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Sand 13, 72076 Tübingen, Germany,
eiglsper@informatik.uni-tuebingen.de
eppinger@informatik.uni-tuebingen.de

mk@informatik.uni-tuebingen.de

Abstract

In this paper, we consider the problem of finding a mixed upward pla-
narization of a mixed graph, i.e., a graph with directed and undirected
edges. The problem is a generalization of the planarization problem for
undirected graphs and is motivated by several applications in graph draw-
ing. We present a heuristic approach for this problem which provides good
quality and reasonable running time in practice, even for large graphs.
This planarization method combined with a graph drawing algorithm for
upward planar graphs can be seen as a real alternative to the well known
Sugiyama algorithm.
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1 Introduction

Research for upward drawings of digraphs has been studied extensively in the
last years. One reason is that such drawings have many applications in areas
like workflow, project management and data flow.

An upward drawing of a digraph is a drawing such that all the edges are
represented by curves monotonically increasing in the vertical direction. Note
that such a drawing exists only if the digraph is acyclic.

A straightforward generalization of upward drawings are mixed upward draw-
ings. In mixed upward drawings, only a part of the edges in the graph are
directed and must point upward. Note that such a drawing exists only if the
directed part of the graph is acyclic.

Mixed drawings arise in applications where the edges of the graph can be par-
titioned into a set which denotes structural information and a another set which
does not carry structural information. An example is UML class diagrams[4]
arising in software engineering. In these diagrams, the vertices of the graph
represent classes in an object-oriented software system, and edges represent
relations between these classes. There are two main types of relations: gen-
eralizations and associations. The generalization relations describe structural
information and form a directed acyclic subgraph in the diagram. It is an often
employed convention to draw generalizations upward, whereas associations can
have arbitrary directions[21].

The most popular approach for creating upward drawings of digraphs is
probably the Sugiyama algorithm [22]. The main idea of the Sugiyama algorithm
is to assign layers to the vertices of the graph, such that edges point in ascending
layer order. In a next step, the number of crossings are minimized by ordering
the nodes in the layer. In the last step the nodes are assigned coordinates. For
a fixed layer assignment, we call a graph level planar if it has a drawing which
respects the layering and has no crossings. Several heuristics have been proposed
for this step and used in practice, but there are also efficient algorithms to solve
the level planarity problem [14][13]. There have been several attempts to apply
the Sugiyama algorithm also to mixed graphs, i.e., in [21] the approach is used
for UML class diagrams.

The principal step of the Sugiyama algorithm, the layer assignment, is also
its most severe drawback. The layer assignment restricts the freedom of choice
for the crossing minimization algorithm drastically, and there may be large
differences between the number of crossings for different layer assignments of
the same graph. Also, the generalizations of the Sugiyama algorithm for the
mixed case have to assign layers to nodes with no directed adjacent edges. This
only works when there is a low number of them, but if the directed part of the
mixed graph is only small, the results are not satisfying and the layer assignment
to the nodes seems artificial.

In this work we propose a new drawing strategy for upward drawings of
directed graphs which is based on the concept of upward planarity. A directed
graph is upward planar if it can be drawn upward without edge crossings. Our
strategy consists of two phases. In the first phase, we make the input graph
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upward planar by replacing edge crossings by dummy nodes. We call the result
of this phase upward planarization. In the second phase, an upward planar
drawing of the upward planarization is generated and the dummy nodes are
discarded.

A similar strategy has been applied very successfully in the area of drawing
undirected graphs. The most popular algorithms based on this strategy are per-
haps the graph drawing algorithms descending from the topology-shape-metrics
approach [2][23] for orthogonal drawings. Recently, we showed in [9] how to
extend the topology-shape-metrics approach to mixed upward planar drawings
of mixed upward planar graphs, i.e., mixed graphs that have a planar drawing
in which the directed part of the graph is drawn upward. The above strategy
can also be applied to this algorithm, the first phase then consisting of finding a
mixed upward planarization. An alternative way to draw directed graphs using
the topology-shape-metrics approach is based on the concept of quasi-upward
planarity, which is introduced in [19]. However the algorithm does not guar-
antee that all edges of a directed graph point upward when the graph is not
upward planar.

In the remainder of this paper, we concentrate on the first phase of the
topology-shape-metrics approach, see [6] for a survey on graph drawing algo-
rithms for upward planar graphs. We give an efficient heuristics that computes
a high quality upward planarization of a directed graph. We concentrate on
a heuristic approach, since the upward planarity test problem is already NP-
complete. To our knowledge, this is the first time that this problem has been
studied; work on planarization has been restricted to the undirected case until
now. We also give a generalization of our algorithm for mixed graphs.

We want to emphasize that the topology-shape-metrics approach above is
only one possible application of the new algorithm. Our approach also deserves
attention as a stand-alone product which might be applicable in other environ-
ments.

The rest of the paper is organized as follows. Section 2 gives the formal
definitions of the upward and the mixed upward planarization problem. In Sec-
tion 3, we present an algorithm which solves the upward planarization problem.
In Section 4, we generalize the results of Section 3 to the mixed case. Section
5 contains the results of empirical experiments performed with our algorithm.
Finally, Section 6 concludes this work.

2 Upward and Mixed Upward Planarization Prob-
lem

A drawing of a graph (digraph) is a mapping of its nodes to points in the
plane and of its edges to open jordan curves. A graph (digraph) is planar if it
has a drawing where no two edges have a common point. An upward drawing
of a digraph is a drawing such that all the edges are represented by curves
monotonically increasing in the vertical direction. A digraph is upward planar
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(a) (b) (c)

Figure 1: Three upward drawings of a directed graph. The graph is upward pla-
nar and can therefore be drawn without crossings (a). The Sugiyama-approach
produces seven crossings (b) whereas our new method produces only two cross-
ings (c).

if it has a drawing which is upward and planar at the same time. Please note
that there are graphs which have an upward drawing and also have a planar
drawing but do not have an upward planar drawing. An embedding of a graph is
defined as a cyclic ordering of the adjacent edges of each vertex of the graph. An
embedding is planar if there is a planar drawing of the graph which preserves this
ordering. An upward embedding of a graph is a linear ordering of the adjacent
edges of each vertex of the graph in which the incoming and outgoing edges
form an interval. An upward embedding is planar if there is an upward planar
drawing of the graph which preserves the corresponding ordering. Preserving
the ordering means that the linear ordering is equivalent to the ordering that
can be obtained by ordering the edges according to the angle they form with
a ray leaving the vertex in direction of the negative x-axis. We assume in the
remainder of the paper that graphs have no multiple edges and selfloops.

Given a directed graph G = (V,E), the graph G′ = (V ∪V ′, E′) is an upward
planarization of G with crossing number |V ′| if and only if

• G′ is upward planar,

• deg(v) = 4 for all v ∈ V ′, and

• ∀e = (v, w) ∈ E, there is a path p(e) = (v0, v1), (v1, v2), . . . , (vn−1, vn) in
G′ with v = v0, w = vn and vi ∈ V ′, 0 < i < n. Every edge in E′ is
contained in such a path, and two paths have no edge in common.

A mixed graph is a three-tuple G = (V,Ed, Eu) ⊆ (V, V × V, V × V ), where
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V is the set of vertices, Ed is the set of directed edges and Eu is the set of
undirected edges.

The mixed graph G = (V,Ed, Eu) is mixed upward planar if there is a planar
drawing of G where each edge in Ed is represented by a curve monotonically
increasing in the vertical direction.

A mixed upward embedding is planar if there is a mixed upward planar
drawing of the graph which preserves the corresponding ordering.

Determining for a (mixed) graph G a (mixed) upward planarized graph is
called the (mixed) upward planarization problem. Determining for a (mixed)
graph G a (mixed) upward planarized graph with minimal crossing number is
called the (mixed) upward crossing minimization problem.

Because the decision problem whether a graph has an upward embedding
is a special case of the upward crossing minimization problem and the directed
case is a special case of the mixed case, it follows that:

Corollary 1 ([10]) The upward crossing minimization problem and the mixed
upward crossing minimization problem are both NP-hard.

3 Upward Planarization

In this section, we propose an algorithmic framework for the upward crossing
minimization problem. This framework is derived from techniques for the pla-
narization of undirected graphs, see i.e. [6].

The framework consists of three parts:

1. Construct an upward planar subgraph.

2. Determine an upward embedding of this subgraph.

3. Insert the edges not contained in the subgraph, one by one.

In the first step, a subgraph of the input graph is calculated which is upward
planar. For this subgraph, an upward embedding is determined in the second
step. Of course, these two steps are only conceptually separated and can be
combined to one step. Note that finding a maximum upward planar subgraph,
i.e., finding an upward planar subgraph with the maximum number of edges, is
NP-hard. In the third step, the edges which are not part of the upward planar
subgraph are inserted incrementally into the embedding. Additionally, we can
perform some local optimizations on the resulting planarization to improve the
quality of it.

3.1 Maximum Upward Planar Subgraph

The maximum upward planar subgraph problem can be stated as follows: Given
a directed graph G = (V,E). Find E′ ⊆ E such that the directed graph
G = (V,E) is upward planar with maximum number of edges.
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The maximum planar subgraph problem is a related problem and a lot of al-
gorithms have been proposed for its solution [11],[12],[17],[15],[20]. All of them,
except [15], which can also compute the optimal solution when no time limit
is specified, are heuristics, since the problem is NP-complete. Cimikowski [5]
compared some of them empirically. In his comparison, the algorithm of Jünger
and Mutzel(JM)[15] performed best in solution quality, followed by the algo-
rithm of Goldschmidt and Takvorian (GT)[11]. The fastest algorithm was the
one based on PQ-trees[11], but its performance in terms of the solution quality
was significantly lower than JM and GT. In [20] Resende and Ribero give a
randomized formulation of GT and show on the same test set as [5] that their
formulation achieves better results with the same running time performance,
except for one family of graphs where JM performs better.

However, the algorithm of GT is much easier to implement in contrast to
the algorithm of JM. JM is a branch-and-cut algorithm and is, therefore, based
on sophisticated algorithms for linear programming.

Because of its performance and its implementation issues, we use GT as a
starting point. In the next section, we review the GT algorithm and show in the
following section how it can be modified to calculate upward planar embeddings.

3.2 The Goldschmidt/Takvorian Planarization Algorithm

In this section, we review the main components of GT, the two-phase heuristics
of Goldschmidt and Takvorian[11]. Our description follows the one in [20]. The
first phase of GT consists in devising an ordering Π of the set of vertices of V of
the input graph G. This ordering should possibly infer a Hamiltonian path. The
vertices of G are placed on a vertical line according to the ordering Π obtained
in the first phase, such that as many edges as possible between adjacent vertices
can also be placed on the line. All other edges are drawn as arcs either right or
left of the line.

The second phase of GT partitions the edge set E of G into subsets L (left
of the line), R (right of the line), and B (the remainder) in such a way that
|L+R| is large (ideally maximum) and that no two edges both in L or both in
R cross with respect to the sequence Π devised in the first phase.

Let π(v) denote the relative position of vertex v ∈ V within vertex sequence
Π. Furthermore, let e1 = (a, b) and e2 = (c, d) be two edges of G, such that,
without loss of generality, π(a) < π(b) and π(c) < π(d). These edges are
said to cross if, with respect to sequence Π, π(a) < π(c) < π(b) < π(d) or
π(c) < π(a) < π(d) < π(b).

The conflict graph has a vertex for every edge in G and two vertices are
adjacent if the corresponding edges cross with respect to Π. It follows directly
from its definition that the conflict graph is an overlap graph, i.e. a graph whose
vertices can be represented as intervals, and two vertices are adjacent if and only
if the corresponding intervals intersect but none of the two is contained by the
other.

An induced bipartite subgraph of the conflict graph represents a valid as-
signment of the edges in G to the sets L,R and B. Since finding a maximal
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induced bipartite subgraph is NP-complete, even for overlap graphs, GT uses a
heuristics. This heuristics calculates two disjoint independent sets of the conflict
graph which, together, are a bipartite subgraph of the conflict graph.

A maximum independent set of an overlap graph can be calculated in time
O(NM), where N is the number of different interval endpoints and M is the
number of edges in the overlap graph with the algorithm of Asano, Imai and
Mukaiyama[1]. In our setting, N ≤ n and M = m, which leads to a running
time of O(nm).

3.3 The directed version of the GT algorithm

We now present our variant of the GT algorithm for planar upward subgraph
calculation. In order to change the GT algorithm to get an upward planar sub-
graph, we have to modify the first step of GT, the construction of the vertex
order. The vertex order must ensure that no directed edge has a target ver-
tex which is in the order before the source vertex. This is achieved by using
algorithm vertex order as a first phase of GT. We call this variant directed GT
or, shorter, DGT to distinguish it from the original formulation. Algorithm 1,
directed vertex order, is a modification of the algorithm [11]. It is a variation of
a standard topological sorting algorithm and tries to maximize the number of
edges between consecutive vertices in the ordering. It has been shown in [20]
that this improves the quality of the result of GT. The ordering is constructed
incrementally. Assume that vertex v is the vertex chosen in the previous step.
The algorithm chooses a vertex in the next step which is adjacent to v, but
which is not the successor of an unchosen vertex. If this is not possible, it takes
a vertex of minimal degree which, additionally, is not the successor of an uncho-
sen vertex. As the first vertex, it chooses a vertex with no incoming edge with
minimal degree.

Lemma 1 Let G be a directed graph. If the vertex order Π in the first phase
of the GT algorithm is a topological order of G, the result of GT is an upward
planar subgraph of G.

Proof: Placing the vertices on a vertical line according to the ordering used
by GT and drawing the edges in L as arcs on the left side of the line and the
edges in R on the right side of the line yields an upward planar drawing of the
subgraph calculated by GT. �

Lemma 2 The vertex order calculated by algorithm vertex order is a topological
order of G.

Proof: The algorithm vertex order increments in each iteration the current
ordering by a vertex with indegree zero. This is similar to a folklore topological
sorting algorithm, see, i.e., [18] for details. �

From the sets L and R and the permutation Π, we can now easily obtain the
upward planar embedding: For each node v ∈ V we sort the edges with source



M. Eiglsperger et al., Mixed Planarization, JGAA, 7(2) 203–220 (2003) 210

Algorithm 1: vertex order
Input: A directed graph G = (V,E)
Output: A permutation Π on the vertices
Select v1 from G with zero indegree and minimal outdegree;
V = V \ {v1};
G1 = directed graph induced on G by V;
for k = 2, . . . , |V | do

U = {v ∈ V|indegree(v) = 0 in Gk};
if vk−1 is connected to a vertex in U then

select vk as vertex in U adjacent to vk−1 with min. degree in Gk−1

else
select vk as vertex in U with min. degree in Gk−1

end
V = V \ vk;
Gk = directed graph induced on G by V;

end
return Π = (v1, v2, . . . , v|V |)

v in L decreasing according to Π and the edges with source v in R increasing
according to Π and concatenate these two ordered list to one. For the incoming
edges, we first sort the edges with target v in R decreasing according to Π and
the edges with source v in L increasing according to Π and append the result
to the list of outgoing edges.

We conclude the section with the following theorem:

Theorem 1 Algorithm DGT computes an upward planar subgraph, together
with an upward planar embedding of this subgraph, in time O(nm).

3.4 Edge Insertion

There is an interesting difference between the insertion of directed and undi-
rected edges. In the undirected case, the edges which are not part of the planar
subgraph in the first step can be inserted independently of each other. This is
different in the directed case. Here, we cannot insert an edge into the drawing
without looking at the remaining edges which have to be inserted later. The
reason for this is that introducing dummy nodes in the graph introduces changes
in the ordering of the vertices of the graph. This may introduce directed cycles
if an edge is added later. (See Figure 2).

Assume that the dashed edges have to be inserted in Fig. 2(a), and we start
by inserting edge (5, 9). When we do not work carefully and insert edge (5, 9)
as in Fig. 2(b), we produce a crossing C with edge (1, 3) and some new edges,
where C is involved. Then, it is no longer possible to introduce edge (3, 4)
without destroying the upwardness property because of the new directed cycle
5 − C − 3 − 4 − 5.

We call a vertex with indegree 0 a source, and a vertex with outdegree 0 a
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(a) (b) (c)

Figure 2: Edge insertion: Critical configuration and the routing graph

sink. A directed acyclic graph is called an s-t graph if it has exactly one sink
and one source. We first restrict ourselves to s-t graphs. We show later how we
can remove this restriction.

As shown above, we have to avoid cycles when we insert edges. We avoid
this by layering the graph. A valid layering l of a directed graph G = (V,E) is a
mapping of V to integers such that l(v) > l(u) for each edge (u, v) ∈ E. We then
construct a routing graph R. The routing graph contains, for each face f and
for each layer that f spans, a vertex. Two vertices lying in neighboring layers
and representing the same face are connected by a directed edge of weight 0 in
increasing layer order. Additionally, two vertices at the same layer i of adjacent
faces are connected by an edge of weight 1 if the source vertex of an edge
separating these two faces is less than or equal to i and the layer of the target
node is greater than i.

In this graph, there are no edges in decreasing layer order. Each edge of
weight 1 represents one crossing. A shortest path in the routing graph repre-
sents, therefore, an insertion of an edge with minimal number of crossings with
respect to the given layering. Figure 2(c) shows an example for a routing graph.

Let s(f), resp. t(f), denote the source, resp. sink, of a face f . Note that
in an s-t graph, every face has exactly one source and one sink. Furthermore,
lf(e), resp. rf(e), denotes the face on the left, resp., right side of e. We consider
the outer face as two faces, the left-outer face, resp. the right-outer face, which
denote the left, resp. right part, of the outer face. Algorithm 2, directed edge
insertion, summarizes the construction. It takes as input our current upward
planar graph G, the set of remaining edges F and one edge e ∈ F . The output
G′ is a planarization of G and e. It uses the subroutine subdivide(G, e) which
splits an edge e = (a, b) into two edges (a,w), (w, b), adds the vertex w to G
and returns the created vertex w.

Lemma 3 The graph G′ calculated in directed edge insertion is an s-t graph
and upward planar.
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Algorithm 2: directed edge insertion
Input: Embedded upward planar s-t graph G = (V,E), F ⊆ V × V ,

e = (a, b) ∈ F

Output: Embedded upward planarized s-t graph G′ of G = (V,E ∪ e)
calculate faces from embedding;
determine valid layering l of (V,E ∪ F );
Let R be an empty directed graph;
for every face f of G do

create vertices v(f, i) for l(s(f)) ≤ i < l(t(f)) in R;
for l(s(f)) < i < l(t(f)) do

create edge of weight 0 from v(f, i − 1) to v(f, i) in R;
end

end
for every edge e′ = (c, d) of E do

for l(c) ≤ i < l(d) do
create edge of weight 1 from v(rf(e′), i) to v(lf(e′), i) in R;
create edge of weight 1 from v(lf(e′), i) to v(rf(e′), i) in R;

end
end
create vertex v(a) and v(b) in R representing a resp. b;
Insert edge of weight 0 from v(a) to v(f, l(a)) in R if f is adjacent to a
and such a vertex exists;
Insert edge of weight 0 from v(b) to v(f, l(b)− 1) in R if f is adjacent to
b and such a vertex exists;
Calculate shortest path p from v(a) to v(b) in R;
E′ = E,V ′ = V ,G′ = (V ′, E′);
Let e0, . . . , en be the edges of weight 1 in p;
for 0 ≤ i ≤ n do

wi =subdivide(G′, ei);
end
Add an edge between a and w0, wn and b, and wi and wi+1 in E′;
return G′

Proof: In the edge insertion step, we do not decrease the indegree or the
outdegree of any vertex existing already in the input graph. Therefore, we only
have to show that none of the inserted vertices is a sink or a source. But this
is true, since each of these vertices has indegree two and outdegree two. G′ is
upward planar, since there are no crossings and the layering is observed. �

Lemma 4 The graph (V ′, E′ ∪ F \ e) is acyclic.

Proof: Assume that there is a directed cycle. Each inserted vertex wi is induced
by an edge of weight 1 in the routing graph which connects two face vertices
lying in the same layer. Assign this layer to node wi. Then, each vertex has
a layer assigned, and there are no edges which point in decreasing layer order.
Thus, the cycle can only contain vertices in the same layer. These can only be
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vertices wi by the construction of the layering. But, from this fact it follows
that the shortest path had a directed cycle which is a contradiction. �

Lemma 5 Algorithm directed edge insertion has time complexity O(|V |2),
Proof: The faces of the graph can be computed in linear time from the embed-
ding. A valid layering with a minimal number of layers can also be computed in
linear time using a topological sorting. The maximum number of layers is linear,
since a topological sorting is an upper bound for the number of layers. Hence,
the number of vertices in the routing graph is O(|V |2) and, since each vertex
has constant degree, the total size of the routing graph is O(|V |2). Because
the maximum cost of an edge is 1, we can use Dial’s shortest path algorithm[8]
which has linear running time in this case. The insertion of the edge can clearly
be done in linear time. �

The following theorem summarizes the lemmas above.

Theorem 2 Algorithm directed edge insertion inserts one edge in an embedded
upward planar s-t graph G = (V,E) in time O(|V |2) without introducing cycles
with a set of not yet inserted edges. The planarized graph is an s-t graph.

3.5 The Complete Algorithm

Algorithm 3, upward planarization, contains a description of the algorithm. Note
that if the input graph for the second phase is not an s-t graph, we augment it
to a planar upward s-t graph, see [3] for a linear time algorithm. Edges in the
routing graph representing an edge added in the augmenting step are assigned
weight 0, because they do not introduce a real crossing. The removed edges are
inserted in random order in the second phase. After the routing, the augmenting
edges are removed. Note that the augmentation does not affect the worst-case
running time of the algorithm, since the number of edges in the graph remains
linear in the number of nodes.

Algorithm 3: upward-planarization
calculate embedded mixed upward planar subgraph with DGT;
augment subgraph to an s-t graph;
for Each removed directed edge do

call algorithm directed edge insertion;
end
remove edges inserted in augmentation process;

From the discussion above, we derive the following theorem:

Theorem 3 Let G = (V,E) be a directed graph. Algorithm 3, upward-planarization,
creates an embedded upward planarized graph of G in time O(|V ||E| + (|V | +
c)2|E|), where c is the number of crossings of the planarized graph. When G
is sparse, i.e. |E| = O(|V |), the algorithm upward-planarization runs in time
O((|V | + c)2|V |).
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However, the time bound in the theorem above is very pessimistic. In our
experiments, the running time of the algorithm is reasonable, even for larger
graphs.

3.6 Rerouting

In this section, we present a local optimization method for an upward planariza-
tion. One step of the method removes a path representing an edge from the pla-
narization, and tries to reinsert it with fewer crossings. To test whether it can
be reinserted with fewer crossings we first augment the graph to an s-t-graph
after the removal of the path. Then we construct from this s-t graph the routing
graph. Testing whether the edge can be inserted with fewer crossings reduces
again to a shortest path problem in the routing graph. If we succeed, we change
the planarization according to the new routing, otherwise, we do not change
the planarization. In any case, the augmented edges are removed. We iterate
this local optimization until we either do not make any further improvements,
i.e., there is no edge for which we can find a routing with less crossings. This is
realized by defining a set of edges Cand which contains all edges of the original
graph which have crossings in the planarization. In each iteration we randomly
choose one edge and perform the local optimization step for the path defined
by this edge. If the planarization had been improved we recalculate Cand and
start again. We stop when Cand is empty. Since the local optimization is time
consuming, the total number of local optimizations steps can be bounded by a
constant.

4 Mixed Upward Planarization

In this section we show how the concepts in the previous sections can be ex-
tended to the mixed case, i.e., the input graph is a mixed graph.

For the mixed planar subgraph calculation, we also use the GT algorithm.
As in the upward case, we only have to take care of the vertex ordering. We use
Algorithm 4, mixed vertex order, a modified version of Algorithm vertex-order
for this, which ignores the direction of the undirected edges.

The modifications follow the intuition that the undirected edges allow more
freedom since we can choose the direction. So, the idea is to prefer the directed
edges when computing the planar subgraph. One variant of the planar subgraph
algorithm that takes this aspect into account, is to extend the GT approach
by assigning different weights to the directed and undirected edges and then
optimize over the weighted sum of the edges [1]. The actual choice of the
weights depends on the application as well as on the class of graphs to consider
and is the subject of further research.

The upward edge insertion algorithm can be extended to the mixed case by
directing the undirected edges in G temporarily according to the ordering in GT.
We then insert the removed directed edges iteratively in the graph as described
in section 3.4. Next we undirect the temporarily directed edges. Finally we
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Algorithm 4: mixed vertex order
Input: A mixed graph G = (V,E, F )
Output: A permutation Π on the vertices
Select v1 from G with zero indegree and minimal degree;
V = V \ {v1};
G1 = mixed graph induced on G by V;
for k = 2, . . . , |V | do

U = {v ∈ V|indegree(v) = 0 in Gk};
if vk−1 is connected to a vertex in U then

select vk as vertex in U adjacent to vk−1 with min. degree in Gk−1

else
select vk as vertex in U with min. degree in Gk−1

end
V = V \ vk;
Gk = mixed graph induced on G by V;

end
return Π = (v1, v2, . . . , v|V |)

insert the removed undirected edges by an standard edge insertion algorithm
for undirected graphs [6]. Algorithm 5, mixed-upward-planarization, summarizes
this.

Algorithm 5: mixed-upward-planarization
calculate embedded mixed upward planar subgraph with GT;
direct undirected edges in the subgraph temporarly;
augment subgraph to an s-t graph;
for Each removed directed edge do

call algorithm directed edge insertion;
end
remove edges inserted in augmentation process;
undirect edges which have been directed;
for Each removed undirected edge do

call algorithm undirected edge insertion;
end

Theorem 4 Let G = (V,Ed, Eu) be a mixed graph. Algorithm mixed-upward-
planarization creates an embedded mixed upward planarized graph of G in time
O(|V |(|Ed| + |Eu|) + (|V | + c)2|Ed| + (|V | + c)|Eu|), where c is the number of
crossings in the planarized graph.

5 Experiments

In this section we present the results of an experimental comparison of our
algorithm with the Sugiyama algorithm for directed acyclic graphs.
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All experiments have been performed on a Pentium IV System with 1.8
GHz and 512 Megabyte main-memory running Linux. We implemented our
algorithm in pure JAVA based on the yFiles library [24]. For the experiments
we used a randomized version of GT which takes the largest subgraph from
150 different node orderings. In the experiments we did not use rerouting. We
compare our algorithm to the Sugiyama implementation in yFiles [24]. This
implementation uses a randomized version of the iterated barycenter method.
This method was the clear winner of an experimental comparison of heuristics
for the crossing minimization problem of layered graph [16]. All experiments
have been performed using JDK 1.4.1.

We performed our experiments on three test sets:

Rome Graphs. The Rome-graphs test suite[7] contains about 10.000 undi-
rected connected graphs. The number of nodes in the test suite ranges
from 10 to 100, the average density of the graphs ranging from 1 to 2 with
average value of 1.3. We transformed the undirected graphs to directed
acyclic graphs by directing the edges according to an ordering of the nodes
of the graph. As ordering we chose the implicit ordering of the nodes as
defined in the file.

Upward Planar Graphs. There are two test sets consisting of connected up-
ward planar graphs, the first contains graphs with density 1.3, the second
graphs with density 2.6. Both test sets contain 910 upward planar graphs,
the number of nodes ranging in each form 10 to 100, containing 10 graphs
for each node count. The graphs were generated the following way: First
a random set of points in a triangle was generated. For this point set a
Delaunay triangulation was performed which yields a planar triangulated
graph. We deleted edges randomly until we reached the desired density.
To assure that the generated graphs were connected we computed a span-
ning tree of the triangulated graph by randomized DFS and ensured that
edges in the spanning tree are not deleted in the previous step. Finally
we directed the edges according to the coordinates of their endpoints.

Graphs With Limited Height. There are two test sets which contain con-
nected directed graphs with maximum height three, the first with density
1.3, the second with density 2.6. Maximum height three means in this
setting that they have a layer assignment with at most three layers. Both
test sets contain 910 upward planar graphs, the number of nodes ranging
in each form 10 to 100, containing 10 graphs for each node count. The
graphs were generated the following way: First we distributed randomly
the nodes in three layers. To assure that a generated graph was connected
we generated a spanning tree for it. Then we inserted edges randomly
between nodes in neighbored layers until the desired density was reached.

Figure 3 shows the results of our experiments. The left diagrams show the
relation between the average number of crossings and the number of vertices.
The right diagrams show the relation between average running time and the
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(a) Rome Graphs
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(b) Upward Planar Graphs
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(c) Limited Height Graphs

Figure 3: Results of experiments: Number of crossings and running time in
milliseconds.
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number of vertices. For the test sets with density 1.3 our algorithm yields better
results than the Sugiyama approach. In the case for limited height graphs, the
improvements are drastic. For the test sets with density 2.6 the Sugiyama
approach is the clear winner. In terms of running time, the Sugiyama approach
clearly outperforms our approach, however the running time of our algorithm is
still acceptable for interactive use.

6 Conclusion

In this paper, we gave a new algorithm for the problem of finding a upward
planarization for graphs with directed and undirected edges as well. Our ap-
proach generalizes the related problem for undirected graph and emphasizes
on the practical needs for such methods, namely practical efficiency and good
quality, even for large graphs. The concept is designed so flexible that many
additional requirements like constraints or interactivity might be incorporated.
Hence, together with a graph drawing algorithm for upward planar graphs it can
be viewed as a reasonable alternative to the well known Sugiyama algorithm.
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