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Abstract. A k-bend path is a non-self-intersecting polyline in the plane made of
at most k + 1 axis-parallel line segments. Bk-VPG is the class of graphs which can be
represented as intersection graphs of k-bend paths in the same plane. In this paper,
we show that all AT-free outerplanar graphs are B0-VPG, i.e., intersection graphs of
horizontal and vertical line segments in the plane. Our proofs are constructive and
give a polynomial time B0-VPG drawing algorithm for the class. In fact, we show the
existence of a B0-VPG representation for a superclass of AT-free graphs namely linear
outerplanar graphs which we define as the class of subgraphs of biconnected outerpaths.
Outerpaths are outerplanar graphs which admit a planar drawing whose weak dual is
a path.

Following a long line of improvements, Gonçalves, Isenmann, and Pennarun [SODA
2018] showed that all planar graphs are B1-VPG. Since there are planar graphs which
are not B0-VPG, characterizing B0-VPG graphs among planar graphs becomes interest-
ing. Chaplick et al. [WG 2012] had shown that it is NP-complete to recognize Bk-VPG
graphs within Bk+1-VPG. Hence recognizing B0-VPG graphs within B1-VPG is NP-
complete in general, but the question is open when restricted to planar graphs. There
are outerplanar graphs and AT-free planar graphs which are not B0-VPG. This piqued
our interest in AT-free outerplanar graphs.
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1 Introduction

A k-bend path is a simple path in a two-dimensional grid with at most k bends. Geometrically, it
is a non-self-intersecting polyline in the plane made of at most k + 1 axis-parallel (horizontal or
vertical) line segments. Vertex intersection graphs of Paths on a Grid (VPG) (resp., Bk-VPG) is
the class of graphs which can be represented as intersection graphs of (resp., k-bend) paths in a
two-dimensional grid. The bend number of a graph G in VPG is the minimum k for which G is
in Bk-VPG. One motivation to study Bk-VPG graphs comes from VLSI circuit design where the
paths correspond to wires in the circuit. A natural concern in VLSI design is to reduce the number
of bends in each path (wire) in the representation. A second motivation is that certain algorithmic
tasks become easier when restricted to B1-VPG or B0-VPG graphs (cf. [26]).

Several results, some of which we describe in Section 1.3, concern the classification of planar
graphs as Bk-VPG graphs. Following up on a series of results and conjectures by various authors,
Gonçalves, Isenmann, and Pennarun in 2018 showed that all planar graphs are B1-VPG [20]. This
is tight since many simple planar graphs like the 4-wheel, 3-sun, and triangular prism, to name
a few, are not B0-VPG. This makes the question of characterizing B0-VPG planar graphs very
appealing. Characterizing B0-VPG outerplanar graphs will be a good step in this direction since
some of the structures that forbid a planar graph from being B0-VPG are also present among
outerplanar graphs. Outerplanar graphs were known to be B1-VPG [7] before the same was shown
for planar graphs. Chaplick et al. [9] showed that it is NP-complete to decide whether a given
graph G is in Bk-VPG even when G is guaranteed to be in Bk+1-VPG. Hence recognizing B0-VPG
graphs within B1-VPG is NP-complete in general, but the question is open when restricted to
planar graphs or outerplanar graphs.

This article is an outcome of our effort to characterize B0-VPG outerplanar graphs. One can see
from the geometry that the closed neighborhood of every vertex in a B0-VPG graph is an interval
graph [18]. We strengthen this necessary condition (Proposition 14) by identifying adjacent vertices
which are forced to be represented by collinear segments in any B0-VPG drawing. But this is still
not sufficient to characterize B0-VPG outerplanar graphs (Figure 6). However, we were able to
show that, if the outerplanar graph itself is AT-free, then it is B0-VPG (Theorem 13). We cannot
extend this result to AT-free planar graphs since we have examples of AT-free planar graphs, like
the 4-wheel and triangular prism, which are not B0-VPG.

While it is relatively easy to find a B0-VPG drawing for biconnected AT-free outerplanar
graphs, handling cutvertices turns out to be more challenging. Rather than trying to join B0-VPG
drawings of individual blocks, we found it easier to embed the given graph as an induced subgraph
of a biconnected outerpath.

Definition 1 (Outerpath) An outerpath is an outerplanar graph which admits a planar embed-
ding whose weak dual is a path.

Note that outerpaths need not be biconnected. All the five graphs in Figure 3.(a) are outerpaths.
Our proof has essentially two parts with biconnected outerpaths forming the bridge between the

two. The first part is a structural result which shows that any AT-free outerplanar graph can be
realized as an induced subgraph of a biconnected outerpath. The second part is a B0-VPG drawing
procedure for biconnected outerpaths. Both the parts have a potential to be generalized. Since
B0-VPG is easily seen to be hereditary class, the result naturally extends to all induced subgraphs
of biconnected outerpaths. This prompted us to name this class (Definition 2) and study it on its
own merit.
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Definition 2 (Linear Outerplanar Graph) An outerplanar graph is linear if it is a subgraph
of a biconnected outerpath.

Figure 1: A Linear Outerplanar Graph

We give a complete characterization of this class in Theorem 7. Though the characterization
seems technical, it is very easy to visualize and gives a poly-time recognition algorithm. As a
pleasant surprise, we also discover that every graph in this class can be realized both as an induced
subgraph as well as a spanning subgraph of (different) biconnected outerpaths. Figure 1 shows an
example of a linear outerplanar graph.

The second part of our proof, the drawing procedure for biconnected outerpaths, can also be
extended to a larger class of graphs than biconnected outerpaths, but this we set aside for a future
work.

1.1 Organization

After recalling some standard graph theoretic terminology in Section 1.2 and a brief literature
review in Section 1.3, we layout our proofs in three sections. Section 2 has the B0-VPG drawing
procedure for biconnected outerpaths. Section 3 contains the characterization of linear outerplanar
graphs. In Section 4, we prove that all AT-free outerplanar graphs are linear thereby completing
the proof of the titular result. We conclude with Section 5, where we describe some necessary
conditions for the existence of a B0-VPG representation. This may help in characterizing B0-VPG
outerplanar graphs.

1.2 Terminology

The closed neighborhood N [v] of a vertex v in a graph G is the set containing v and and its
neighbors in G. A set of three independent vertices is called an asteroidal triple (AT) when there
exists a path between each pair of them containing no vertex from the closed neighborhood of the
third vertex. An AT-free graph is a graph which does not have an AT.

A plane graph is an embedding of a planar graph in the plane with no crossing edges. Let G be
a plane graph. The dual of G is a graph that has a vertex for each face of G and an edge between
two of its vertices when the corresponding faces of G share an edge. The weak dual of G is obtained
from its dual by removing the vertex corresponding to the outer face. An edge of G incident to the
outer face of G is called a boundary edge and its endpoints are called boundary neighbors of each
other. The remaining edges of G are called internal edges. A leaf face is a face with at most one
internal edge. A planar graph is outerplanar if it has a plane embedding in which all the vertices
are incident on the outer face. Such an embedding is called an outerplane embedding (drawing).
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Remark 1 The terminology of faces, duals, weak duals, boundary edges and internal edges will be
applied directly to an outerplanar graph assuming an outerplane drawing. Since each non-trivial
block of an outerplanar graph has a unique outerplane drawing, these notions do not depend on the
choice of the outerplane drawing.

Let G be an outerplanar graph. The weak dual of G is a forest [16] and we denote it by TG.
Further, we call TG a linear forest if each component in TG is a path.

Let G be a graph. A k+-vertex in G is a vertex having at least k neighbors in G. A leaf edge
is an edge having one endpoint of degree one. A subgraph H of G is spanning if V (H) = V (G),
and induced if E(H) = {xy | x, y ∈ V (H), xy ∈ E(G)}. A graph induced by a subset S of the
vertices of G is denoted by G[S]. A subset of vertices in a graph is called a separator if its removal
increases the number of components of the graph. A vertex x is a cutvertex if {x} is a separator.
A graph is k-connected if it does not have a separator of size smaller than k. A graph is said to
be connected (resp. biconnected) if it is 1-connected (resp. 2-connected). A block of a graph is
a maximal biconnected subgraph of the graph. A trivial block is a block containing at most two
vertices.

A graph G is H-free if G does not contain an induced subgraph isomorphic to H. A graph G
is said to be H-minor-free if it does not contain a minor isomorphic to H. We use Ck to denote
the simple cycle on k vertices. A cycle on k vertices x0, . . . , xk−1 where each xi is adjacent to xi+1

(addition is modulo k) can also be denoted as x0, . . . , xk−1, x0. A C4 together with an additional
vertex v adjacent to all the vertices of C4 is called a 4-wheel. A triangular prism is the complement
of C6. An interval graph is an intersection graph of a set of intervals on R.

1.3 Literature

The class Bk-VPG was introduced by Asinowski et al. in 2012 [3]. Nevertheless, these graphs were
previously studied in various forms. One such class of them is grid intersection graphs (GIG) which
are bipartite graphs that can be represented as intersection graphs of horizontal and vertical line
segments in the plane where no two parallel line segments intersect [21]. This class is equivalent
to bipartite B0-VPG graphs [3]. String graphs are intersection graphs of curves/strings in the
plane. Asinowski et al. [3] showed that they are equivalent to VPG graphs and hence the NP-
completeness of the recognition of VPG graphs follows from that of string graphs [24, 28]. The
recognition problem for B0-VPG graphs is NP-complete [25, 3]. B0-VPG characterizations are
known for block graphs [2], split graphs, chordal bull-free graphs, chordal claw-free graphs [18] and
cocomparability graphs [27].

Segment intersection graphs are intersection graphs of line segments in the plane. Chalopin and
Gonçalves in 2009 showed that every planar graph is a segment intersection graph [8], confirming
a conjecture of Scheinerman from 1984 [29]. One way to refine the class of segment intersection
graphs is to restrict the number of directions permitted for the segments. If the number of directions
is limited to k, the resulting graph is called k-DIR. When k = 2, we rediscover B0-VPG [3]. It
is known that bipartite planar graphs are 2-DIR [21, 12, 14], and triangle-free planar graphs are
3-DIR [13]. West conjectured that any planar graph is 4-DIR [30] which was recently refuted
by Gonçalves in 2020 [19]. Before the celebrated result by Gonçalves et al. that planar graphs
are B1-VPG [20], there were several results on Bk-VPG representation of planar graphs. Since
2-DIR graphs are equivalent to B0-VPG, bipartite planar graphs are B0-VPG. In [3], Asinowski
et al. showed that planar graphs are B3-VPG and conjectured that this is tight. Disproving this
conjecture, Chaplick and Ueckerdt proved that planar graphs have a B2-VPG representation [10].
This adds to the appeal for characterizing B0-VPG planar graphs.
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Figure 2: A biconnected outerpath G and a B0-VPG representation of it. The collinear overlapping
line segments are drawn a little apart for clarity. The point segments (for eg. vertices 1 and 25)
are drawn as black squares.

Outerpaths have many geometric representations like balanced circle-contact representations
[1], geometric simultaneous embeddings with a matching [6], and partial geometric simultaneous
embeddings with another outerpath [15]. All these representations will extend to linear outerplanar
graphs because of Theorem 7 and Remark 3. Babu et al. provides an algorithm to augment
outerplanar graphs of pathwidth p to biconnected outerplanar supergraphs of pathwidth O(p) [4].
Connectivity augmentation of outerplanar graphs using minimum number of additional edges is
studied in [17, 23]. Barát et al. have characterized the graphs with pathwidth at most two [5] and
our class is a strict subclass of that.

2 B0-VPG Representation of Biconnected Outerpaths

It’s drawing time! In this section, we show that every biconnected outerpath is B0-VPG (Theo-
rem 3). The proof of Theorem 3 is constructive and it draws a B0-VPG representation for any
biconnected outerpath (cf. Figure 2 for example). Since B0-VPG is easily seen to be a hereditary
graph class (closed under induced subgraphs), and since every linear outerplanar graph can be
represented as an induced subgraph of a biconnected outerpath (Theorem 7), it follows that all
linear outerplanar graphs are B0-VPG. Furthermore, since we show in Section 4 that all AT-free
outerplanar graphs are linear (Lemma 5), the main result of this article follows.

Theorem 3 Every biconnected outerpath is B0-VPG.

Proof: Let G be a biconnected outerpath with n faces labeled F1, . . . , Fn such that the weak dual
of G is the path F1, . . . , Fn. For each i ∈ [n − 1], the edge shared by Fi and Fi+1 is denoted by
ei. For notational convenience, we set en to be any boundary edge of Fn. For each i ∈ [n], let Gi

denote the induced subgraph of G restricted to the faces F1, . . . , Fi.
In a B0-VPG drawing Di of Gi, we call a non-point horizontal (resp., vertical) line segment l

in Di extendable from a point p ∈ l if at least one of the two infinite horizontal (resp., vertical)
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open rays starting at p (but not containing p) does not intersect any other line segment of Di.
A point segment l is said to be extendable from its location p if it is extendable from p both as
a horizontal and a vertical line segment. An edge xy in Gi is said to be extendable in Di if the
line segments lx and ly representing the vertices x and y are extendable from a common point
p ∈ lx ∩ ly either in the same direction or in orthogonal directions. Finally a B0-VPG drawing
Di is said to be extendable if ei is extendable and whenever Fi is a triangle, the vertex of Fi not
incident to ei−1 is represented by a point segment. Thus, in particular, if Di is extendable, the
segments representing the endpoints of the edge ei can be extended in orthogonal directions.

If F1
∼= C3, then representing all the three vertices as point segments at the same point gives

an extendable B0-VPG drawing D1 of G1. If the length of F1 is 4 or more, then we can represent
F1 as the intersection graph of line segments laid out on the boundary of an axis-parallel rectangle
with the segments representing the endpoints of e1 being orthogonal (and hence sharing only a
corner of the rectangle). This is an extendable B0-VPG drawing D1 of G1. Let Di, i < n, be an
extendable B0-VPG drawing of Gi. From Di, we construct an extendable B0-VPG drawing Di+1

of Gi+1 as follows.

Case 1 (length of Fi+1 is 4 or more). Let Fi+1 = v0, . . . , vk, v0, with ei = vkv0 and ei+1 =
vjvj+1, j < k. Since Di is extendable, the edge vkv0 is extendable in Di. Extend the line segments
lk and l0 (representing vk and v0 respectively) in orthogonal directions to two points qk and q0
outside of the bounding box of Di. Let q be the intersection point of the perpendiculars to lk and
l0 at qk and q0 respectively. Represent the path v1, . . . , vk−1 by adjacent segments l1, . . . , lk−1 on
the two line segments from q0 to q and q to qk such that l1 contains q0, lk−1 contains qk, and lj
and lj+1 are orthogonal segments sharing the point q0 if j = 0, qk if j = k − 1, or q otherwise.
This gives the drawing Di+1. It is clear that the new segments added in this stage do not intersect
any other line segments in Di except l0 and lk. It is easy to verify that the edge ei+1 = vjvj+1 is
extendable. Hence Di+1 is extendable.

Case 2 (Fi+1
∼= C3). Let Fi+1 = a, b, c, a, with ei = ca and ei+1 = ab. Since Di is extendable,

the edge ca is extendable in Di from a point p. If the line segments lc and la are extendable in the
same direction, then extend them to a point q outside the bounding box of Di and represent b by
a point segment lb at q to obtain Di+1. If lc and la are extendable only in orthogonal directions,
then neither of them is a point segment. Hence Fi ̸∼= C3 and hence the vertices c and a have no
common neighbor in Gi. So the point p is not contained in any line segment of Di other than lc
and la. Represent b by a point segment lb at p to get Di+1. In both the subcases, it is clear that
the new segments added in this stage do not intersect any other line segments in Di except lc and
la. It is easy to check that the line segment la, the point segment lb, and also the edge ab are
extendable from p in Di+1. Since ab is extendable and b is represented by a point segment, Di+1

is extendable.

Repeating the above construction n− 1 times gives a B0-VPG drawing Dn of Gn = G. □

B0-VPG is easily seen to be a hereditary graph class (that is, closed under induced subgraphs).
Thus it follows from Theorem 3 that every induced subgraph of a biconnected outerpath is B0-VPG.
By the end of the next section, we extend this to every subgraph (not necessarily induced).
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(a)

v

(b)

Figure 3: Examples of outerplanar graphs which are (a) not block-safe (b) not cut-safe. In (b), Cv
has four big components. These components even after removal of v have a 3+-vertex or a face
which is indicated by blue.

3 Characterization of Linear Outerplanar Graphs

In a preliminary version [22] of this paper, we showed that every AT-free outerplanar graph can
be identified as an induced subgraph of a biconnected outerpath. After that work, triggered
by a question from Mathew C. Francis, we realized that the induced subgraphs of biconnected
outerpaths can be more exotic than AT-free outerplanar graphs, and that this class deserves to be
studied on its own. Our definition of linear outerplanar graphs in [22] was a technical choice made
for the proof. That definition was more restrictive than the one here (Definition 2).

While the class of linear outerplanar graphs will inherit the rich collection of drawings and
geometric representations available for biconnected outerpaths, the structure of a linear outerplanar
graph is harder to describe than that of a biconnected outerpath. This section aims to do that.
We first build the necessary terminology for stating and proving the characterization theorem
(Theorem 7). Recall that the terminology of faces, duals, weak duals, boundary edges and internal
edges will be used assuming an outerplane drawing.

Let v be a cutvertex in a graph G. For every component of C of G \ v, the subgraph of G
induced on V (C) ∪ {v} is called a component incident to v. The set of components incident to v
is denoted by Cv. A component C incident to v is said to be incident to a block B if v is in B and
C does not contain B.

Definition 4 Let v be a cutvertex in an outerplanar graph G and C ∈ Cv. We call C small for v
if C \ v is a path and big for v otherwise. Further, when C is small for v, we call it a tail at v if
C (including v) is a path.
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Definition 5 (Cut-safety) A cutvertex v in an outerplanar graph G is said to be safe if Cv
contains at most two big components. The graph G is said to be cut-safe if every cutvertex in G is
safe.

A set of at most two boundary edges of a block B in an outerplanar graph is called antipodal
either when B is a single face or when the edges belong to different leaf faces of B.

Definition 6 (Block-safety) A nontrivial block B in an outerplanar graph is called safe if there
exist two antipodal edges a0b0 and a1b1 in B and the set of components incident to B can be
partitioned into C0 and C1 such that

1. every component in Ci (i ∈ {0, 1}) is incident to either ai or bi, and

2. at most one component in Ci (i ∈ {0, 1}) is incident to ai and it (if present) is a tail.

An outerplanar graph G is said to be block-safe if every nontrivial block in G is safe. The edges
a0b0 and a1b1 are called terminal edges of B in G. A terminal edge is denoted as an ordered pair
(x, y) where x = ai and y = bi. The components in Ci are said to be associated to the terminal
edge (ai, bi).

Theorem 7 (Characterization) An outerplanar graph G is linear if and only if G is cut-safe,
block-safe and the weak dual of G is a linear forest. Moreover, if G is linear, then it can be realized
both as an induced subgraph and as a spanning subgraph of (different) biconnected outerpaths.

Remark 2 Note that the class of linear outerplanar graphs and outerpaths are incomparable.
There are outerpaths which are not linear (cf. Figure 3.(a)) and linear outerplanar graphs which
are not outerpaths (cf. Figure 4.(a)).

3.1 Proof of Theorem 7 (Necessity)

We first prove that if an outerplanar graph G is linear, then G is cut-safe, block-safe and TG is a
linear forest. Our strategy is to look at the edges of G which are forced to be internal edges in
any biconnected outerplanar supergraph of G and then use the fact that the internal edges in a
biconnected outerpath have a natural linear order. It is easy to see that every internal edge of G, at
least one edge in each face of G (unless G itself is a cycle), and all but at most two edges incident to
any vertex of G will all be internal edges in any biconnected outerplanar supergraph of G. We can
say a bit more about the edges incident to a cutvertex of G in a nontrivial block (Lemma 1) using
the simple observation below. The extension of this simple observation to biconnected outerpaths
(Observation 9) is a key to the rest of this section.

Observation 8 If uv is an internal edge in a biconnected outerplanar graph G, then G\{u, v} has
exactly two components. Moreover, both these components contain exactly one boundary neighbor
each of u and v.

Lemma 1 If an outerplanar graph G is an induced subgraph of a biconnected outerplanar graph
G′ then for any cutvertex v in a nontrivial block B of G, one of the two boundary edges incident
to v in B is an internal edge in G′.
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Proof: Let uv and vw be the two boundary edges of B incident to v and let x be a neighbor of v
outside B in G. If both uv and vw are boundary edges in G′, then vx is an internal edge in G′.
But u and w are in the same component of G \ {v, x} and hence of its supergraph G′ \ {v, x}. This
contradicts Observation 8. □

For any three subsets X,Y, Z of the vertices of a graph, X separates Y and Z if every path
between Y and Z contains a vertex from X.

Observation 9 Let u0v0, u1v1, u2v2 be three distinct (but not necessarily disjoint) internal edges
of a biconnected outerpath G. Then the endpoints of one of them, say {ui, vi}, separate {uj , vj}
from {uk, vk} in G, where {i, j, k} = {0, 1, 2}.

Lemma 2 If an outerplanar graph G is linear, then TG is a linear forest.

Proof: Let G be a subgraph of a biconnected outerpath G′. If TG is not a linear forest, then G
has a face f with at least three internal edges. These remain internal edges in G′ that violate the
separation property in Observation 9. □

Lemma 3 If an outerplanar graph G is linear, then G is cut-safe.

Proof: Let G be a subgraph of a biconnected outerpath G′. Suppose G has a cutvertex v such
that Cv contains three big components C0, C1, C2. For each i ∈ {0, 1, 2}, since Ci \ v is not a path,
it either contains a face or a 3+-vertex. In either case, Ci \ v will contribute an internal edge ei to
G′. But e0, e1, e2 violate Observation 9. □

Lemma 4 If an outerplanar graph G is linear, then G is block-safe.

Proof: Let G′ be an edge-minimal biconnected outerpath which is a supergraph of G. If G itself
is a biconnected outerpath, we are done. Otherwise, picture any nontrivial block B of G in G′.
Let E′ be the set of boundary edges of B which become internal edges in G′. Since TG′ is a path,
it is easy to see that E′ is antipodal. By Lemma 1, every cutvertex of B in G is an endpoint of an
edge in E′. Let E′ be {e0} if it is singleton, and {e0, e1} otherwise. The proof will be complete if
we can partition the set of components CB incident to B into Ci, i ∈ {0, 1} and label the endpoints
of ei as ai and bi respecting the last condition in Definition 6.

By Observation 8, we get exactly two components in G′ \ V (ei). Let Gi be the subgraph of
G′ induced by ei and the component of G′ \ V (ei) that does not contain any vertex of B. Let
Ci denote the components in CB that are captured by Gi in G′. Consider the leaf face fi of Gi

containing the edge ei. Since fi is not part of B, at least one edge e′i of fi is missing from G. By
edge-minimality of G, this is a boundary edge of G′ and hence Gi. Let Pi denote the (possibly
trivial) path in fi \ e′i between ei and e′i that does not contain an internal edge (if any) of Gi. We
label the endpoint of ei which meets Pi as ai and the other as bi. If Pi is trivial then there is no
component in Ci incident to ai. If Pi is not trivial, at most one component in Ci, and that too a tail
which is a subpath of Pi, is incident to ai. It is easy to see that this labeling satisfies Definition 6.

□
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Figure 4: (a) A block-safe and cut-safe outerplanar graphG such that TG is a linear forest. Terminal
edges are shown oriented and cutvertices for Action 1 are highlighted. (b) Intermediate graph G3.
Faces created by the two cases of Action 1 are marked 1a and 1b respectively. (c) Final biconnected
outerpath G′. Faces created by Action 2 are marked 2a if both the components merged are small
and 2b otherwise. Since all the connectors are two-length paths, G is an induced subgraph of G′.

3.2 Proof of Theorem 7 (Sufficiency)

Now we prove the other direction of Theorem 7. Let G be a cut-safe and block-safe outerplanar
graph such that TG is a linear forest. We will construct a biconnected outerpath G′ which contains
G as a subgraph. A connector between two nonadjacent boundary vertices u and v of a plane graph
H is either an edge uv or a two-length path (u,w, v) such that w /∈ V (H) drawn through the outer
face. Hence the resultant graph is planar. In the following construction, if every connector used is
an edge (resp. two-length path), then G is contained as a spanning (resp. induced) subgraph of
G′. The construction of G′ is done in two phases. Each phase consists of repeated applications of
a single action.

Definition 10 For a cutvertex v, a small component C ∈ Cv is called a maximal small component
if C is not a subgraph of a small component incident to another cutvertex.

Action 1 (Tuck the tails) Let v be a cutvertex in G and C ∈ Cv be a maximal small component
associated to a terminal edge (ai, bi) of a nontrivial block B. (a) If v = ai (in which case C is a
tail at ai), add a connector from the leaf of C to bi. This merges the block B and the component
C into a new block B′. Designate the remaining terminal edge of B and the last edge (v′, bi) of
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the connector as the two terminal edges of B′. (b) If v = bi, add a connector between v and each
endvertex of the path C \ v which is not already adjacent to v to form a block B′ containing C (but
not B). If both the endvertices of C \ v were adjacent to v, then B′ = C. Designate (u, v) and
(w, v) as the terminal edges of B′, where uv and vw are the boundary edges of B′ incident to v. If
B′ is a single edge uv, designate (u, v) as both the first and second terminal edge of B′.

Let us call the resulting graph G2. In Case (a), the weak dual TB′ of B′ is a path formed by
extending TB with a leaf edge corresponding to the dual of aibi. The new terminal edge in B′ is in
the new leaf face and hence the two terminal edges of B′ are antipodal. Every component incident
to B in G (except C) is incident to B′ in G2. Each such component associated to a terminal edge
of B can be associated to the corresponding terminal edge of B′. In Case (b), the structure of B′

is simple since every internal edge of B′ is incident to v. It is easily verified that TB′ is a path
and B′ is safe with the given terminals. Next we argue that G2 is cut-safe. In Case (a), the only
change to Cv in G2 is that C and the component CB containing B merges into a single component
CB′ . But if CB is small for v in G, then CB′ remains small for v in G2 and hence v remains safe
in G2. In Case (b), since B′ \ v is a path, B′ is a small component for v and v is safe in G2. Let
u ̸= v be a cutvertex in G2 and let Cu be a small component incident to u. Since C is a maximal
small component, Cu does not contain C and hence Cu remains unaffected (and hence small) in
G2. So u remains safe in G2.

We perform Action 1 once for each maximal small component incident to a cutvertex in G to
obtain a graph G3. Note that for each cutvertex v in G3, each small component in Cv is a block.
Also, each component incident to a nontrivial block B in G3 is incident at the second vertex of a
terminal edge of B. For each trivial block B = uv which is not a pendant edge of G3, assign (u, v)
to be the first and (v, u) to be the second terminal edge of B. Associate every component incident
to B at u (resp. v) with terminal edge (v, u) (resp. (u, v)).

Action 2 (Bond with your sibling) Let v be a cutvertex in G3 and let C0 and C1 be two com-
ponents from Cv, chosen prioritizing small components over big ones. For i ∈ {0, 1}, let Bi be the
block in Ci which contains v, and (ui, v) be a terminal edge of Bi. Add a connector from u0 to u1.
This merges B0 and B1 into a new block B. The remaining terminal edges, one each from B0 and
B1, are designated as the terminal edges of B.

Let us call the resulting graph G4. The weak dual TB of B is a path obtained by connecting
two leaf vertices of TB0

and TB1
through the dual vertex corresponding to the new bounded face.

The new terminal edges of B are antipodal in B. Every cutvertex other than v in Bi (i ∈ {0, 1})
is contained in the second terminal edge of Bi which continues to be a terminal edge in B. If Ci is
small for an i ∈ {0, 1}, then Bi = Ci and the second terminal edge of Bi has v as its second vertex.
If both C0 and C1 are big for v, since v is safe in G3, there are no other components in Cv. Hence
v is no longer a cutvertex in G4. Hence all the cutvertices of B are contained in its terminal edges
and B is safe. Now we argue that G4 is cut-safe. The difference from Cv in G3 to Cv in G4 is that
C0 and C1 gets merged into a single component. If both C0 and C1 are small components, then
one can easily check that the new component is B itself and it is small for v. Hence the number of
big components in Cv does not increase and hence v remains safe in G4 or ceases to be a cutvertex.
Let u ̸= v be a cutvertex in G4 and let Cu be a small component incident to u. Since Cu is a
block, it does not contain the cutvertex v and hence remains unaffected (and thus small) in G4.
So u remains safe in G4.

We repeat Action 2 as long as there is a cutvertex. Let G′ denote the resulting biconnected
graph. Since each action preserves cut-safety, block-safety and linearity of the weak dual, G′ is a
biconnected outerpath. This completes the proof of Theorem 7.
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Remark 3 From the above construction, one can check that each connector added reduces the
number of blocks at least by one. Hence the total number of new vertices added is less than the
number of blocks in the original graph G.

Remark 4 Checking the cut-safety, block-safety and the linearity of weak dual of an outerplanar
graph can be done in polynomial time. It can also be verified that the construction of G′ from G
can be done in polynomial time.

By Theorem 7, any linear outerplanar graph can be realized as an induced subgraph of a
biconnected outerpath. This together with Theorem 3 gives the following corollary.

Corollary 11 Every linear outerplanar graph is B0-VPG.

4 Linearity of AT-free outerplanar graphs

By Corollary 11, in order to prove that AT-free outerplanar graphs are B0-VPG, it is enough to
show that they are linear. Lemma 5 in this section asserts the same. Note that one may suspect
that all AT-free outerplanar graphs can be realized as induced subgraphs of biconnected AT-free
outerplanar graphs. But this is incorrect. For example, let G be a C5 together with a pendant
vertex. While G is AT-free outerplanar, it is easy to see that any biconnected outerplanar graph
G′, containing G as an induced subgraph, is not AT-free.

The following observation is helpful in proving Lemma 5.

Observation 12 Let B be a nontrivial block of an outerplanar graph G. Every leaf face f of B
contains a vertex u of degree two in G[B] which is not incident to any other bounded face of B.

Justification: A face has at least three vertices and at most two vertices of a leaf face can be shared
by another face. Hence all the remaining vertices are of degree two in G[B] and are not incident
to any other bounded face of B.

Lemma 5 AT-free outerplanar graphs are linear.

Proof: Let G be an AT-free outerplanar graph. If TG is not a linear forest, then there exist three
internal edges in one face f of G sharing with faces, say, f1, f2, f3. One can verify that we can
choose one vertex vi (1 ≤ i ≤ 3) each from fi \ f to form an AT.

If G is not cut-safe, then there exists a cutvertex v where Cv has more than two big components,
say, C1, C2, C3. That is, Ci \ {v} (1 ≤ i ≤ 3) is not a path and thus it has either a 3+-vertex vi
or a face fi. If all the neighbors of vi are adjacent to v, then it is easy to see that Ci has K2,3 as
subgraph. Similarly if all the vertices of fi are adjacent to v, then one can verify that Ci has K4 as
minor. Outerplanar graphs do not contain K2,3 or K4 as a minor [11]. Thus in both cases, there
exists a vertex v′i ∈ Ci \ {v} nonadjacent to v in Ci. It is easy to see that {v′1, v′2, v′3} forms an AT.

It remains to check whether G is block-safe. Consider any nontrivial block B of G. Since TG
is a linear forest, B either has exactly two leaf faces f1, f2 or B itself is a face f1. In the former
case, Observation 12 guarantees that G[B] has two vertices u1 and u2 of degree two in f1 and f2
respectively. For any cutvertex v in B, we denote an arbitrary neighbor of v outside B as v′. If
there exists three cutvertices in B, say, v1, v2, v3, then by using the path along the outer cycle
(through the boundary) of B, one can verify that {v′1, v′2, v′3} is an AT. Thus there can be at most
two cutvertices in B. If B itself is a face f1, we can choose arbitrary boundary edges a0b0 and a1b1
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of B such that b0 and b1 are the only cutvertices of B. These two edges are antipodal in B, and
thus B satisfies the conditions of the terminal edges as per Definition 6, thereby showing that B is
safe. Hence we assume in the rest of the proof that B contains more than one face. If one of the
cutvertices, say v, is neither incident to f1 nor f2, then the vertices u1 and u2, together with v′

form an AT. Hence the cutvertices incident to B, if any, must lie in the leaf faces of B. Moreover,
we intend to associate each cutvertex v to a different leaf face of B containing v. If this is not
possible, that is, both the cutvertices, say v1, v2 are not incident to one of the leaf faces, say f2,
then {v′1, v′2, u2} forms an AT. Thus we conclude that there exist at most two cutvertices incident
to B, and they can be associated to different leaf faces of B containing them. We can choose
arbitrary boundary edges a0b0 and a1b1 of B, one from each leaf face such that b0 and b1 are the
only cutvertices of B. Clearly those edges are antipodal and their endpoints meet the conditions
of the terminal edges as per Definition 6. Thus B is safe. □

Lemma 5 together with Corollary 11 establish the main result.

Theorem 13 Every AT-free outerplanar graph is B0-VPG.

5 Concluding Remarks

We have showed that all linear outerplanar graphs are B0-VPG. However, it is easy to see that
linearity is not necessary for B0-VPG outerplanar graphs. For example, planar bipartite graphs,
and hence outerplanar bipartite graphs are B0-VPG [21]. But outerplanar bipartite graphs can be
far from being linear, in the sense that their weak duals can be trees with arbitrarily large degrees
for internal nodes.

One can see from a B0-VPG drawing that the closed neighborhood of every vertex is an interval
graph [18]. Next, we strengthen this necessary condition by identifying adjacent vertices which
are forced to be represented by collinear segments in any B0-VPG drawing. An induced C4 has
essentially a unique B0-VPG representation [3]. A C4 together with exactly one chord is called a
diamond, and the chord is called the diamond diagonal. A diamond diagonal can only be drawn as
the intersection of collinear line segments in every B0-VPG representation of the diamond [18]. In
any B0-VPG representation of an odd-cycle, an odd number of edges has to be represented as the
intersection of collinear line segments. It is also easy to verify that the binary relation collinearity
on the set of line segments is an equivalence relation. We combine these observations to obtain the
following.

Proposition 14 If a graph G is B0-VPG, then there exists a subgraph H of G containing all
diamond diagonals of G such that,

(a) for every component C of H, the subgraph of G induced by the closed neighborhood N [C] of
C is an interval graph, and

(b) the minor of G obtained by contracting every component of H in G is a bipartite B0-VPG
graph.

Proof: Since G is B0-VPG, there exists a B0-VPG representation D of G. Let H be the spanning
subgraph of G in which two vertices are adjacent if and only if the corresponding line segments in D
are intersecting and collinear. Since any diamond diagonal of G is represented by the intersection
of collinear line segments in D, their endpoints are adjacent in H too. Thus for proving (a), it
remains to show that the closed neighborhood of any component of H is an interval graph. Let C
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be a component of H and let DC be the drawing induced by the segments of D that represent the
vertices in N [C]. In DC , if we restrict the segments that represent the vertices in N [C]\C to point
intervals at their intersection point with a vertex in C, we obtain an interval representation for
the subgraph of G induced on N [C]. To obtain the minor GH of G in (b), we contract every edge
of H. Each component C of H, therefore becomes a branch set of GH , and can be represented as
a line segment obtained as the union of all the segments representing vertices in C. This gives a
B0-VPG representation of GH . It is easily verified that it is a bipartite graph since there are no
collinear intersections. □

Remark 5 Note that since GH is bipartite, H contains an odd number of edges from each odd
cycle of G.

(a) 3-sun (b) 3-dart (c) Bookmark (d) Ninja Star

(e) Odd cycle with C4 petals (f) (g)

Figure 5: A few outerplanar graphs which are not B0-VPG. The blue edges represent forced
collinear edges. The green edges in (d) and (e) represent the edges arbitrarily chosen in an odd
cycle to become collinear in a B0-VPG drawing. The 4-cycles in (e) resemble petals and hence the
name. The red double edges in (f) and (g) represent C4 edges where the C4 (petal) is not drawn
to avoid cluttering.

Proposition 14 shows that the outerplanar graphs in Figure 5 are not B0-VPG. Nonetheless,
the above proposition is not sufficient to characterize B0-VPG even among outerplanar graphs.
Figure 6 is such an example. There are two key challenges for an outerplanar graph to have a
B0-VPG representation. One is the issue of small cycles (of length 3 and 4) while the other is
the issue of how cycles branch out (which is captured by the structure of the weak dual). In this
work, we mainly focus on the case where the second challenge is absent, and hence we restricted to
outerplanar graphs whose weak dual is a linear forest. We have addressed the case when the first
challenge is absent in a future work which is under preparation. We hope that these two results
together with Proposition 14 will shed some light on the characterization question on B0-VPG
outerplanar graphs.
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Figure 6: An outerplanar graph which is not B0-VPG. This shows that the conditions in Proposition
14 was not sufficient. The red double edges represent C4 edges where the C4 is not drawn to avoid
cluttering. The blue edges are forced to be collinear. Hence the bridge has to be realized as an
orthogonal intersection and this prevents a non-crossing drawing of the two 6-cycles.
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