices
of H . Then all components of H̃ are complete and we call them simplicial
cliques of H . Each simplicial clique A of H corresponds to a generalized d-
trapezoid QA of D(G) with liA := minz∈A liz and ri

A := maxz∈A ri
z, for all i ∈

{1, 2, . . . , d}. Furthermore, all these generalized d-trapezoid QA have pairwise
empty intersection (see the proof of Theorem 15). Let QA1 be the leftmost of all
generalized d-trapezoids QA of the simplicial cliques A of H in the d-trapezoid
diagram obtained from D(G) by removing all d-trapezoids Qv for which v is not
simplicial in H .

Claim 1: There is no d-trapezoid Qu and no a1 ∈ A1 such that Qu is left of
Qa1 in D(G).
Suppose not. Let a1 ∈ A1 and let Qu be a d-trapezoid that is left of Qa1 in D(G).
Then u has no neighbor in A1 since A1 is a simplicial clique of H . Furthermore
S∗ = NH [A1] \ A1 is a minimal separator of H and A1 is a component of
H [V \ S∗], since A1 is a simplicial clique of H . (Here we denote by NG[V ′] the
set of all vertices of the graph G = (V, E) that either belong to V ′ ⊆ V or have
a neighbor in V ′.)
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Let x be a vertex of H such that S∗ is a minimal x, a1-separator of H . By
Theorem 8, S∗ is also a minimal x, a1-separator of G and A1 is a component of
G[V \ S∗]. Consider the d-trapezoid diagram D(G[V \ S∗]). Recall that A1 is a
component of G[V \ S∗]. Notice that u /∈ S∗ since u /∈ NH [A1]. Let Cu be the
component of G[V \ S∗] containing u. Then the generalized d-trapezoid QCu is
left of QA1 in D(G[V \ S∗]) and thus in D(G), since Qu is left of Qa1 in D(G).
By Theorem 8, Cu is also a component of H [V \S∗]. Hence, Theorem 12 implies
that Cu contains a simplicial vertex of H and this contradicts the choice of A1.
This proves the claim.

Now take as s1 the scanline of D(G) with si
1 = ri

A1
+ 0.5 for all i ∈

{1, 2, . . . , d}.
Claim 2: V(s0, s1) is a maximal clique in H.
NH [A1] is a maximal clique in H . Furthermore NG[A1] = A1 ∪ S(s1) by the
choice of s1. Hence V(s0, s1) = NG[A1]. Finally Lemma 13 implies NG[A1] =
NH [A1] and therefore V(s0, s1) = NH [A1] is a maximal clique in H . This proves
the claim.

Now assume that we have constructed a non-crossing sequence of scan-
lines sL = s0, s1, s2, . . . , sj−1, j ≥ 2, of D(G) such that V(s0, s1),V(s1, s2), . . . ,
V(sj−2, sj−1) are maximal cliques of H . We show how to find sj .

Let Hj be the subgraph of H induced by the vertex set Vj that consists of
all those vertices v for which the d-trapezoid Qv is not left of sj−1 in D(G).
Clearly Hj is an interval graph.

Claim 3: Every minimal separator of Hj is also a minimal separator of H .
Let S be a minimal separator of the interval graph Hj . By assumption,
V(sj−2, sj−1) is a maximal clique of H . Hence Sj−1 = S(sj−1) is a clique.
The construction of Hj implies NH [v] ∩ Vj ⊆ Sj−1 for all v ∈ V \ Vj . Hence
it is impossible that there are two components of Hj [Vj \ S] that both contain
vertices of Sj−1. Imagine we take the components of Hj [Vj \ S] and we add all
vertices of V \Vj . Then we obtain the components of H [V \S]. Now in H [V \S]
all vertices of V \ Vj either form a collection of new components (if Sj−1 ⊆ S)
or they will be added to the unique component of Hj [Vj \S] containing vertices
of Sj−1. In any case at most one component of Hj [Vj \ S] will be changed and
that one will only be enlarged.

Suppose S is a minimal a, b-separator of Hj . By Lemma 4, every vertex of
S has a neighbor in the components Ca and Cb of Hj [Vj \S]. When adding the
vertices of V \ Vj to Hj [Vj \ S] this does not change, i.e. every vertex of S has
a neighbor in the components Ca and Cb of H [V \ S]. Hence S is a minimal
a, b-separator of H by Lemma 4. This proves the claim.

Suppose Hj is not complete. Let H̃j be the subgraph of Hj induced by the set
of all simplicial vertices of Hj . The components of H̃j are the simplicial cliques
of Hj and each simplicial clique A of Hj corresponds to a generalized d-trapezoid
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QA of D(G). Let QAj be the leftmost of all the generalized d-trapezoids QA of
a simplicial clique A of Hj in the d-trapezoid diagram obtained from D(G) by
removing all d-trapezoids Qv for which v is not simplicial in Hj .

Claim 4: There is no u ∈ Vj and no aj ∈ Aj such that the d-trapezoid Qu is
left of Qaj in D(G).
This can be obtained by applying Claim 1 to Hj and Aj .

Now take as sj the scanline of D(G) with si
j = ri

Aj
+ 0.5 for all i ∈

{1, 2, . . . , d}. Notice that our construction ensures that sj−1 is left of sj and
recall that Sj−1 is a clique of H .

Claim 5: V(sj−1, sj) is a maximal clique in H.
Since Aj is a simplicial clique of Hj , we obtain NHj [aj ] = NHj [Aj ] for all
aj ∈ Aj . By construction of sj , every vertex of Sj = S(sj) has a neighbor in Aj .
Hence Sj ⊆ NHj [Aj ]. Furthermore by Claim 4, every vertex of Sj−1 = S(sj−1)
has a neighbor in Aj . Consequently NHj [Aj ] = Sj−1 ∪ Aj ∪ Sj = V(sj−1, sj)
is a clique in Hj . Furthermore V(sj−1, sj) is a maximal clique in H since
NHj [Aj ] = NH [Aj ]. This proves the claim.

Finally consider the case that Hj is complete. Then we finish the construc-
tion by taking as sj the scanline sR of D(G). Clearly V(sj−1, sj) is a maximal
clique of H .

By now we have shown how to construct a non-crossing sequence of scanlines
sL = s0, s1, s2, . . . , sr−1, sr = sR such that V(s0, s1),V(s1, s2), . . . ,V(sr−1, sr)
contains all maximal cliques of H . Clearly our construction guarantees that
no maximal clique appears twice. Furthermore the definition of a d-trapezoid
diagram and the definition of the sets V(s, s′) imply that for every vertex
of H the maximal cliques containing it occur consecutively. Consequently
V(s0, s1),V(s1, s2), . . . ,V(sr−1, sr) is a consecutive clique arrangement of the
interval graph H . 2

Our algorithms are based on the above representation theorem for minimal tri-
angulations of d-trapezoid graphs. In fact algorithms obtained from Theorem 17
in a straightforward manner (by dynamic programming) would already run in
polynomial time (roughly O(n3d)). However the tools that we develop in the
next section allow us to exploit the information of the d-trapezoid diagram more
cleverly. As a consequence we obtain significantly faster algorithms.

5 Small scanlines and dense sequences

The notion of a small scanline has been introduced in [9]. It is useful in a
treewidth algorithm since a minimal separator S with |S| > k + 1 can not be
made into a clique for obtaining a minimal triangulation H with ω(H) ≤ k.
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Definition 19 Let D(G) be a d-trapezoid diagram. A scanline s of D(G) is
k-small if it intersects with at most k + 1 d-trapezoids.

Lemma 18 Any d-trapezoid diagram has O(nkd−1) k-small scanlines. If si

and sj, i, j ∈ {1, 2, . . . d}, are endpoints of a k-small scanline s then |si − sj | ≤
2(k + 1).

Proof. Consider two parallel horizontal lines Di and Dj , i, j ∈ {1, 2, . . . d},
of the diagram. Let s be a scanline with endpoints si and sj on Di and Dj,
respectively.

d-Trapezoids do not have common endpoints in the diagram. Thus the
number of d-trapezoids having empty intersection with the scanline s is at most

min(si, sj) − 1/2
2

+
2n − max(si, sj) + 1/2

2
= n − |si − sj |

2
.

Hence the number of d-trapezoids intersecting the scanline s is at least 1/2 |si−
sj |. Thus for any k-small scanline holds 1/2 |si − sj | ≤ k + 1 for each i, j ∈
{1, 2, . . . d}. Hence there are O(nkd−1) k-small scanlines. 2

Definition 20 Scanline s is a predecessor of scanline t in a d-trapezoid diagram
if s is left of t and both have common endpoints on all horizontal lines except
one. On this horizontal line (say Dj) there is exactly one point of a d-trapezoid
between the endpoints of s and t (i.e. tj = sj + 1).

A non-crossing sequence of scanlines sL = s0, s1, s2, . . . , sr−1, sr = sR in
a d-trapezoid diagram is said to be a dense sequence of scanlines if si is a
predecessor of si+1 for each i ∈ {0, 1, . . . , r − 1}.

The following definition is needed to describe the algorithm to compute the
minimum fill-in of d-trapezoid graphs.

Definition 21 Let D(G) be a d-trapezoid diagram of a graph G = (V, E). Let
sL = s0, s1, s2, . . . , sr−1, sr = sR be a non-crossing sequence of scanlines of
D(G). Then for all i ∈ {1, 2, . . . , r − 1}, we denote by first(si) the set of those
pairs {u, v} of nonadjacent vertices of G for which si is the leftmost scanline of
the sequence that intersects both Qu and Qv.

The following theorem justifies the correctness of our algorithms.

Theorem 19 Let G = (V, E) be a d-trapezoid graph with a d-trapezoid diagram
D(G). Then the following statements hold:

( i) tw(G) = pw(G) = min
{

max
i∈{0,1,...,r−1}

|V(si, si+1)| − 1 : sL = s0, s1, s2, . . . ,

sr−1, sr = sR non-crossing sequence of scanlines of D(G)
}
.
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(ii) If tw(G) ≤ k then there is a dense sequence of k-small scanlines sL =
s0, s1, s2, . . . , sr−1, sr = sR of D(G) satisfying |V(si, si+1)| − 1 ≤ k for all
i ∈ {0, 1, . . . , r − 1}.

(iii) mfi(G) = mic(G) = min
{ r−1∑

i=1

|first(si)| : sL = s0, s1, s2, . . . , sr−1, sr = sR

dense sequence of scanlines of D(G)
}
.

Proof. First note that tw(G) = pw(G) and mfi(G) = mic(G) for every d-
trapezoid graph G by Corollary 10.

Consider (i). Let sL = s0, s1, s2, . . . , sr−1, sr = sR be any non-crossing
sequence of scanlines of D(G). The following convexity property is important.
Let Qv be a d-trapezoid in D(G) such that si and sk both intersect Qv. Then
i < j < k implies that sj also intersects Qv. By the definition of V(s, s′) and the
convexity property, v ∈ V(si, si+1) and v ∈ V(sk, sk+1) implies v ∈ V(sj , sj+1)
for all j ∈ {i + 1, i + 2, . . . , k − 1}. Therefore each vertex v ∈ V appears in
the subsets V(si, si+1),V(si+1, si+2), . . . ,V(sk−1, sk) for some i, k with 0 ≤ i ≤
k ≤ r. Thus V(s0, s1),V(s1, s2), . . . ,V(sr−1, sr) is a path-decomposition of G.
Consequently

tw(G) = pw(G) ≤ max
i=0,1,...,r−1

|V(si, si+1)| − 1.

Now let H be a minimal triangulation of G with ω(H) − 1 =
tw(G). By Theorem 17, there is a non-crossing sequence of scanlines
sL = s0, s1, s2, . . . , sr−1, sr = sR of D(G) such that H = Gs0,s1,...,sr

and V(s0, s1),V(s1, s2), . . . ,V(sr−1, sr) is a consecutive clique arrangement
of the interval graph H . Thus pw(G) = tw(G) = ω(H) − 1 =
max0≤i≤r−1 (|V(si, si+1)| − 1). This completes the proof of (i).

Consider (ii). Let H be a minimal triangulation of G with ω(H) − 1 =
tw(G) and let sL = s0, s1, s2, . . . , sr−1, sr = sR be a non-crossing sequence of
scanlines of D(G) for which V(s0, s1),V(s1, s2), . . . ,V(sr−1, sr) is a consecutive
clique arrangement of H . Then each scanline si, i ∈ {1, 2, . . . , r−1}, is k-small,
since S(si) ⊆ V(si, si+1) implies |S(si)| ≤ |V(si, si+1)| ≤ tw(G) + 1 ≤ k + 1.
(Trivially sL and sR are k-small for each positive integer k.) Therefore sL =
s0, s1, s2, . . . , sr−1, sr = sR is a non-crossing sequence of k-small scanlines.

Recall that each set V(si, si+1), i ∈ {0, 1, . . . , r− 1}, is a clique in H . Hence
for any scanline s∗ between si and si+1 and any pair of d-trapezoids Qu and
Qv that both intersect s∗, the vertices u and v belong to V(si, si+1), thus
they are adjacent in H . Consequently our particular non-crossing sequence
of scanlines can be transformed into a dense sequence of scanlines by adding
a suitable sequence of scanlines s∗i1, s

∗
i2, . . . , s

∗
i,qi

between si and si+1 for all
i ∈ {0, 1, . . . , r − 1}. Then |S(s∗il)| ≤ |V(si, si+1)| ≤ k + 1. Hence each scan-
line s∗il added between si and si+1 is k-small. Thus we obtain a new sequence
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sL = ŝ0, ŝ1, ŝ2, . . . , ŝq−1, ŝq = sR which is a dense sequence of k-small scan-
lines. Furthermore for every j ∈ {0, 1, . . . , q − 1}, V(ŝj , ŝj+1) ⊆ V(si, si+1) for
some i ∈ {0, 1, . . . , r − 1} by the construction of the new sequence, implying
|V(ŝj , ŝj+1)| ≤ k + 1. This completes the proof of (ii).

Consider (iii). Let sL = s0, s1, s2, . . . , sr−1, sr = sR be any dense sequence of
scanlines of D(G). Hence si is a predecessor of si+1 for all i ∈ {0, 1, . . . , r − 1}.
Therefore for all u, v ∈ V(sj , sj+1) with u and v nonadjacent in G, the d-
trapezoids Qu and Qv either both intersect sj or both intersect sj+1. Conse-
quently there is a unique leftmost scanline si in sL = s0, s1, s2, . . . , sr−1, sr = sR

that intersects both Qu and Qv, i.e. {u, v} ∈ first(si) for exactly one i ∈
{0, 1, . . . , r − 1}.

Consider the graph H = Gs0,s1,...,sr . We have seen that V(si, si+1) is
a clique of H = Gs0,s1,...,sr for each i ∈ {0, 1, . . . , r − 1}. Recall that
V(s0, s1),V(s1, s2), . . . ,V(sr−1, sr) is a path-decomposition of G. Hence H =
Gs0,s1,...,sr is a triangulation of G into an interval graph by Lemma 3 and
|E(H)| − |E(G)| =

∑r−1
i=1 |first(si)|. Consequently mic(G) ≤ ∑r−1

i=1 |first(si)|.
Now let H be a minimal triangulation of the graph G such that mic(G) =

mfi(G) = |E(H)| − |E(G)|. By Theorem 17, there is a non-crossing sequence of
scanlines sL = s0, s1, s2, . . . , sr−1, sr = sR of D(G) such that H = Gs0,s1,...,sr

and V(s0, s1),V(s1, s2), . . . ,V(sr−1, sr) is a consecutive clique arrangement of
the interval graph H . Hence mic(G) = mfi(G) =

∑r−1
i=1 |first(si)|.

Analogously to (ii), the non-crossing sequence sL = s0, s1, s2, . . . , sr−1, sr =
sR can be transformed into a dense sequence of scanlines sL = ŝ0, ŝ1, ŝ2, . . . ,
ŝp−1, ŝp = sR of D(G) satisfying mic(G) = mfi(G) =

∑p−1
i=1 |first(ŝi)|. 2

6 Algorithms

In this section we present our two polynomial time algorithms to compute the
treewidth and the pathwidth as well as the minimum fill-in and the minimum
interval graph completion of a d-trapezoid graph that is given with a d-trapezoid
diagram, d a fixed positive integer. Notice that for any input to one of the
algorithms the constant d is equal to the number of horizontal lines in the given
diagram.

6.1 Treewidth and pathwidth

We start with the algorithm to compute the treewidth and pathwidth. Let k
be a positive integer. First we present a procedure that checks whether the
treewidth of the given d-trapezoid graph does not exceed k.

Construct a directed acyclic graph Wk(G) as follows. The vertices of the
graph are the k-small scanlines of D(G). There is an arc from scanline s to t in
Wk(G) if and only if
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• the scanline s is a predecessor of the scanline t in D(G), and

• |V(s, t)| ≤ k + 1.

The next lemma follows immediately from Theorem 19 (i) and (ii).

Lemma 20 G has treewidth at most k if and only if there is a directed path
from sL to sR in Wk(G).

Lemma 21 The graph Wk(G) has O(nkd−1) vertices and O(nkd−1) edges.

Proof. The bound on the number of vertices is shown in Lemma 18. For each
scanline s there are at most d scanlines t for which s is a predecessor. Hence
the outdegree of a vertex is at most d. 2

Now we describe the procedure which determines if the treewidth of a d-
trapezoid graph G given with a d-trapezoid diagram D(G) is at most k.

Step 1 Construct the acyclic digraph Wk(G) as follows. Compute all k-small
scanlines in D(G) and compute all ordered pairs of k-small scanlines s and
t for which s is a predecessor of t and |V(s, t)| ≤ k + 1.

Step 2 If there exists a path in Wk(G) from sL to sR, then report that the
treewidth of G is at most k. If such a path does not exist, then report
that the treewidth of G is larger than k.

Lemma 22 The procedure can be implemented to run in time O(nkd−1).

Proof. We describe any scanline s by the vector (s1, s2, . . . , sd) of its scanpoints.
The procedure processes in step 1 only those scanlines s = (s1, s2, . . . , sd) satis-
fying s1−2k−2 ≤ si ≤ s1+2k+2 for all i ∈ {2, 3, . . . , d} (with obvious boundary
conditions), since all k-small scanlines fulfill this condition by Lemma 18.

We denote by A(s1, s2, . . . , sd) the number of d-trapezoids that intersect the
scanline s = (s1, s2, . . . , sd) and we denote by Bi(s1, s2, . . . , sd), i ∈ {1, 2, . . . , d},
the number of d-trapezoids intersecting the scanline s = (s1, s2, . . . , sd) or the
scanline t = (s1, s2, . . . , si−1, si + 1, si+1, . . . , sd). Thus s = (s1, s2, . . . , sd) is
k-small if and only if A(s1, s2, . . . , sd) ≤ k +1 and |V(s, t)| ≤ k +1 if and only if
Bi(s1, s2, . . . , sd) ≤ k + 1. Notice that A(0.5, 0.5, . . . , 0.5) = 0. All other values
of A(s1, s2, . . . , sd) and Bi(s1, s2, . . . , sd) are computed using the following rules.
For all i ∈ {1, 2, . . . , d} holds

(i) Bi(s1, s2, . . . , sd) = A(s1, s2, . . . , sd) if the unique d-trapezoid with a point
between the scanlines s = (s1, s2, . . . , sd) and t = (s1, s2, . . . , si−1, si + 1,
si+1, . . . , sd) on the horizontal line Di intersects the scanline s, otherwise
Bi(s1, s2, . . . , sd) = A(s1, s2, . . . , sd) + 1.



L. Bodlaender et al., d-trapezoid graphs , JGAA, 2(5) 1–23 (1998) 19

(ii) A(s1, s2, . . . , si−1, si + 1, si+1, . . . sd) = Bi(s1, s2, . . . , sd) if the unique d-
trapezoid with a point between the scanlines s = (s1, s2, . . . , sd) and t =
(s1, s2, . . . , si−1, si + 1, si+1, . . . , sd) on the horizontal line Di intersects t,
otherwise A(s1, s2, . . . , sd) = Bi(s1, s2, . . . , sd) − 1.

During step 1 the procedure computes O(nkd−1) values of A(s1, s2, . . . , sd) and
O(nkd−1) values of Bi(s1, s2, . . . , sd). Clearly it can be checked in constant
time whether the unique d-trapezoid with a point between the scanlines s =
(s1, s2, . . . , sd) and t = (s1, s2, . . . , si−1, si + 1, si+1, . . . , sd) on the horizontal
line Di, i ∈ {1, 2, . . . , d}, intersects s and t, respectively. Hence step 1 takes
time O(nkd−1).

Computing whether there is a directed path from sL to sR in Wk(G) takes
O(nkd−1) time by a standard single source shortest-path algorithm in a directed
acyclic graph. Hence the total procedure can be implemented to run in O(nkd−1)
time. 2

Finally we show that the procedure can be used for obtaining an algorithm that
computes the treewidth.

Theorem 23 For each positive integer d, there is an O(n tw(G)d−1) algorithm
to compute the treewidth and the pathwidth of a d-trapezoid graph G for which
a d-trapezoid diagram D(G) is part of the input.

Proof. The algorithm first computes a number L such that L/2 ≤ tw(G) ≤ L.
This can be done, using the procedure described above O(log tw(G)) times, in
overall time O(n tw(G)d−1), by calling the procedure for k = 1, 2, 4, 8, . . . until
it reports ‘tw(G) ≤ k’ for the first time. Take this value of k as L and construct
the directed graph WL(G). Then modify WL(G) as follows. Put weights on the
arcs (s, t), saying how many vertices are in the corresponding vertex set V(s, t).
Then search for a path from sL to sR, such that the maximum over the weights
of arcs in the path is minimized. This maximum weight minus one gives the
exact treewidth tw(G). A corresponding shortest-path algorithm for directed
acyclic graphs has running time O(n tw(G)d−1). 2

6.2 Minimum fill-in and interval graph completion

Now we show how to compute the minimum fill-in and the minimum interval
graph completion of a d-trapezoid graph G with d-trapezoid diagram D(G). Our
algorithm computes mfi(G) by solving a single source shortest-path problem on
a suitable directed acyclic graph.

Construct a directed acyclic graph W̃ (G) as follows. The vertices of the
graph are the scanlines of D(G). There is an arc from scanline s to t in W̃ (G)
if and only if the scanline s is a predecessor of t. The length of an arc from s
to t is the number of pairs of d-trapezoids Qu and Qv in the diagram that have
empty intersection, do not both intersect s but both intersect t.



L. Bodlaender et al., d-trapezoid graphs , JGAA, 2(5) 1–23 (1998) 20

Lemma 24 mfi(G) is equal to the length of a shortest directed path from sL to
sR in W̃ (G).

Proof. By Theorem 19 (iii), mfi(G) is equal to the minimum of
∑r−1

i=1 |first(si)|,
where sL = s0, s1, s2, . . . , sr−1, sr = sR ranges over all dense sequences of scan-
lines of D(G). The shortest paths from sL to sR in W̃ (G) are in one-to-one
correspondence to the dense sequences of scanlines of D(G). Finally the length
of an arc from s to t is defined such that it is equal to |first(t)| if the dense
sequence is sL = s0, . . . , s, t, . . . , sl = sR. This completes the proof. 2

Similar to Lemma 21 one obtains the following.

Lemma 25 The graph W̃ (G) has O(nd) vertices and O(nd) edges.

Hence the algorithm that computes the minimum fill-in of a d-trapezoid graph
G given with a d-trapezoid diagram D(G) is as follows.

Step 1 Construct the acyclic digraph W̃ (G). Compute the lengths of all arcs
in W̃ (G).

Step 2 Compute the length of a shortest path from sL to sR in W̃ (G).

Theorem 26 For each positive integer d, there is an O(nd) algorithm to com-
pute the minimum fill-in and the minimum interval graph completion of a given
d-trapezoid graph G where a d-trapezoid diagram D(G) is part of the input.

Proof. Again we describe any scanline s by the vector (s1, s2, . . . , sd) of its
scanpoints. For any scanline s = (s1, s2, . . . , sd) we denote by L(s1, s2, . . . , sd)
the number of d-trapezoids that are left of the scanline s. In a preprocessing
the algorithm computes L(s1, s2, . . . , sd) for all scanlines s = (s1, s2, . . . , sd) in
the diagram.

This can be done quite similar to step 1 of the procedure in the pre-
vious subsection. Clearly L(0.5, 0.5, . . . , 0.5) = 0. All other values of
L(s1, s2, . . . , sd) can be computed by the following rule. For all i ∈ {1, 2, . . . , d},
L(s1, s2, . . . , si−1, si + 1, si+1, . . . , sd) = L(s1, s2, . . . , sd) + 1 if the unique d-
trapezoid with a point between the scanlines s = (s1, s2, . . . , sd) and t =
(s1, s2, . . . , si−1, si+1, si+1, . . . , sd) on the horizontal line Di is left of t, otherwise
L(s1, s2, . . . , si−1, si+1, si+1, . . . , sd) = L(s1, s2, . . . , sd). This preprocessing can
be done in time O(nd) since there are O(nd) scanlines by Corollary 16.

Then the algorithm computes the length of all arcs of W̃ (G). Consider an arc
from s to t. First the unique d-trapezoid Qv with a point between the scanlines
s = (s1, s2, . . . , sd) and t = (s1, s2, . . . , si−1, si+1, si+1, . . . , sd) is determined. If
Qv intersects s then the length of the arc is 0. Otherwise the length is equal to
the number of d-trapezoids that intersect s but not Qv. Hence the length of the
arc is exactly L(l1v − 0.5, l2v − 0.5, . . . , ldv − 0.5)−L(s1, s2, . . . , sd). Consequently
the directed acyclic graph W̃ (G) can be constructed in time O(nd).
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Computing a shortest path from sL to sR in W̃ (G) can be done in time
O(nd) by a standard single source shortest-path algorithm in a directed acyclic
graph. Hence the overall running time of the algorithm is O(nd). 2

It is worth mentioning that the order of magnitude of the running time of our
algorithm is equal to the order of magnitude of the number of scanlines in a d-
trapezoid diagram. Hence improving our algorithm seems to require completely
new ideas.
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