
Journal of Graph Algorithms and Applications
http://jgaa.info/ vol. 27, no. 9, pp. 803–841 (2023)
DOI: 10.7155/jgaa.00646

RAC-Drawability is ∃R-complete and Related Results

Marcus Schaefer

School of Computing, Chicago, Illinois 60604, USA

Submitted: July 2022 Reviewed: April 2023 Revised: July 2023

Accepted: November 2023 Final: November 2023 Published: December 2023

Article type: Regular Paper Communicated by: A. Symvonis

Expert: Alright, let’s leave aside the color for the moment. You
had something there also relating to perpendicularity?

Client: Seven lines, all strictly perpendicular.
Expert: To what?
Client: Um, to everything. Among themselves. I assumed you

know what perpendicular lines are like!

The Expert [8]

Abstract. A RAC-drawing of a graph is a straight-line drawing in which every
crossing occurs at a right angle. We show that deciding whether a graph has a RAC-
drawing is as hard as the existential theory of the reals, even if we know that every
edge is involved in at most eleven crossings and even if the drawing is specified up to
isomorphism. The problem remains hard if the crossing angles are only required to be
very close (doubly-exponentially so) to being right angles.

We also show that if a graph has a RAC-drawing in which every edge has at most
one bend, then such a drawing can be placed on an integer grid of double-exponential
area. This is in contrast to RAC-drawability on the grid which turns out to be as hard
as the existential theory of the rationals.

1 Introduction

If we cannot avoid crossings in drawings, then we prefer crossings at which the (straight-line) edges
cross at large angles. The crossing angle at a crossing is the minimum of the two angles formed
by the edges at the crossing. Experiments have shown that large crossing angles simplify reading
a drawing, as edges become easier to follow individually [29, 28]. In a 2009 paper, Didimo, Eades
and Liotta [19] formalized this idea by introducing RAC-drawings of graphs, in which only the
largest possible crossing angle, the right angle, is allowed. A straight-line drawing of a graph is
a RAC-drawing if all crossing angles are right angles, and a graph is RAC-drawable if it has a
RAC-drawing. Figure 1 shows that the Petersen graph is RAC-drawable.

E-mail address: mschaefer@cdm.depaul.edu (Marcus Schaefer)

This work is licensed under the terms of the CC-BY license.

http://dx.doi.org/10.7155/jgaa.00646
mailto:mschaefer@cdm.depaul.edu
https://creativecommons.org/licenses/by/4.0/

804 Marcus Schaefer RAC-Drawability is ∃R-complete and Related Results

Figure 1: Two RAC-drawings of the Petersen graph, the left one is crossing-minimal.

RAC-drawings have become a popular subject in the graph drawing literature, see, for example,
a recent survey by Didimo [18] summarizing our knowledge. We are specifically interested in the
computational complexity of the recognition problem, that is, given a graph, how hard is it to tell
whether the graph has a RAC-drawing?

Argyriou, Bekos, and Symvonis [6] showed early on that it is NP-hard to recognize whether a
graph has a RAC-drawing. Why NP-hard, and not NP-complete? The issue is that a realization
of a RAC-drawing may require real coordinates, and, a priori, we do not have any bounds on the
precision required for those coordinates and we do not even know whether the graph can be realized
on a grid. Bieker [11] showed that the problem lies in ∃R, the complexity class associated with
deciding the truth of the existential theory of the reals; we will introduce this class in Section 2.
The exact complexity remained open (as mentioned, for example, in [21, p. 4:11/12]).

Also open, not even known to be NP-hard, was the complexity of the fixed embedding variant
of RAC-drawability, in which we are given a drawing of the graph and have to decide whether
the graph has a RAC-drawing isomorphic to the given drawing. The following result settles the
computational complexity of all of these variants.

Theorem 1 Testing whether a graph (with or without fixed embedding) has a RAC-drawing is
∃R-complete, even if each edge has at most eleven crossings.

∃R-hardness implies NP-hardness [41], so the fixed embedding variant is NP-hard as well.

What does ∃R-hardness add that NP-hardness does not already give us? Perhaps nothing,
since it is possible (but considered unlikely) that NP = ∃R. Nevertheless, ∃R-hardness reductions
are typically very geometric and can be used to obtain stronger conclusions. For example, we show
in Section 6 that Theorem 1 remains true for crossings angles sufficiently close (asymptotically) to
right angles. Another common consequence of ∃R-hardness results is that problem instances may
require algebraically complex solutions, and RAC-drawings are no exception:

(i) realizing a RAC-drawing may require double-exponential area (assuming all points have at
least unit distance from each other), see Corollary 10;

(ii) not every RAC-drawing can be realized on an integer grid, see Corollary 11; and

(iii) testing whether a graph has a RAC-drawing on an integer grid is as hard as ∃Q, the existential
theory of the rationals, see Corollary 14.

JGAA, 27(9) 803–841 (2023) 805

Item (iii) implies that there are (at this point at least) no algorithms for testing RAC-realizability
on a grid, since ∃Q is not known to be decidable. These are the types of results that do not follow
from NP-hardness.

While these results are purely negative, we can also use the theory to establish positive con-
sequences of ∃R-membership. For example, Corollary 12 shows that a RAC-drawing, if it is
realizable, can be realized in double-exponential area, showing that item (i) above is tight. The
double-exponential area upper bound also applies to RACk-drawings, in which every edge is al-
lowed to have up to k bends. For k = 1 we sharpen the area upper bound in Theorem 15 which
shows that if a graph has a RAC1-drawing, then it has a RAC1-drawing on an integer grid of
double-exponential size. In view of the results on RAC-drawings this is a bit surprising and it re-
quires some delicate perturbation arguments combined with non-trivial bounds from real algebraic
geometry.

1.1 Area Requirements and Bends

As far as we know Corollary 10, the double-exponential lower bound on the area of a RAC-drawing,
is a new result, but there have been (single) exponential lower bounds in constrained settings, e.g.
for upward RAC-drawings [5], RAC-drawings in which a given horizontal order of the vertices must
be realized, and for 1-plane RAC-drawings [13], drawings in the plane with at most one crossing
per edge.

Allowing bends along edges changes the situation dramatically. A RACk-drawing of a graph
is a RAC-drawing in which every edge has at most k bends. RAC-drawings are just the RAC0-
drawings.

Every graph has a RAC3-drawing [19], but not necessarily a RAC2-drawing: any graph with
a RAC2-drawing has at most linearly many edges [7]. The complexity of recognizing graphs with
RAC1- and RAC2-drawings remains intriguingly open [21, Problem 6]. Neither of these problems
is even known to be NP-hard.

There are polynomial upper bounds on the area of RACk-drawings for k ≥ 3 [24], but no bounds
seem to be known for k = 1, 2. Standard arguments give double-exponential upper bounds in these
cases, see Corollary 12. ∃R-hardness of these cases would likely imply matching double-exponential
lower bounds as it does for k = 0.

In Theorem 15 we strengthen Corollary 12 in the case k = 1 to show that RAC1-drawings if
they are realizable, can always be realized on a grid of double-exponential area.

1.2 Overview of the Paper

Our proof that the RAC-drawability problem is ∃R-complete consists of a sequence of two reduc-
tions. There is no convenient graph drawing problem to reduce from, so in Section 2 we present
an ∃R-complete algebraic problem which we will use as the starting point.

For the intermediate drawing problem we introduce junctions, vertices with a specific type of
angle constraints on incident edges. The proof of Theorem 1 then breaks into two major parts.
The first part shows that drawing a graph with junction constraints is an ∃R-complete problem
(even for crossing-free drawings), since it is powerful enough to encode the algebraic problem, see
Section 3. The second part shows how to simulate junctions within the RAC-model; this is done
in Section 4.

In Section 5 we discuss area requirements and grid-drawings, in RAC-drawings with and without
bends. Finally, Section 6 discusses a relaxation of RAC-drawings in which all crossings angles of a

806 Marcus Schaefer RAC-Drawability is ∃R-complete and Related Results

drawing have to be above a certain bound. We close the paper with a short list of open questions.

2 The Existential Theory of the Reals

The existential theory of the reals, ETR, is the set of existentially quantified, true statements over
the real numbers, allowing arithmetical operations +,−, ·, constants 0 and 1, comparisons <,≤,=
and the Boolean connectives. For example,

∃x : x · x = 1 + 1

and

∃x1, . . . , xn : x1 = 1 + 1 ∧ x2 = x1 · x1 ∧ x3 = x2 · x2 ∧ . . . ∧ xn = xn−1 · xn−1

are both sentences in ETR, while ∃x : x · x + 1 = 0 is not (since it is false over R). The first
sentence expresses the existence of the square root of 2; the second sentence uses repeated squaring
to compute the double-exponential value 22

n−1

, giving a glimpse of the expressive power of ETR.
We can define a complexity class ∃R from ETR as the set of languages that polynomial-time

many-one reduce to ETR. This is analogous to defining NP from Boolean formula satisfiability,
though there also is a machine model for ∃R [23]. A problem is ∃R-hard if every problem in ∃R
reduces to it; it is ∃R-complete, if it is ∃R-hard and lies in ∃R.

We start with a specific ∃R-completeness result which occurs in several early papers [12, 14],
for a recent proof see [40, Corollary 4.2].

Theorem 2 Testing whether a polynomial f : Rn → R with integer coefficients has a real zero is
∃R-complete.

The problem lies in ∃R, since it can be written as ∃x ∈ Rn : f(x) = 0, the tricky part is
reducing ETR to it.

∃R captures the complexity of many natural problems in graph drawing and computational
geometry, since it can express conditions on real coordinates. For example, Lemma 4 will show the
details of how to express RAC-drawability in the language of ∃R.

Some recent problems shown ∃R-complete relevant to graph drawing and computational ge-
ometry include1: the art gallery problem [2], recognizing geometric hypergraphs [10], matroid
realizability [31], packing problems [33], and covering polygons by triangles [1].

As we mentioned, NP ⊆ ∃R [41], in particular, ∃R-hard problems are also NP-hard. On the
other hand, ∃R ⊆ PSPACE [15], so ∃R-complete problems are solvable in polynomial space (and,
therefore, exponential time).2

2.1 An ∃R-Complete Problem

For our initial reduction we will be working with an ∃R-complete problem, which, as is often the
case, is tailor-made for the situation we find ourselves in.

1These are some of the results which have been published since 2022. Bieker’s thesis [11] surveys many of the
relevant graph drawing results. The Wikipedia page mentioned earlier [42] is host to a growing list of complete
problems, including areas other than graph drawing and computational geometry.

2For a thorough introduction to the existential theory of the reals, check out [32]. For a quick intro, the Wikipedia
page [42] will serve.

JGAA, 27(9) 803–841 (2023) 807

Theorem 3 The following problem is ∃R-complete: Given equations of the form xi = 2, xi = xj,
xi = xj +xk, and xi = xj ·xk for variables x1, . . . , xn, decide whether the equations have a solution
with xi > 1 for all i ∈ [n].

The construction in the proof combines ideas from Mnëv [34], Shor [41], and Richter-Gebert [36];
a worked example follows the proof.

Proof: By Theorem 2, testing whether a given polynomial f with integer coefficients has a zero
is ∃R-complete. Multiplying the polynomial by 2 we can ensure that all coefficients of f are even
numbers. We then replace every variable x of f with the difference of two new variables x′ − x′′.
Then f has a zero if and only if the new polynomial has a zero in which all variables are greater
than 1 (since any x can be written as the difference of two numbers greater than 1). We move
negative terms to the other side of the equation to obtain two polynomials g, h with positive, even
coefficients so that f has a zero if and only if g = h has a solution with all variables being greater
than 1.

We now calculate the values of g and h from the original variables step by step using (at
most polynomially many) new intermediary variables and only using equalities of the type xi = 2,
xi = xj + xk and xi = xj · xk. This includes the coefficients, which, since they are even, can be
built from 2 in polynomially many steps by following the binary encoding of the coefficient. All
the new intermediate variables are greater than 1 (as products and sums of values greater than 1).
Finally, to test whether g = h we add one more equation xi = xj , where xi is the new variable
that computes g and xj the variable that computes h. This completes the proof. 2

As an example of the construction described in the proof consider f(x1, x2) = 3x2
1 − x2. We

first replace f with 2f , giving us 6x2
1 − 2x2 with all even coefficients. We then replace each of the

variables with a difference of two new variables; in this example (reusing variable names) we get
6(x1 − x2)2 − 2(x3 − x4). Collecting positive terms gives us 6x2

1 + 6x2
2 + 2x4 = 12x1x2 + 2x3, so

g(x1, x2, x3, x4) = 6x2
1 + 6x2

2 + 2x4 and h(x1, x2, x3, x4) = 12x1x2 + 2x3 in this example. We then
compute g and h term by term, using additional variables. E.g., let us show how to compute the
term 6x2

1: we add equations x5 = x1 · x1, x6 = 2, x7 = x6 · x6, x8 = x6 + x7, x9 = x8 · x5; then x9

computes 6x2
1. Similarly, we can compute all other terms into new variables, and add them up, one

at a time, to get g and h. Finally, we need one more equality, xi = xj , to compare the resulting
values.

2.2 Existential Theories of the Rationals

Analogously to the existential theory of the reals, one can define the existential theory of an
arbitrary field, and that was first done by Buss, Frandsen, and Shallit [14]. For the purposes of
this paper, we need ETQ, the existential theory of the rationals. Over Q, the first of the two sample
sentences we saw earlier,

∃x : x · x = 1 + 1

is false, so it does not belong to ETQ. The second one,

∃x1, . . . , xn : x1 = 1 + 1 ∧ x2 = x1 · x1 ∧ x3 = x2 · x2 ∧ . . . ∧ xn = xn−1 · xn−1

is still true over the rationals.
The complexity class ∃Q is then defined as the set of languages that polynomial-time many-

one reduce to ETQ, and ∃Q-completeness and ∃Q-hardness are defined as usual. In analogy to
Theorem 2 we have the following result, which traces back to [12, 14].

808 Marcus Schaefer RAC-Drawability is ∃R-complete and Related Results

Theorem 4 Testing whether a polynomial f : Rn → R with integer coefficients has a rational zero
is ∃Q-complete.

We do not know much about where ∃Q lies with respect to traditional complexity classes, we
do not even know whether it is decidable. The best result in that respect is due to Poonen [35] who
showed that the ∀∃ theory of the rationals is undecidable (sharpening a result by Julia Robinson).
The best known, trivial, upper bound on ∃Q is the halting problem.

We do know that ∃R ⊆ ∃Q, since deciding whether a system of strict inequalities has a solution
over the reals is equivalent to deciding whether there is a rational solution, and the strict inequality
problem is ∃R-complete [40, Theorem 4.1]. It follows that ∃Q-hardness implies NP-hardness. ∃Q-
completeness naturally arises in graph drawing in the context of grid realizations as first observed
by Cardinal and Hoffmann [16, 27], and our new example, Corollary 14, will be of the same type.

3 Drawings with Junctions

We introduce two types of special vertices that come with angle and rotation constraints. Recall
that the rotation at a vertex in a drawing is the clockwise permutation of edges incident to the
vertex.

� a ⊤-junction is a vertex v which is incident to three special edges e1, e2, e3. A straight-line
drawing respects the ⊤-junction if there are right angles between e1 and e2 and e2 and e3 at
v; additional edges at v can occur, at any angle, between e1 and e3 (opposite of e2),

� a ×-junction is a vertex v which is incident to four special edges e1, e2, e3, e4. A straight-line
drawing respects the ×-junction if the rotation of the special edges at v is e1e2e3e4, or the
reverse, and there are right angles between ei and ei+1, for 1 ≤ i ≤ 3; additional edges may
occur, at any angle, inside one of the quadrants, e.g. between e3 and e4.

Figure 2 shows both junction types, and how we symbolize them in drawings. Lemma 3 implies
that ×-junctions can be simulated by ⊤-junctions, so they are not, strictly speaking, necessary,
but they do simplify the constructions.

ve3

e2
e1

· · → u

v v
e4

e3

e2
e1

·· · → r
v

Figure 2: ⊤- and ×-junctions, and how we visualize them in graphs using a ▼ and a ♦. Dashed
edges are additional edges at the junction.

If special edge e2 in a ⊤-junction ends in a leaf, we can think of the junction as a straight-line,
e3e1, with a vertex on it. Viewing e1e3 and e2e4 as parts of a line, we will sometimes say that
the lines “cross” at the ×-junction v, but strictly speaking v is a vertex, and not a crossing in the
drawing with junctions.

JGAA, 27(9) 803–841 (2023) 809

3.1 The Complexity of Junction Drawings

Two drawings of a graph (with or without junctions) are isomorphic if there is a homeomorphism
of the plane (which may be orientation-reversing) that maps the graphs to each other.

Theorem 5 Given a graph G with ⊤- and ×-junctions and a plane drawing D of G, it is ∃R-
complete to decide whether G has a drawing respecting all junction constraints. The problem
remains ∃R-complete even with the following restrictions:

(i) the only non-junction vertices in G have degree 1, all ×-junctions have at most one additional
edge, and all ⊤-junctions have at most two additional edges, and

(ii) if G does have a straight-line drawing respecting all junction constraints, it has such a drawing
D+ which is isomorphic to D, and

(ii-×) if a ×-junction has an additional edge, it forms an angle of π/4 in D+ with the two
edges it neighbors in the rotation, and

(ii-⊤) if a ⊤-junction has two additional edges, they form a right angle in D+.

A drawing of G respecting all junction constraints may potentially have arbitrary (non-RAC)
crossings. The theorem implies that this does not have to be the case: if G has a drawing respecting
all junction constraints, then G has a drawing respecting all junction constraints without any
crossings by (ii), since D+ is isomorphic to the planar drawing D. It follows that testing whether
a graph with ⊤- and ×-junctions has a crossing-free drawing is also ∃R-complete, but we need the
sharper statement of Theorem 5 for the proof of Theorem 1.

The proof of Theorem 5 can be found in Section 3.3; we prepare for the proof by constructing
various gadgets to simulate arithmetic in Section 3.2.

Remark 6 The inquisitive reader may wonder about conditions (ii-×) and (ii-⊤) which are very
particular, and not used in this paper. They are used in a sequel paper [39] to show that testing
the angular resolution of a graph is ∃R-complete.

3.2 Gadgets

For a reduction from the ∃R-complete problem from Theorem 3 we need to encode equations
xi = 2, xi = xj + xk, xi = xj · xk and xi = xj . This requires several gadgets which we will build
in this section.

How does a drawing of a graph encode a real number? It is tempting to encode a number x
as the absolute distance between two points in a drawing of a gadget, but it does not seem to
be possible to maintain absolute distances in junction- or RAC-drawings. Instead we work with
relative distances. Given three collinear points (these will be vertices of the gadget) labeled 0, 1
and x, we say x represents (−1)sd(0, x)/d(0, 1), where d is the Euclidean distance of two points,
and s is 0 if x lies on the same side of 0 as does 1 (on the common line), and 1 otherwise. We will
refer to d(0, 1) as the scale of the encoding.

Given collinear points p1, . . . , pℓ, where ℓ ≥ 3 and two of the points are labeled 0 and 1,
each point represents a number, and we can talk about another set of collinear points p′1, . . . , p

′
ℓ

representing the same numbers, if the ratios of the distances are the same for both point sets.
Data will be shared between gadgets using parallel lines (via their relative distances), and we

typically visualize gadgets with input points along a horizontal line at the bottom and output

810 Marcus Schaefer RAC-Drawability is ∃R-complete and Related Results

points along another horizontal line at the top, e.g. see Figure 4. Data enters and leaves such a
gadget as vertical lines. There are a few exceptions: some of the turning gadgets have outputs
along a vertical line, e.g. see Figure 5, so data leaves as horizontal lines; some gadgets do not have
inputs, like the variable gadget in Figure 3 and some do not have outputs, like the equality gadget
in Figure 9.

3.2.1 Gadgets for Creating and Moving Data

Variable Gadget

Figure 3 shows the gadget we use to encode a variable xi for which we know that xi > 1. The
variable gadget uses six ×-junctions arranged (and connected) in a 2×3 grid; the top row is labeled
0, 1, and xi in this order (with the e3-edge of a junction identified with the e1-edge of the next
junction) and the bottom row a, b, c. The e4-edges of the top row can then be used to send data
to another gadget. Any unused edges leaving the gadget are capped with a degree-1 vertex. (We
do this for all subsequent gadgets as well, without explicitly mentioning it every time. In the
drawings, these unused edges are generally short.)

r
0

r
1

r
xi

r
a

r
b

r
c

Figure 3: A gadget for variable xi, with xi > 1.

In a drawing of the xi-gadget that respects junctions, all e4-edges must lie on the same side of
the line through 0, 1, and xi, since a, b, and c also lie on a line, and that line is parallel to the first
line. In this way, the xi-gadget can be used to represent any number xi > 1.

By relabeling the junctions in the top row 0, xi, 1, or xi, 0, 1, we obtain gadgets for variables
between 0 and 1, and variables less than 0.

Copy Gadget and Copying Information

Our next gadget allows us to duplicate information by creating two copies of a point set representing
the same numbers. The two copies will even have the same scale as the original set.

The copy gadget consists of two ×-junctions a and b on a common line (so the e1 edge of a is
the same as the e3-edge of b). On the e2-edge of a we have ⊤-junctions c, p1, . . . , pℓ, d, in this order,
and the e2-edge of b has ⊤-junctions p′1, . . . , p

′
ℓ, d

′′, c′′, p′′1 , . . . , p
′
ℓ, in this order. We connect c to c′′,

d to d′′, and pi to both p′i and p′′i , for each i ∈ [ℓ], and replace each crossing with a ×-junction, as
shown in Figure 4.

Let us argue that the copy gadget works correctly. The two e2-edges incident to the ×-junctions
a and b are parallel, since they are both orthogonal to ab. They also leave ab in the same direction:
if they left in opposite directions, then c and c′ (for example) are on opposite sides of the line
through ab, so the lines through cc′ and ab would have to be orthogonal, but then cc′ would
overlap with ca, which we do not allow. Because of the relative order of the points on the top
and bottom line, line cc′′ crosses dd′ as well as all lines pip

′
i at a ×-junction, so all these lines are

JGAA, 27(9) 803–841 (2023) 811

ra

rb

u

c

u

p1

u

p2

u

p3

u

p4

u

p5

u

d

u

p′1
u

p′2
u

p′3
u

p′4
u

p′5
u

d′
u

c′′
u

p′′1
u

p′′2
u

p′′3
u

p′′4
u

p′′5

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

Figure 4: The copy gadget. The dashed lines are orthogonal because they intersect in a ×-junction;
this forces all the pip

′
i as well as all the pip

′′
i lines to be parallel as shown.

parallel. And since every line pjp
′′
j is crossed by the line dd′, these lines are also all parallel. It

follows that d(pi, pj) = d(p′i, p
′
j) = d(p′′i , p

′′
j) for all i, j. In particular p′1, . . . , p

′
ℓ and p′′1 , . . . , p

′′
ℓ both

represent the same numbers as p1, . . . , pℓ. By making d(a, b) large relative to d(c, d) we can move
the two copies far apart if necessary.

By chaining copy gadgets, that is, connecting the parallel lines leaving one of the output point-
sets, say p′1, . . . , p

′
ℓ into the inputs of another copy gadget, we can make an arbitrary number of

copies of a collinear set of points.

Turning Gadgets

Consider the right-turn gadget shown in Figure 5. It consists of a ×-junction v for which the line
through the e1-edge has ⊤-junctions labeled a, p1, . . . , pℓ, in that order towards v, and the line
through the e4-edge has ⊤-junctions labeled b, p′1, . . . , p

′
ℓ, again as read towards v. We connect a

to b, and pi to p′i, for each i ∈ [ℓ]. Finally, we add a line intersecting each of ab, p1p
′
1, . . . , pℓp

′
ℓ in

a ×-junction, in that order. Let c be the ×-junction on ab.

u

a

u

b

r
v

rc

u

p1

u

p2

u

p3

u

p4

u

p′1

u

p′2

u

p′3

u

p′4

r
r

r
r

Figure 5: Right-turn gadget making a (scaled) copy p′1, . . . , p
′
ℓ of p1, . . . , pℓ at a right angle (for

ℓ = 4).

812 Marcus Schaefer RAC-Drawability is ∃R-complete and Related Results

Let us first argue that the right-turn gadget works, in the sense that p1, . . . , pℓ and p′1, . . . , p
′
ℓ

represent the same numbers. The vertices pi and p′i are ⊤-junctions, as are a and b, and all the
junctions on vc are ×-junctions. Since a and b must lie on opposite sides of c, that point lies
between lines va and vb. The lines pip

′
i are parallel (being orthogonal to the line through c), so the

p′i have the same relative distances from each other as do the pi, and so they represent the same
numbers.

The right-turn gadget will play two roles for us. First of all, we can use the right-turn gadget
to change the direction in which parallel lines carry data. A single right-turn gadget makes a right-
angle turn. By mirroring the right-turn gadget, we obtain a left-turn gadget, allowing us to make
a left turn. By chaining two right-angle gadgets, that is, by connecting the p′i of one right-turn
gadget to the pi of a second right-turn gadget, we can achieve a turning angle of π, see Figure 6,
and by adding a third right-turn gadget, 3π/2.

u

a

u

b

r
v

rc

u

p1
u

p2
u

p3
u

p4

u
u

u
u

r
r

r
r

u

u

r

r

uuuu

u

u

u

u

r

r

r

r

p′4 p′3 p′2 p′1

Figure 6: Gadget for a turning angle of π.

The second role the right- and left-turn gadgets play for us, is that they allow us to change
the scale of an encoding: The distances d(a, v) and d(b, v) are independent of each other, so we
can choose the scale on each axis as needed. In other words, we can arbitrarily scale information
(while turning it as well).

3.2.2 Arithmetical Gadgets

Constant Gadget

Let us start with the number 2. The number 2 gadget is shown in Figure 7; we obtain it by creating
a 4 × 5 grid of ×-junctions of which we remove the rightmost junctions in the lower two lines. We
label the resulting grid cells like a chessboard, so A1 is the lower-left cell and D3 is the top-right
cell. We add diagonals inside the cells A1, C1, A3 and D3; we make the “intersection” of each pair
of diagonals a ×-junction.

Let us consider a drawing of the number 2-gadget respecting the junctions. The ×-junctions
forming the corners of each grid cell ensure that the shape they bound is a rectangle. The diagonals
inside a rectangle with diagonals “intersect” at a right angle, since the intersection is a ×-junction,
so the sides of the rectangle have the same length, and the cell is bounded by a square.

The four squares with diagonals then force the distance between 0 and 1 to be the same as
the distance between 1 and 2: the distance between 1 and 2 is the side-length of square D3 which

JGAA, 27(9) 803–841 (2023) 813

r r

r r

r

r r

r r

r

r
0

r

r r

r r

r

r r

r
1

r
2

r

Figure 7: The number 2 gadget.

equals the side-length of square A3 which in turn has the same side-length as square A1 which
finally has the same side-length as C1 which equals the distance between 0 and 1. We conclude
that the point labeled 2 accurately represents the number 2.

(Why do we not place two squares with diagonals right next to each other? The reason is that
our ×-junctions only allow additional edges in one quadrant.)

Negation Gadget

We next build a special negation gadget that, for given input points 0, 1, and x creates four output
points, −x, −x + 1, 0, and 1 that correctly represent their labels. To build the negation gadget,
shown in Figure 8, we start with a 3×4-grid of ×-junctions, removing the rightmost junction of the
bottom line. We add diagonals to cells A2 and C2 replacing the “intersections” with ×-junctions,
as we did in the number 2 gadget. We label the three input junctions on the bottom line 0, 1 and
x, and the four output junctions on the top line −x, −x + 1, 0 and 1.

In a drawing respecting the junctions, all cells are rectangles, so the distance between inputs
0, 1 and x is the same as the distance between outputs −x, −x + 1, and 0. As we argued in the
case of the number 2 gadget, the cells containing diagonals are squares, so the distance between
outputs 0 and 1 and outputs −x and −x + 1 is the same, which also implies that the input and
output 0 and 1s have the same distance. It follows that the output points accurately represent
their labels.

We use this gadget only for x with x > 1, so the sides of the squares do not interfere on the
top lines.

Equality Gadget

We can use a modified copy gadget to enforce xi = xj for two variables xi and xj which we know
to be larger than 1.

We assume that for each variable x ∈ {xi, xj} we have three incoming lines labeled 0, 1 and
x, with all six lines parallel to each other (and oriented the same direction). Figure 9 shows the
equality gadget; it is made up of an upside-down copy gadget with three points p1, . . . , p3 labeled
0, 1 and xi = xj , and p′1, p

′
2, p

′
3 labeled 0, 1, xi and p′′1 , p

′′
2 , p

′′
3 labeled 0, 1, xj .

By the properties of the copy gadget, the equality gadget is only realizable (respecting junc-
tions), if xi and xj represent the same value larger than 1, and the scales of the two variables

814 Marcus Schaefer RAC-Drawability is ∃R-complete and Related Results

r r

r

−x

r

−x+ 1

r

r r

r

0

r

1

r

r
0

r
1

r
x

Figure 8: Negation gadget for x representing −x and −x + 1.

ra

rb u
d′

u
0

u
1

u

xi = xj
u
c′

u

0

u

1

u

xi

u

c

u

d

u

0

u

1

u

xj

r

r

r

r

r

r

r

r

r

r

Figure 9: Testing equality xi = xj using the copy gadget.

are the same. Since we use turning gadgets to connect gadgets, the second condition is not a
restriction, since the turning gadgets can rescale the data.

Addition Gadget

Computing xi = xj + xk appears easy since we can use a modified copy gadget to geometrically
add xj to xk. A direct implementation of this idea runs into the problem that we do not know
which one of xj or xk is greater (or if they are the same). This leads to a problem in constructing
the gadget, since we need to place the points on a line, which forces a particular order. To avoid
this problem we work with the negation gadget to create −xj and −xj + 1 which we can then
geometrically add to xk. (The idea of working with negation to avoid the ordering problem is due
to Richter-Gebert [36], also see Matoušek [32].)

The addition gadget is, like the equality gadget, an upside-down copy gadget with the outputs
on the top line labeled 0, 1, and xj +xk together with some unlabeled points, and the inputs along
the bottom line labeled −xj , −xx + 1, 0, 1 in the left half, and 0, 1, xk in the right half, again
with some unlabeled points, as shown in Figure 10. One of the lines incident to xj + xk has been
dropped, since there is no need for a point corresponding to xj +xk in the left input to the gadget.

When using the addition gadget, the xj-inputs come from a negation gadget for xj . Assuming
that, and assuming that we have a drawing of the addition gadget respecting the junctions, we
can argue that the outputs correctly represent their labels. Since the addition gadget is simply

JGAA, 27(9) 803–841 (2023) 815

ra

rb

u

−xj

u

−xj + 1

u

0

u

1

u u u u u

0

u

1

u

xk

u u

0

u

1

u

xj
u uu

xj + xk

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

Figure 10: Addition gadget computing xi = xj + xk.

an upside-down copy gadget, we argue as before that the two dashed edges are orthogonal, which
forces the other lines to be parallel. If we ignore the two dashed edges and their endpoints, the
remaining points on top represent −xj , −xj + 1, 0, 1, xk. If we relabel the first and second points
as 0 and 1, then the fifth point represents xj + xk, and the addition gadget works as needed. Like
the equality gadget, it requires that the scales of the two inputs are the same.

Multiplication Gadget

To compute xi = xj · xk we face the same issue we encountered when encoding addition: we do
not know which of xj and xk is greater, so we cannot place them along the same line. Instead
of working with negation, we work with the reciprocal of xj , which lies (strictly) between 0 and
1 since, as usual, we assume that xi > 1. Given three collinear points labeled 0, 1 and x, simply
relabeling them as 0, 1/x and 1 (in the same order), gives us the reciprocal of x, see Figure 11.

r
0

0
r

1/x

1
r

1

x

Figure 11: Computing the reciprocal 1/x of a variable x > 1.

This is cheating a bit, since for most other gadgets (except the turning gadgets) the distance
between 0 and 1 (the scale) does not change, and most gadgets assume the distance between 0 and
1 is the same when processing inputs. Since we connect gadgets using turning gadgets, which can
rescale arbitrarily, an output 0, 1, x from some other gadget, can be rescaled to 0, 1/x, 1 to be
connected to the multiplication gadget, so we do not even need an explicit gadget computing the
reciprocal, we simply relabel the lines.

The product xi = xj · xk can then be calculated using the multiplication gadget shown in
Figure 12. It is a copy gadget upside down allowing us to merge 1/xj and xk into a common scale.
(We dropped two lines, one incident to output 1 and one incident to output xj · xk since there is
no need for corresponding input points.)

The points along the top line (ignoring the endpoints of dashed lines which enforce orthogo-
nality) represent 0, 1/xj , 1 and xk, which we can relabel as 0, 1, xj and xj · xk, at which point
we can drop the xj to obtain a gadget computing xj · xk. The multiplication gadget changes the

816 Marcus Schaefer RAC-Drawability is ∃R-complete and Related Results

r

r

u

0

u

1/xj

u

1

u

u u

0

u

1

u

xj
u

xj · xk

u

u u

0

u

1

u

xk

r

r

r

r

r

r

r

r

r

Figure 12: Multiplication gadget computing the product xi = xj · xk.

scale which is fine, since when we connect its output to the input of another gadget, the turning
gadgets can be used to rescale 0 and 1 to the standard distance.

3.3 Proof of Theorem 5

We can assume that we are given a system of equations over variables xi, i ∈ [n] as described in
Theorem 3. Our goal is to (efficiently) construct a graph G with junctions, so that the system of
equations is solvable, if and only if the graph G has a drawing respecting the junctions. We will
also have to show that conditions (i) and (ii) of the theorem are satisfied.

We build G and a plane drawing D of G in several stages. We first create gadgets for the main
operations.

� For every variable xi occurring in the system of equations create a variable gadget.

� For every occurrence of a variable xi in an equation create a new copy gadget. For every
occurrence of the number 2 in an equation, create a number 2 gadget.

� For every equation of the type xi = xj + xk create a new negation- and an addition-gadget
and for each equation of the type xi = xj · xk create a new multiplication gadget.

� For every equation, of any of the four types: xi = 2, xi = xj , xi = xj + xk, and xi = xj · xk,
create an equality gadget.

Let us say this gives us m gadgets in total. Place all m gadgets so that their output points lie
along the same vertical line. Incoming and outgoing (information-carrying) edges are then vertical.
A (somewhat simplified example) is shown in Figure 13.

We need the following connections between gadgets:

� the output of the variable xi-gadget needs to be connected as an input to one of the copy
gadgets representing it, and all the copy gadgets representing the variable xi need to be
connected to each other; this will leave one free set of output points representing xi in each
of the copy gadgets for xi,

� if xi occurs in an equation, we need to connect an unused set of output points representing
xi to one of the inputs of the equality gadget associated with the equation,

� if 2 occurs in an equation, we need to connect the output of an unused number 2 gadget to
one of the input sets of the equality gadget representing the equation,

JGAA, 27(9) 803–841 (2023) 817

x1 x2 2 cp − + · =

Figure 13: Translating x1 + 2 = x1 · x2 into a drawing D with junctions; the black boxes represent
gadgets corresponding to their labels, and the gray triangles are right- and left-turn gadgets.
Intersections of lines in the drawings are realized as ×-junctions (not explicitly shown).

� for every equation of the type xi = xj + xk or xi = xj · xk we connect the unused output of
a xi-gadget and the output of the addition (or multiplication gadget) for the term xj + xk

(xj · xk, rsp) to the inputs of an unused equality gadget.

We still need to explain how to connect a set of outputs from gadget α to be an input to
gadget β, where 0 ≤ α, β < m. This can be done with four turning gadgets: We leave α upwards,
turn right twice, and move vertically downwards to the right, and close to, gadget α. We move
downwards to a unique level reserved for connecting α and β, say at depth α + βm below the
common line. We then turn left, move below the inputs of gadget β, and make another left-turn,
connecting to β vertically from below. In this way, each connection between two gadgets requires
four turning gadgets (two right- and two left-turns).

Connecting the gadgets introduces (orthogonal) crossings between some of the lines connecting
the turning gadgets, but we can determine exactly which of these lines cross (independently of
whether the gadgets are realizable or not). We replace each such crossing with a ×-junction. We
obtain a graph G as well as a plane embedding D of G (which may not satisfy the junction-
constraints, of course).

If the system of equations is solvable, we can use a solution to create a drawing of each gadget
respecting the junctions; moreover, we can assume that in each gadget, the output scale, that is
the distance between the outputs labeled 0 and 1 is 1. Place the gadgets along the common line
as described by D, moving them sufficiently far apart so they do not interfere. We can then draw
the connections between the gadgets as described in D: using the turning gadgets, we can ensure
that the connecting lines have the right scale when leaving and entering a gadget, and, in between
those two points, are sufficiently close so as not to interfere with any other gadget. Since line
intersections were replaced with ×-junctions, we have built a drawing D+ isomorphic to D which
respects all junctions.

On the other hand, if there is a drawing of G respecting junctions, all the gadgets work as
described, and each occurrence of a variable represents the same value, so there is a solution to
the system of equations. This proves (ii), without (ii-×) and (ii-⊤).

By construction, all vertices of G are ⊤-junctions, ×-junctions, or have degree 1. All uses

818 Marcus Schaefer RAC-Drawability is ∃R-complete and Related Results

of junctions are illustrated: inspecting Figures 3–12 shows that the ×-junctions used in gadgets
have at most one additional edge, resulting from adding diagonals to a rectangle; those edges
always form an angle of π/4 with their neighbors; the only other place we use ×-junctions occurs
when connecting gadgets, to remove crossings, as in Figure 13; these ×-junctions do not have
additional edges. Similarly, Figures 4–6, 10 and 12 show all the occurrences of ⊤-junctions in
gadgets. Inspecting those illustrations shows that all ⊤-junctions in gadgets have at most two
additional edges, and in the cases where they do, namely in the copy gadget, Figure 4 and the
gadgets based on it, Figures 9, 10 and 12, the two additional edges form a right angle. This proves
(i), (ii-×) and (ii-⊤), completing the proof.

Example 7 Figure 13 illustrates our construction for the simple equational system

x3 = 2, x4 = x1 + x3, x5 = x1 · x2, and x5 = x6.

Since even a simple example like this would require a lot of gadgets, we eliminate some of the
variables and reduce the system to the equivalent

x1 + 2 = x1 · x2,

and we create a junction drawing based on this equation following the ideas of the proof above
(rather than all the details). We create variable gadgets for x1 and x2 and a gadget for 2. We
also need a copy gadget, since x1 occurs twice, an addition gadget (with a negation gadget), a
multiplication gadget, and one equality gadget. We line them all up along a line, and use the
turning gadgets to connect them as shown in Figure 13. For example, the addition gadgets receives
as inputs −x1, −x1 + 1, 0, 1 (from the negation gadget), as well as 0, 1, and 2, and the equality
gadgets compares the results of x1 + 2 to x1 · x2. In the illustration, we did not use a unique level
for each connection so as to keep the drawing small.

3.4 Forcing Empty Faces

When replacing ⊤- and ×-junctions with normal vertices in RAC-drawings, we make use of a
restricted drawing model that simplifies the construction. Given a graph G with k pairwise disjoint
sets of vertices Vi ⊆ V (G), i ∈ [k], we are interested in RAC-drawings of G in which the vertices
of each Vi lie on the boundary of an empty face, for all i ∈ [k].

The following theorem shows that this drawing constraint can be removed in RAC-drawings.

Theorem 8 Let G be a graph, and let (Vi)i∈[k] be k pairwise disjoint sets of vertices of G. We
can construct, in polynomial time, a graph G′ so that G has a RAC-drawing in which the vertices
of each Vi lie on the boundary of an empty face, if and only if G′ has a RAC-drawing.

For the proof, we will use that a RAC-drawable graph can have at most 4n− 10 edges [19].

Proof: Let v1, . . . , vk be k new vertices not in G. Connect vi to each vertex in Vi by a path of
length n, where n = |V (G)|, for 1 ≤ i ≤ k. Finally, replace each edge of the newly added paths by
ℓ = 12n2 paths of length 2 (that is, a K2,ℓ). See Figure 14 for an illustration. Call the resulting
graph G′. Suppose G′ has a RAC-drawing.

Since we added at most n paths of length n to G, we have at most n2 of the K2,ℓ-graphs in
G′. We consider them one at a time. Let E0 = E(G). An edge can cross at most one edge of
a K1,ℓ at right angles (otherwise, the edges of K1,ℓ would overlap). Hence, an edge can cross at

JGAA, 27(9) 803–841 (2023) 819

v

b1

b3

b2

...

. . .
. . .

· ·
·

. . .

..
...

.
..
.

···
..
.

...

...
... · · · ...

Figure 14: Forcing an empty face; in this example v = vi and Vi = {b1, b2, b3}.

most two edges of a K2,ℓ. Since ℓ > 8n > 2|E0|, the first K2,ℓ contains a path P1 of length 2 that
crosses none of the edges in E0. Let E1 = E0 ∪ E(P1). Inductively, we obtain Ei = Ei−1 ∪ E(Pi)
with |Ei| < 4n + 2i. The (i + 1)-st K2,ℓ must contain a path Pi+1 of length 2 which crosses none
of the edges in Ei, since 2|Ei| < 2(4n + 2i) ≤ ℓ, for all 1 ≤ i ≤ n2. With Pi+1, we can let
Ei+1 = Ei ∪ E(Pi+1).

We conclude that the RAC-drawing of G′ contains a RAC-drawing of G together with the
vertices vi and paths from each vi to every vertex in Vi so that none of the paths are involved in
any crossings. In other words, for each i there is a crossing-free (subdivided) wheel with center vi
and a perimeter containing Vi. Removing all edges not belonging to G gives us a RAC-drawing of
G in which all vertices of Vi lie on the boundary of the same face (the one that contains vi).

For the other direction, suppose G has a RAC-drawing in which all vertices of each Vi lie on
the boundary of the same face Fi. For each i, we create a new vertex vi. We place vi inside and
close to the boundary of Fi so that we can connect vi by a path of length n to each vertex in Vi

by closely following the boundary of Fi. We can then replace each edge of the newly added paths
ℓ parallel paths of length 2 to obtain a RAC-drawing of G′. 2

4 Proof of Theorem 1

∃R-membership of RAC-drawability was first shown by Bieker [11, Section 6.2]; it also follows
from Lemma 4, as discussed after that lemma. To prove ∃R-hardness, we are missing one more
ingredient, a way to simulate junctions in RAC-drawings.

Theorem 9 Let D be a planar drawing of a graph G with some vertices identified as ⊤- and ×-
junctions. We can efficiently construct a graph G′ without junctions, vertex sets (Vi)i∈[k], and a
drawing D′ of G′ in which all vertices of each Vi lie on the boundary of an empty face, so that:

(i) if D is isomorphic to a drawing of G respecting the junctions, then D′ is isomorphic to a
RAC-drawing of G′, and all edges are involved in at most eleven crossings,

(ii) if G does not have a drawing respecting the junctions, then G′ does not have a RAC-drawing
in which all the vertices of each Vi lie on the boundary of an empty face.

820 Marcus Schaefer RAC-Drawability is ∃R-complete and Related Results

The proof of Theorem 9 can be found in Section 4.1. Let us see how this theorem completes
the proof of Theorem 1; we first consider the fixed embedding case. By Theorem 5 it is ∃R-hard
to test whether a graph G with junctions has a drawing respecting the junctions, even if we know
that the graph either has no drawing respecting the junctions, or that it has a crossing-free drawing
isomorphic to a given planar drawing D. Using Theorem 9, we construct a graph G′ and a drawing
D′ so that G has a drawing respecting junctions if and only if D′ is isomorphic to a RAC-drawing
of G′. For the forward direction, we use (i), and for the backward direction (ii) and the fact that
D′ forces all vertices of each Vi to lie on the boundary of an empty face.

To show that the problem remains ∃R-complete without fixing the embedding, we need to take
one more step by enforcing that all the vertices of each Vi lie on the boundary of an empty face
without relying on the embedding D′. For this, we apply Theorem 8 to G′ and the vertex sets
(Vi)i∈[k] to obtain a graph G′′, without a fixed embedding. Then G has a drawing respecting
junctions if and only if G′′ has a RAC-drawing.

4.1 From Junctions to RAC-Drawings

The double cap. We need gadgets to simulate the ⊤- and ×-junction restrictions in RAC-
drawings. We will base these gadgets on the graph we call the double-cap shown in Figure 15.
The double-cap consists of two cycles, the a-cap, bounded by a0, . . . , a10 and the b-cap, bounded
by b0, . . . , b10, two center vertices, c0, c1, and three vertices of attachment, α, β, and γ which will
be identified with vertices from other gadgets. Curves a0a10 and b0b10 (shown as dashed in the
illustration) are subdivided sufficiently often, so they can be realized as polygonal curves.

α β

γ

c0 c1

b0 b1

b2

b3
b4

b5b6b7
b8

b9
b10

a0a1

a2

a3
a4 a5

a6
a7

a8

a9

a10

Figure 15: The double-cap with attachments c0α, c1β, and a1γ. Each of the vertex sets
{a0, a1, . . . , a10} and {b0, b1, . . . , b10} lies on the boundary of a face. Edges a0a10 and b0b10 (dashed)
are subdivided so they can be realized by a polygonal curve. The inside of the double-cap is shaded.

We will argue that the double-cap simulates a line: αc0 and c1β will be collinear, and a1γ will
be parallel to that line; the parallel line will be essential in building the ⊤-gadget below, which
simulates a ⊤-junctions.

Assuming the double-cap (without attachments) is drawn as shown in the illustration, we can
define the inside of the double-cap as the region bounded by a0b7b8b10b0a7a8a10a0; this region is

JGAA, 27(9) 803–841 (2023) 821

shaded in the illustration. We can then say that a point lies outside the double-cap if it does not
lie inside the closure of inside of the double-cap.

Lemma 1 Suppose we have a RAC-drawing of the double-cap, in which both {a0, a1, . . . , a10} and
{b0, b1, . . . , b10} bound an empty face.

(i) Without the attachments, the drawing is isomorphic to the drawing shown in Figure 15 (with-
out the attachments).

(ii) If α, β, and γ lie outside the double-cap, then the drawing of the double-cap with attachments
is isomorphic to the one shown in Figure 15; in particular, c0α and c1β are collinear and
a1γ and αβ are parallel.

Proof: We start with (i) and ignore the attachments to α, β, and γ. Since {a0, a1, . . . , a10} lie
on the boundary of an empty face, and the ends of a2a9 alternate with the ends of both a0a3 and
a8a10, a2a9 must cross both of those edges and do so orthogonally. Then a0c0 cannot cross a2a9,
since otherwise it would overlap with a0a3. It follows that c0a4 must cross a2a9 (since c0a4 cannot
cross the empty face bounded by the a-cap). This implies that c0c1 cannot cross a2a9 (edges would
overlap), so c1a6 must cross a2a9. Repeating the same argument, c1b0 cannot cross a2a9, so b0a7
must cross a2a9. Similarly, c0b6 and c1b4 cannot cross a2a9, and since b4, b5, b6 lie on the boundary
of the same face, a5b5 must cross a2a9. At this point, we know that a0a3, c0a4, b5a5, c1a6, and
b0a7 are all orthogonal to a2a9 and therefore all parallel to each other.

By symmetry, we can conclude analogous facts about the upper cap. It then follows that a5b5
must cross c0c1, so c0c1 is parallel to a2a9 and b2b9. And edges a0a3 and a0b7 are collinear, as are
c0a4 and c0b6, as well as c1a6 and c1b4, and b0a7 and b0b3.

This, in turn implies that a3a0b7, a4c0b6, a5b5, and a6c1b4 lie on parallel lines and must cross
edge b2b9 (since they connect vertices on opposite caps, which lie on empty face boundaries).

In summary, without attachments, the drawing of the double-cap is (up to a homeomorphism)
as shown in Figure 15.

This implies that it is meaningful to assume, for part (ii), that α, β and γ lie outside the
double-cap (as defined earlier).

Since γ does not lie inside the region bounded by {a0, a1, a2, a3} and a1γ cannot pass through
the empty face bounded by {a0, a1, . . . , a10}, a1γ must cross a0a3, entering the rectangle formed
by b7a0a3, a2a9, a7b0b3, and b2b9. Since it does not lie inside, it must continue crossing c0a4, b5a5,
c1a6 and b0a7 (note that a0c0 cannot cross a1γ, so c0c1 lies between a1γ and a2a9 both of which
it is parallel to). Hence, a1γ is as shown in the drawing.

Next, consider α. Since α does not lie inside the rectangle formed by b7a0a3, a2a9, a7b0b3,
and b2b9, but c0 does, it follows that αc0 crosses one of the four sides of that rectangle, but three
of the directions, c0b6, c0c1, and c0a4 are already taken (since there can be no overlap). So αc0
must cross either a0a3 or a0b7. If it crosses a0a3 it would also have to cross the boundary of the
a-cap (since α does not lie inside the double-cap), which is not allowed, since the face bounded by
{a0, a1, . . . , a10} is empty. It follows that αc0 must cross a0b7.

A symmetric argument for β (rotate the double-cap upside-down) shows that c1β crosses b0a7.
Hence, the drawing with attachments is as shown in the figure.

The chain of crossings: c0α with a0b7, a0b7 with b2b9, b2b9 with a5b5, a5b5 with a2a9, a2a9 with
a7b0 and finally a7b0 with c1β shows that c0α and c1β are collinear. And since a5b5 crosses a1γ,
a1γ and αβ are parallel. 2

The ⊤-gadget. By combining two double-caps we can now build a ⊤-gadget, as shown in Figure 16;
the ⊤-gadget contains four caps, one a- and one b-cap for each of the double-caps. The ⊤-gadget

822 Marcus Schaefer RAC-Drawability is ∃R-complete and Related Results

has three attachments: c0α, c′0γ, and vγ. We label the non-attachment vertices in each double-cap
as before, and add a prime symbol (′) to distinguish the vertices in the right double-cap.

We define the outside region of a ⊤-gadget to be everything that is outside both the double-caps
(as defined earlier) as well as outside the region bounded by the boundary c0,a0,a1,a′1,c′0,c0. The
inside region is shaded in the drawing.

α β

γ

c0 c1

a0a1

a3

a5
a7
a8

a10

b0

b5
b7b8

b10

c′0c′1

a′0 a′1

b′0

b′5
b′7

a′3
a′5

a′7

v

e f

Figure 16: Simulating a ⊤-junction with two double-caps. The inside region of the ⊤-gadget is
shaded.

Lemma 2 Suppose we have a RAC-drawing of the ⊤-gadget in which all four caps bound empty
faces. Then the drawing without attachments is isomorphic to the drawing shown in Figure 16
(without the attachments). If α, β and γ lie outside the ⊤-junction and vγ starts inside the
⊤-gadget, then the drawing is isomorphic to the one shown in the figure.

The two additional edges e and f in Figure 16 could leave v in other directions as well, the
drawing shows the intended direction. We note that the caps can be made arbitrarily small, and
close to v, so that e and f can be realized anywhere in the rotation at v between α and β.

Proof: By Lemma 1, we can assume that both double-caps, without attachments are drawn as
shown in the figure, except each one of them could be reversed (we will exclude that possibility
later).

We attached v to two new vertices on the boundary of the b-cap of the left double-cap, call the
connecting edges g and h. We claim that v must lie outside the left double-cap. If v lies inside the
double-cap, edges g and h would have to cross b8b10, a8a10, b0a7 or a0b7 to get inside (all other
boundary edges have no crossings, since they are on the boundary of an empty face). Two incident
edges cannot both cross the same edge orthogonally, as they would overlap, so g and h must cross
two different edges. This is only possible if v lies inside the region bounded by the double-cap and
g and h cross a0b7 and b0a7. Since a0b7 and b0a7 are parallel this forces g and h to be collinear,
creating a crossing through the double-cap with endpoints outside. This is not possible, because of
the two diagonal edges c0a0 and c1b0. We conclude that v lies outside of the left double-cap, and,
with the same argument, outside the other double-cap as well. Moreover, the two double-caps are

JGAA, 27(9) 803–841 (2023) 823

outside each other, since otherwise vc1 would overlap with vc′1. In particular, the two double-caps
are on opposite sides of v, and therefore oriented as shown in the figure.

Consider the edge a1a
′
1. Since a′1 is outside the left double-cap, a1a

′
1 crosses b0a7, b5a5 and

a0a3 orthogonally. Similarly, because a1 is outside the right double-cap, a1a
′
1 crosses b′0a

′
7, a′5b

′
5,

and a′0a
′
3 orthogonally. It follows that the six edges, b0a7, b5a5, a0a3, b′0a

′
7, a′5b

′
5, and a′0a

′
3 are

parallel to each other, which, in turn implies that αc0, c0c1, c1v, vc′1, c′1c
′
0 and c′0β are parallel

(since each of them is orthogonal to one of the six edges), and, since they form a path, must be
collinear. In particular, v lies on the line through α and β.

If γ lies outside the ⊤-gadget, and leaves v by starting inside the gadget, it also has to cross
a1a

′
1 forcing vγ to be orthogonal to αβ. 2

Replacing ×-junctions. Finally, as mentioned earlier, we can replace each ×-junction with four
⊤-junctions, see Figure 17.

r → u

uu

u

Figure 17: How to replace a ×-junction with four ⊤-junctions.

Lemma 3 Given a graph G with ×- and ⊤-junctions, we can build a graph G′ with ⊤-junctions
only so that G has a drawing respecting junctions if and only if G′ does, and if the drawing of G
is crossing-free, then so is the drawing of G′. Given a drawing D isomorphic to a drawing of G
respecting junctions we can efficiently find a drawing D′ isomorphic to a drawing of G′ respecting
junctions.

Proof: We replace each ×-junction with four ⊤-junctions as shown in Figure 17. This does not
affect drawability respecting junctions, and constructs D′ efficiently from D. If the original drawing
is crossing-free, then the ⊤-junctions can be placed arbitrarily close to the vertex of the original
×-junction so that the new drawing remains crossing-free. 2

4.2 Proof of Theorem 9

We are given a graph G with ⊤- and ×-junctions, together with a crossing-free drawing D of G. We
have to construct a graph G′, a drawing D′ of G′ and vertex sets (Vi)i∈[k] satisfying the conditions
of Theorem 9.

Because of Lemma 3, we can assume that G contains only ⊤-junctions. By Theorem 5 we
know that a drawing of G respecting junctions, if it exists, will be isomorphic to D. We start by
replacing each ⊤-junction with a ⊤-gadget.

Consider an edge uv in G. If it connects two non-junction vertices, we do nothing. Suppose
uv connects ⊤-junction v to a vertex u in G. If u is α or β in the ⊤-gadget, we connect u with

824 Marcus Schaefer RAC-Drawability is ∃R-complete and Related Results

two edges to one of the neighboring two caps belonging to the ⊤-gadget belonging to v. See the
vertex u on the left of Figure 18. If u is γ in the ⊤-gadget, we connect it with two edges to the
lower caps of both double-caps belonging to v (this situation is not shown in the illustration).

c′0
v

c0
u

b
b

b
b

b

b

b

b

b b

bb

b b

bb

Figure 18: Connecting a ⊤-gadget v to a neighboring vertex u on the left and a neighboring ⊤-
gadget w on the right (only the leftmost double-cap of the gadget for w is visible). Vertex c′0 in
the ⊤-gadget for v is identified with α in the ⊤-gadget for w, and vertex c0 in the ⊤-gadget for w
is identified with β in the ⊤-gadget for v.

Similarly, if an edge vw connects two ⊤-junctions in G, we connect the boundaries of all caps (of
⊤-gadgets for u and v) that lie in the same region and merge them, by making them the boundary
of a common empty face: we connect pairs of consecutive vertices on each of the two boundaries
with each other, creating a narrow tunnel between two caps. See Figure 18 which shows the full
⊤-gadget for v, and two partial ⊤-gadgets, the one on the right representing w (the vertex w itself
lies outside the frame). The c′0β-edge of the ⊤-gadget for v was identified with the αc0-edge of
the ⊤-gadget for w (on the right), and the corresponding a- and b-caps were merged. This forces
the c0-vertex belonging to the ⊤-gadget for w to lie outside the ⊤-gadget for v and the c′0-vertex
belonging to the ⊤-gadget for v to lie outside the ⊤-gadget for w. In this fashion we ensure that
for each ⊤-gadget, its α-, β-, and γ-vertices lie outside the gadget. For γ-vertices merging the
caps also enforces that vγ leaves the ⊤-gadget in the right direction: below the ⊤-gadget for u
in Figure 18 there is a (side-ways) double-cap belonging to another ⊤-gadget. Its c′0 vertex is
identified with γ from the ⊤-gadget for v. The merged caps force vγ to leave v starting inside the
gadget. By Lemma 2 this implies that the ⊤-gadget correctly represents a ⊤-junction.

From the crossing-free drawing D of G we have constructed a graph G′ (without ⊤- or ×-
junctions) and a drawing D′ of G′. Let (Vi)i∈[k] be the collection of boundaries of (merged) caps.

If D is isomorphic to a drawing of G respecting junctions, then we can draw the junction gadgets
as intended (that is, as shown in the illustrations), and D′ is isomorphic to a RAC-drawing of G′.
Inspecting the gadgets, we find that no edge in any gadget is involved in more than 11 crossings
(this number is achieved for edges of type a1a

′
1 connecting two double-caps in a ⊤-gadget). Hence,

we can assume that the RAC-drawing is 11-planar. This proves Property (i) of the theorem.

JGAA, 27(9) 803–841 (2023) 825

For (ii) suppose that G′ has a drawing in which the vertices of each Vi lie on the boundary of
an empty face. This is sufficient, as we argued, for all the junction gadgets to work correctly, and
we can conclude that G has a RAC-drawing. This completes the proof.

5 Area Bounds and Grid Drawings

The area of a RAC-drawing is the area of a smallest bounding box containing the drawing in which
all points (vertices, crossings, bend-points, if allowed) have at least distance 1 from each other.
Using the reduction from Theorem 1 we can build a graph G representing equations

x1 = 2, x2 = x1 · x1, x3 = x2 · x2, . . . , xn = xn−1 · xn−1.

Then any RAC-drawing of G contains three points representing 0, 1, and 22
n−1

. So G is a graph of
polynomial size which requires double-exponential area. In Section 5.1 we will see a corresponding
upper bound.

Corollary 10 There are graphs which are RAC-drawable but require double-exponential area.

In the graph G constructed for the corollary, the points in the gadgets can even be placed so
as to lie on a grid. This is not always possible, since we can also build a graph G representing
equations

x1 = 2, x1 = x2 · x2.

A RAC-drawing of G will contain triples of points representing 0, 1,
√

2; since 1 and
√

2 are
linearly independent over Q, it is not possible to place the three points on a grid, so G can have
an RAC-drawing which is not realizable on a grid.

Corollary 11 There are graphs which are RAC-drawable but not realizable on an integer grid.

We have a closer look at grid drawings in Section 5.2 on the computational complexity of RAC-
drawability on the grid, and Section 5.3 on the geometric complexity of RAC1-drawings on the
grid.

5.1 Area Upper Bound

Recall that RACk-drawings are RAC-drawings in which each edge may have up to k bends.

Corollary 12 Every graph that has a RACk-drawing, has a RACk-drawing with at most double-
exponential area, for every k ≥ 0.

Since we have polynomial area upper bounds for k = 3, this result is only interesting for k < 3,
where it gives the currently best-known upper bounds. For k = 1 we will strengthen the result in
Theorem 15.

This type of exponential upper bounds on the geometric complexity of realizations was first
obtained by Goodman, Pollack and Sturmfels [25] in a paper on the spread of point configurations.
Our situation differs in that the realization space of RACk-drawings of a graph is not open in the
topological sense. This forces us to go back to one of the original tools, a result due to Grigor’ev
and Vorobjov [26]. This will be the main technical ingredient in the proof of Corollary 12.

826 Marcus Schaefer RAC-Drawability is ∃R-complete and Related Results

Theorem 13 (Grigor’ev and Vorobjov [26, Lemma 10]) Suppose f is a polynomial in n vari-
ables of (total) degree less than d and with integer coefficients of bitlength less than M . If f = 0
has a solution, then it has a solution of distance at most R = 2Mdcn

from the origin, where c > 0
is a fixed constant, independent of f .

Bieker showed that RAC-drawability can be expressed in the existential theory of the reals.
We need a slightly more precise form of that statement as the second main ingredient in the proof
of Corollary 12, so we reprove the result.

Lemma 4 (Bieker [11, Section 6.2]) Given a graph G = (V,E) we can efficiently compute a
polynomial fG with variables (vx, vy) for v ∈ V , (cx, cy) for c ∈

(
E
2

)
, and additional variables λi,

i ∈ I so that the following two statements are equivalent:

� G has a RAC-drawing in which every vertex v is placed at location (vx, vy) and for every pair

of edges c ∈
(
E
2

)
that crosses, the crossing is at (cx, cy),

� fG((vx, vy)v∈V , (cx, cy)c∈(E
2), (λi)i∈I) = 0 for some choice of the λi, i ∈ I.

The polynomial fG has total degree at most 12, the bit-length of fG is O(log n), and |I| = O(n2),
where n = |V |, so the total number of variables of fG is O(n2).

In particular fG has a zero if and only if G has a RAC-drawing, this is all we need for membership
of RAC-drawability in ∃R (and the proof of Theorem 1).

Proof: We show how to translate certain conditions, such as two line segments being parallel, into
nonnegative polynomials so that the condition is true if and only if the polynomial has a zero. We
then combine these conditions into the single polynomial fG.

Range Constraints. The condition λ ≥ 0 is equivalent to there being a λ# for which λ = λ2
#.

So λ ≥ 0 is true if and only if the (nonnegative) polynomial (λ − λ2
#)2 is zero for some λ# ∈ R.

We can also express λ ̸= 0 as there being a λ# so that λλ# = 1, or, equivalently, (λλ# − 1)2 being
zero for some λ# ∈ R.

A value λ lies in the range (0, 1), that is, 0 < λ < 1 if there is a λ# ∈ R for which λ(1+λ2
#) = 1;

defining the polynomial
f∈(0,1)(λ, λ#) := (λ(1 + λ2

#) − 1)2

we have that f∈(0,1)(λ, λ#) is zero for some λ# ∈ R if and only if 0 < λ < 1.
Similarly, we can express that λ does not lie in the range (0, 1), so either λ ≤ 0 or λ ≥ 1. This

is equivalent to λ2 − λ ≥ 0 which is equivalent ∃λ# : λ2 − λ − λ2
= 0. So we can define the

polynomial
f ̸∈(0,1)(λ, λ#) := (λ2 − λ− λ2

#)2

which is zero for some λ# ∈ R if and only of λ does not lie in the range (0, 1).

Geometric Constraints. Two points p = (px, py) and q = (qx, qy) are distinct, if px ̸= qx or
py ̸= qy. We define f̸=(p, q, λ1, λ2) = f ̸=(px, py, qx, qy, λ1, λ2) as

((px − qx)λ1 − 1)2((py − qy)λ2 − 1)2.

Then p and q are distinct if and only if f ̸=(p, q, λ1, λ2) is zero for some (λ1, λ2) ∈ R2.

JGAA, 27(9) 803–841 (2023) 827

Given three points p = (px, py), q = (qx, qy), r = (rx, ry) ∈ R2 we can express that r lies on the
line through p and q (assuming they are distinct) as follows:

∃λ : λ(qx − px) + px = rx ∧ λ(qy − py) + py = ry.

If we define f|(r, p, q, λ) = f|(rx, ry, px, py, qx, qy, λ) as

(λ(qx − px) + px − rx)2 + (λ(qy − py) + py − ry)2,

then r lies on the line through pq if and only if f|(r, p, q, λ) = 0 for some λ ∈ R, and, in that case,
r = q + λ(q − p). Moreover, the point r lies in the interior of the line segment pq if and only if
0 < λ < 1, which we can express using the polynomial f∈(0,1)(λ, λ#). We can also express that
r does not lie in the interior of the line segment pq using the polynomial f ̸∈(0,1)(λ, λ#), but this
assumes that r does lie on the line through pq.

The point r does not lie on the line through pq if and only if

∃λ : λ(qx − px) + px = rx ∧ λ(qy − py) + py ̸= ry,

so if we define f·|(r, p, q, λ, λ#) = f·|(rx, ry, px, py, qx, qy, λ, λ#) as

(λ(qx − px) + px − rx)2 + (λ#(λ(qy − py) + py − ry) − 1)2,

then f·|(r, p, q, λ, λ#) is zero for some (λ, λ#) ∈ R2 if and only if r does not lie on the line through
pq. (The second term of f·| encodes that λ(qy − py) + py − ry ̸= 0 using λ#.)

Given four pairwise distinct points p = (px, py), q = (qx, qy), s = (sx, sy), t = (tx, ty) ∈ R2 the
two line-segments pq and st are parallel (including the possibility that they are collinear) if and only
if (px−qx)(sy− ty) = (py−qy)(sx− tx). So if we define f∥(p, q, s, t) = f∥(px, py, qx, qy, sx, sy, tx, ty)
as

((px − qx)(sy − ty) − (py − qy)(sx − tx))2,

then pq and st are parallel if and only if f∥(p, q, s, t) is zero (assuming the four points are pairwise
distinct, conditions we already know how to enforce).

If pq and st are not parallel, then there is a common point c belonging to the lines through pq
and st. We can express this as the polynomial

f∤(p, q, s, t, c, λ1, λ2) := f|(p, q, c, λ1)2 + f|(s, t, c, λ2)2

being zero for some (λ1, λ2) ∈ R2.
The common point c on lines pq and st belongs to both line segments if 0 < λ1 < 1 and

0 < λ2 < 1 in f∤(p, q, s, t, c, λ1, λ2), something we already know how to express using f∈(0,1).
To test whether the lines through pq and st cross at a right angle, we need to check that

(qy − py)(ty − sy) = (qx − px)(tx − sx). The polynomial f×(p, q, s, t) defined as

((qy − py)(ty − sy) − (qx − px)(tx − sx))2

is zero if and only if pq and st are orthogonal.

Building fG. We can now express that G = (V,E) has a RAC-drawing using a polynomial fG
as follows: for every vertex v in V we have variables (vx, vy) and for every pair of edges c ∈

(
E
2

)
we have variables (cx, cy) (representing a potential crossing). We start with fG = 0. Using the
polynomials we built, we express that

828 Marcus Schaefer RAC-Drawability is ∃R-complete and Related Results

(i) all vertices and crossings are pairwise distinct,

(ii) no vertex lies in the interior of an edge,

(iii) every pair of edges is either parallel or crosses in c, where c is the variable representing the
pair of edges, and

(iv) if c is a crossing of two edges that are not parallel, it is a right-angle crossing.

For (i) we add f ̸=(p, q, λp,q
1 , λp,q

2) to fG for every two points p and q (vertices and crossings).
For (ii) we express that if r lies on the line through pq, then it does not lie in the interior of

the segment pq for any three vertices p, q, r for which pq is an edge in G. This is sufficient to
guarantee (ii) since in (i) we excluded r coinciding with p or q. We implement the implication as
a disjunction, and add

f·|(r, p, q, λ
r,p,q
1 , λr,p,q

2) · f ̸∈(0,1)(λ
r,p,q
1 , λr,p,q

3)

to fG. For the product to be zero, either r does not lie on the line through pq, or it does, in which
case λr,p,q

1 does not lie in (0, 1), meaning r does not lie in the interior of pq.
To ensure (iii) we add

f∥(p, q, s, t) · f∤(p, q, s, t, cp,q,s,t, λp,q,s,t
1 , λp,q,s,t

2)

to fG for all pairs of edges pq and st. Again, we use the product to encode disjunction, this time
between pq and st being parallel and cp,q,s,t being their intersection point.

Finally, for (iv) we add

f ̸∈(0,1)(λ
p,q,s,t
1 , λp,q,s,t

3) · f ̸∈(0,1)(λ
p,q,s,t
2 , λp,q,s,t

4) · f×(p, q, s, t)

to fG for every pair of edges pq and st in G. Here λp,q,s,t
1 and λp,q,s,t

2 are the same variables as in
(iii), so the term added for (d) is zero if either cp,q,s,t does not lie on line segment pq or cp,q,s,t

does not lie on line segment st or pq is orthogonal to st.
We obtain a polynomial fG in the variables (vx, vy), (cx, cy) as well as several λ-variables, so

that (vx, vy) encodes the point locations of a RAC-drawing with crossings (for actually crossing
edges) at point locations (cx, cy) if and only if fG has a zero for some choice of the λ-variables.

The total degrees of the special polynomials we defined are 4 for f ̸∈(0,1), f|, f∥, 6 for f∈(0,1),
f·|, and 8 for f̸= and f∤. The terms created for (i) have total degree 8, the terms for (ii) degree
6 + 4 = 10, for (iii) degree 4 + 8 = 12, and for (iv) degree 4 + 4 + 4 = 12, so the total degree of
the polynomial is at most 12.

Our polynomial expressions only use coefficients 1 and −1. So if we multiply out all the terms
(and do not collect them), the coefficients will still be −1 and 1. Let n = |V |; we know that
|E| = O(n) (if |E| > 4n− 10, then G does not have a RAC-drawing [19, Theorem 1], and we can
let fG = 1), and so there are at most O(n2) terms. Collecting terms then leads to coefficients of
bit-length at most O(log n). Finally, the O(n2) conditions require at most four λ-variables each,
so |I| = O(n2), and therefore fG has at most O(n2) variables overall. 2

Combining Lemma 4 with Theorem 13 yields Corollary 12 that every graph that has a RACk-
drawing has such a drawing in at most double-exponential area.

Proof: [Proof of Corollary 12] Let us consider the case k = 0 first. For a graph G let fG be the
polynomial constructed in Lemma 4. If G is RAC-drawable with vertex v at location (vx, vy) and
a crossing c (if it occurs) at location (cx, cy), then fG is zero for some choice of the λ-variables.

JGAA, 27(9) 803–841 (2023) 829

We extend fG so it enforces that any two points (vertices and crossings) have distance at least
1. This does not affect realizability, since we can scale the drawing. We have that d(u,w) ≥ 1 if and
only if (ux−wx)2+(uy−wy)2 ≥ 1, which is the case if and only if (ux−wx)2+(uy−wy)2 = 1+λ2

u,w

which is equivalent to ((ux−wx)2 + (uy −wy)2− 1−λ2
u,w)2 being zero for some λu,w ∈ R. We add

the term ((ux −wx)2 + (uy −wy)2 − 1− λ2
u,w)2 to fG for every pair of points u and w obtaining a

polynomial f . Then f is zero for some choice of the λ-variables if and only if G has a RAC-drawing
in which all vertices and crossings have distance at least 1 from each other.

By Theorem 13, f = 0 has a solution within distance R = 22
cn2

of the origin, for some fixed
c > 0. In particular, all vertices and crossings lie within a disk of radius R centered at the origin,
and all vertices and crossings have distance at least 1 from each other, by the conditions we added.
The claim of the corollary follows for k = 0.

For k > 0 we build a graph H by subdividing each edge of G with k bend-points. Since G has
a RACk drawing if and only if H has a RAC-drawing, the case k = 0 applies to H yielding the
double-exponential upper bound on the area of G. 2

5.2 RAC-Drawings on the Grid

What happens if we restrict our RAC-drawings to grids; that is, if the vertices of the graph need
to be placed on the points of an integer grid? The proof of Theorem 1 essentially answers that
question. RAC-drawability on a grid is as hard as ∃Q, the existential theory of the rationals; see
Section 2.2 for some details on this complexity class.

Corollary 14 Determining whether a graph has a RAC-drawing on a grid is ∃Q-complete.

This effect, of an ∃R-hard drawing problem turning ∃Q-hard when restricted to a grid, has
been observed before, for example, for point-visibility graphs, by Cardinal and Hoffmann [16], and
for the planar slope number by Hoffmann [27].

As we mentioned in Section 2.2, little is known about the relationship between ∃Q and tradi-
tional complexity classes; we do know that it contains ∃R, so the problem is at least NP-hard,
but for all we know, it may even be undecidable. Not knowing whether ∃Q is decidable or not,
means that we do not have any algorithms for ∃Q-complete problems like RAC-drawability on a
grid, and little hope for one.

Proof: [Proof of Corollary 14] We first argue that the problem lies in ∃Q. If we limit the existential
quantifiers for the positions of the vertices in the RAC-drawing to range over the rational numbers,
then a solution corresponds to a grid solution: scale the drawing by multiplying all coordinates
with the greatest common divisor of the denominators of all vertices, to obtain a RAC-drawing on
an integer grid. (If required, we can even ensure that the crossings points lie on the integer grid,
since a crossing point of two line segments with rational endpoints has rational coordinates.)

To show ∃Q-hardness we work with Theorem 1. For a given polynomial f the proof of Theo-
rem 1 constructs a graph G such that f has a (real) zero if and only if G has a RAC-drawing. We
claim that f has a rational zero (an ∃Q-complete problem by Theorem 4) if and only if G has a
RAC-drawing on the grid.

If f has a rational zero, then all variables and intermediate values we compute with G are
rational, and we can place all gadgets so that all vertices (and thereby crossing points) occur at
rational coordinates. Then G has a RAC-drawing on a grid.

If G has a RAC-drawing on a grid, then all the variables represented by G must be rational,
so the solution to f is rational. 2

830 Marcus Schaefer RAC-Drawability is ∃R-complete and Related Results

If the existential theory of the rationals turns out to be undecidable, then Corollary 14 implies
that there are no computable upper bounds on the size of a grid on which a graph has a RAC-
drawing.

5.3 Grid Drawings with Bends

We already mentioned that every graph has a (polynomial area) RAC3-drawing [19], so the two re-
maining cases of interest are RAC1- and RAC2-drawings. While we cannot settle the computational
complexity of these two problems, we can say something about the combinatorial complexity of
RAC1-drawings. The following result tells us that a RAC1-drawing, different from a RAC-drawing,
can always be realized on an integer grid of double-exponential size.

Theorem 15 If a graph has a RAC1-drawing, then it has a RAC1-drawing in which all vertices

and bend points are placed on the points of a 22
O(n2) × 22

O(n2)

-grid.

The theorem implies that every RAC1-drawing can be realized in double-exponential area, but
it is stronger than that since the points are placed on an integer grid, so the theorem improves on
Corollary 12 for k = 1.

The proof of Theorem 15 requires some perturbation arguments. We collect them as lemmas
below. Call a bend-point proper if the angle at the point is not π; in other words, if the bend-point
is not the interior vertex of a line segment connecting its two neighbors. The bend-angle at a
bend-point is the smaller of the two angles formed by the edges meeting at the bend-point.

Lemma 5 If a graph has a RAC1-drawing, then it has a RAC1-drawing in which each edge has
exactly one bend-point and that bend-point is proper.

u

p1

p2

p4

p3

u

p1

p2

p4

p3

u

p1

p2

p4

p3

Figure 19: (Left) vertex u incident to four bend-point p1, p2, p3, p4, two of them proper, p1 and
p3; (middle) moving the non-proper bend-points p2 and p4 so that up2 and up4 are crossing-free;
(right) perturbing u; p2 and p4 do not move, up1 and up3 move parallel to their original drawings.

Proof: We start with a RAC1-drawing; we subdivide all each without a bend-point by adding a
non-proper bend-point. Suppose the drawing contains at least one bend-point which is not proper.
Let u be a vertex of the graph incident on that bend-point, see the left illustration in Figure 19.
We move all bend-points p incident to u which are not proper close to u so that the segments up are
free of crossings (this is possible, since the bend-points, not being proper, lie on the line segment
connecting the two endpoints of the edge they subdivide), see the middle illustration of Figure 19.
We can now perturb u as follows: Consider an edge upv incident to u with bend-point p. If p is

JGAA, 27(9) 803–841 (2023) 831

proper, we move the segment up parallel to the original segment as shown in the right illustration
of Figure 19; this changes the location of p. If p is not proper, we keep the location of p fixed,
which works since up is crossing-free. All bend-points incident to u are now proper. By making
the perturbation of u sufficiently small, we can ensure that the proper bend-points incident to u
(which move) do not move past a crossing edge or another vertex. 2

The following two lemmas quantify the effect of perturbing points; the first lemma deals with
the situation described in Lemma 5.

Lemma 6 Suppose two lines, one through u and one through v, intersect in a single point p with
a bend-angle of α. If u′ has distance less than ε from u, then a line through u′ parallel to up
intersects the line through vp in a point p′ which has distance at most ε/ sin(α) from p.

u
ε

u

u′

v

α

p
p′

·

Figure 20: The effect of perturbing a vertex u by at most ε on a bend-point p when moving up in
parallel.

Proof: See Figure 20. By assumption, the distance of p′ from up is at most ε and sin(α) =
sin(π − α) = d(p′, up)/d(p, p′), from which we get that d(p, p′) < ε/ sin(α), which is what we had
to show. 2

Lemma 7 Suppose two lines up and vq cross at right angles in a point c1, and the line vq forms
a bend-angle of α with line wq. If p′ has distance at most ε from p, p and u have at least distance
1, and the line through v which is orthogonal to up′ crosses wq in a point q′ at a bend-angle of α′,
then q and q′ have distance at most d(v, q)ε/ sin(α′) and | sin(α′) − sin(α)| < 2ε if ε is sufficiently
small.

Proof: See Figure 21. The angle between vq and vq′ is the same as the angle between up and up′,
which is β. By assumption, sin(β) ≤ ε/d(u, p) ≤ ε.

Because α′ = α + β, we have sin(α′) = sin(α) cos(β) + sin(β) cos(α). Then

| sin(α′) − sin(α)| = | sin(α)(cos(β) − 1) + sin(β) cos(α)|
≤ | sin(α)|| cos(β) − 1| + | sin(β)|| cos(α)|
< | cos(β) − 1| + ε

≤ | sin(β)| + ε

≤ 2ε,

832 Marcus Schaefer RAC-Drawability is ∃R-complete and Related Results

w

u

v

p
p′

ε
p

p′

c1

c2 ··

q

α

q′

α′

β

Figure 21: The effect of perturbing a bend-point p by at most ε on a bend-point q.

where we used that sin(β) + cos(β) > 1 for 0 < β < π/2 (here we use that ε is sufficiently small).
By the law of sines, we have

d(q, q′)
sin(β)

=
d(v, q)

sin(π − α− β)
.

Now sin(π − α− β) = sin(α + β) = sin(α′), so we get d(q, q′) < d(v, q)ε/ sin(α′), as required. 2

Finally, we need a quantitative version of Lemma 5, that is, a version that establishes a lower
bound on the bend-angles and upper bounds on the other parameters.

Lemma 8 If a graph has a RAC1-drawing, then it has a RAC1-drawing inside a disk of radius

R = 22
cn2

such that all points (vertices, crossings and bend-points) have horizontal and vertical
distance at least 2 from each other, and | sin(α)| > 2/R for every bend-angle α. The constant c is
fixed and independent of the graph.

Proof: Given an n-vertex graph G, let H be the result of subdividing each edge of G exactly
once. Then G has a RAC1-drawing if and only if H has a RAC-drawing. By Lemma 4 there is a
polynomial fG in variables (vx, vy) for v ∈ V , and (cx, cy) for every (unordered) pair of edges in H,
and O(n2) additional variables λi so that H has a RAC-drawing with vertex v at location (vx, vy)
and so that an unordered pair of edges c if it crosses, crosses in (cx, cy) if and only if fG = 0 for
some choice of the λi.

We extend fG so it enforces two additional constraints: (i) the x- and y-coordinates of any two
points (original vertices, bend-points, and crossing points) have horizontal and vertical distance at
least 2, and (ii) every bend-vertex v is proper. Neither type of constraint affects realizability; for
(ii) this follows from Lemma 5, and for (i) we can always rotate the drawing so no two points lie on
the same horizontal or vertical line, and then scale the drawing to achieve the required minimum
distance.

To encode condition (i), say for the x-coordinates ux and vx of two vertices u and v, we
need to ensure that |ux − vx| ≥ 2. Equivalently, we can require that (ux − vx)2 − 4 ≥ 0, or
(ux − vx)2 − 4 = λ2

(u,v) for some new variable λ(u,v). In other words, we can add the term

((ux − vx)2 − 4 − λ2
(u,v))

2 to fG. For condition (ii) let p be a bend-point subdividing edge uv of
G, and define vectors a = u − p and b = v − p. Suppose the bend-angle at p is 0 ≤ α < π. The
absolute value of the cosine of α is |a · b|/(|a||b|), where · denotes the dot-product of two vectors.

Then sin(α) ≥ sin2(α) = 1 − cos2(α) = 1 − (a·b)2
|a|2|b|2 . We introduce a new variable λ(u,p,v) and

JGAA, 27(9) 803–841 (2023) 833

add the conditions λ(u,p,v) ≥ 0 and λ(u,p,v)(1 − (a·b)2
|a|2|b|2) = 2; these conditions can be rewritten as

polynomial expressions in the underlying variables.
Let f be the result of adding these conditions to fG. Since fG = 0 has a solution, so has f = 0,

as we argued earlier. By Theorem 13, f = 0 has a solution within distance R = 22
cn2

of the origin,
where c > 0 is a fixed (integer) constant. Consider a bend-point p subdividing edge uv, and let α
be the bend-angle at p. By the conditions we added, λ(u,p,v) > 0, and so sin(α) ≥ 2/λ(u,p,v) > 2/R.

2

We are finally in a position to prove Theorem 15 that a RAC1-drawing can be realized with all

vertices and bend-points placed on a 22
O(n2) × 22

O(n2)

-grid.

Proof: [Proof of Theorem 15] Suppose G has a RAC1-drawing. By Lemma 5 we can assume
that all bend-points are proper, and by Lemma 8 there is a drawing in which all points (vertices,

bend-points and crossings) lie in a disk of radius R = 22
cn2

for some fixed c ≥ 1 independent of
G, any two points have horizontal and vertical distance at least 2, and | sin(α)| > 2/R for every
bend-angle α.

Let ε =
√

2/R3. We overlay the drawing with an infinite square grid of unit-length 1/R3. Any
disk of radius ε contains at least one grid-point.

We will prove the theorem in three steps: In the first step we show how to ”snap” vertices to
the grid; snapping requires perturbing both the vertices and bend-points of the drawing to ensure
that all the vertices lie on the grid and the drawing remains RAC. In the second step, we will
snap each bend-point to the grid; snapping a bend-point may move other bend-points off the grid.
In the third and final step we analyze the drawing to show that refining the grid is sufficient to
ensure all points lie on the grid.

Step 1: Snapping vertices to the grid. To place all vertices on grid-points we perturb both
vertices and bend-points of the drawing while keeping the drawing RAC. As we are doing so, the
distances between vertices will change, as will the bend-angles. We will guarantee that sin(α),
which initially is larger than 2/R will remain larger than 1/R, that all points remain in a disk of
radius at most R+ 1 around the origin, and that the pairwise distance between each pair of points
(initially at least 2) remains larger than 1.

Start with a vertex u of G (not a bend-point). We can perturb u by at most ε so that it lies on
the grid. We move edges incident to u in parallel, so that the drawing remains RAC, as pictured in
Figure 20 but with α = π/2. We say vertex u has been snapped to the grid. By Lemma 6, snapping
u requires moving bend-points incident to u by at most ε/ sin(α); all bend-angles remain the same.
After snapping every vertex of the graph to the grid, all vertices of G are located on the grid; every
bend-point was moved at most twice (since bend-points are incident to at most two vertices), so
by Lemma 6 every bend-point has distance at most 2ε/ sin(α) from its original location. Since
| sin(α)| > 2/R, and the bend-angles did not change, this tells us that every bend-point moved by
less than 2ε/(2/R) =

√
2/R2 < 1/R. So every point (vertex or bend-point) moved by at most 1/R,

so all points have distance at most R+ 1/R from the origin, and the pairwise distance of points is
at least 2 − 2/R.

Step 2: Snapping bend-points to the grid. Consider a bend-point p. Perturbing it by at most
ε we can ensure that it lies on the grid, but we are destroying the right-angle crossings involving
edges incident to p. For example, if pu is an edge incident to p which crosses another edge qw,
where q is a bend-point, we will move q to ensure that pu and qw remain orthogonal, as shown in

834 Marcus Schaefer RAC-Drawability is ∃R-complete and Related Results

Figure 21. But qw may cross another edge xr, so other edges may be affected. We capture this
with the following definition.

We say two edges e and f are RAC-linked if there is a sequence of edges e = e1, . . . , ek = f so
that ei crosses ei+1 in the drawing, for 1 ≤ i < k. Being RAC-linked is an equivalence relation.
We will show how to move an end-point of an edge, by rotating all edges RAC-linked to it by the
same angle.

To snap bend-point p to a grid-point p′ we move p to p′ and modify the drawing as follows,
so it remains RAC. Let L be the set of edges RAC-linked to pu, and let β be the angle (p, u, p′).
We rotate all edges in L by β (at their vertex, that is, non-bend, end-vertex), just as we did in
Figure 21. This keeps the drawing RAC: any two edges in L are rotated by the same angle, so they
still cross at a right angle, if they cross; for any edge not in L its bend-point may move slightly
(as q does for wq in Figure 21), but its angle does not change, so no other crossings are affected,
unless the bend-point moves beyond a crossing; we will show below that the grid we chose is fine
enough that that does not happen. If the second edge incident to bend-point p belongs to L we
are done with p; in this case, p′ moves to a new bend-point p′′, since the second edge it is incident
rotates as well. Otherwise, we repeat the same procedure with L and β defined for that second
edge.

For Step 2 we snap each bend-point to the grid, in some (arbitrary) order.

Snapping p to the grid forces us to move other bend-points (potentially all of them, including
points that were already on the grid, moving them off again; they will not be snapped to the grid
again, they will be dealt with in Step 3). Since there are at most 6n bend-points (an overestimate,
using the number of edges in a RAC1-drawing [3]) and each bend-point is snapped only once,
each bend-point moves at most 6n times. By Lemma 7, the sine of the crossing angle at a bend-
point changes by at most 2ε in each of these steps, so by at most 12nε < 1/R overall (we assumed
c ≥ 1). Hence every crossing-angle α at any point during the perturbation process satisfies sin(α) >
2/R−1/R = 1/R. Lemma 7 also tells us that bend-point q gets moved by at most d(v, q)ε/ sin(α′)
when perturbing p, where α′ is the new bend-angle at q. As we just saw, sin(α′) > 1/R, so the
distance q moves to q′ is at most d(v, q)/R2, in other words d(v, q′) < (1 + 1/R2)d(v, q). Since q
may move 6n times, the final distance of a bend-point from its original location could be as large
as d(v, q)(1 + 1/R2)6n. Since (1 + 1/R2)6n ≤ exp(1/R2) < 1 + 1/R, the overall moved distance is
at most 1/R. In particular, all bend-points have distance at most R+ 1 from the origin, and their
pairwise distance is at least 2 − 2/R > 1.

By construction, at the end of Step 2 we have a RAC1-drawing of G with all vertices still lying
on grid-points (since they were not moved in Step 2). So by the end of Step 2 every point has
moved by at most 1/R as we have argued (for vertices in Step 1, for bend-points in Step 2). This
bound also applies to crossing-points, since they move less than their corresponding bend-points
(see Figure 21). We conclude that the drawing remains isomorphic to the original drawing. In
Step 3 we now deal with the bend-points that were moved off the grid after being snapped.

Step 3: Refining the grid. While the vertices of G all lie on grid-points at the end of Step 2,
this need not be true for bend-points, since these may get moved as a side-effect of snapping a
bend-point (even the bend-point itself, in case the two edges incident to the bend-point are RAC-
linked). Suppose a bend-point p does not lie on the grid; then at least one of the edges incident
to p, say pu, was moved as the result of a RAC-linked edge qx being moved, when the bend-point
q was being snapped to the grid. Choose q as the last bend-point being snapped which moves pu,
and let qx be the edge RAC-linked to pu. Then the slope of pu must be the same as qx (after
snapping q) or orthogonal to it. In either case, the slope of pu corresponds to a slope occurring

JGAA, 27(9) 803–841 (2023) 835

between two grid-points. The other edge pv incident to v either does not change slope, in which
case it maintains its original slope between p and v after p was snapped to the grid, or the same
analysis as for pu applies. In all cases, we conclude that the final slopes of pu and pv are slopes that
occur between grid-points. Since u and v lie on the grid, we will be able to argue that sufficiently
refining the grid ensures that p does as well.

If we express the slope of a line through two grid-points as the reduced ratio s/t between
two integers s and t, the denominator t satisfies 1 ≤ t ≤ (R + 1)R3 ≤ 2R4 (since our current
grid has unit distance 1/R3 and its side-length is at most R + 1). Hence it is sufficient to refine
the grid by a factor of at most (1/(2R4))2 to ensure that the bend-point p, as the intersection
between two lines pu and pv which pass through two points of the grid (namely u and v), lies on
the new grid. Since we have at most 6n bend-points, this leads to a grid with unit distance at
most (2R)−4−8·6n and side-length 1 which positions all vertices and bend-points as grid-points.

Since (2R)−4−8·6n ≤ 2−2c
′n2

, for a fixed constant c′ > c independent of n, an integer grid of size

22
O(n2) × 22

O(n2)

is sufficient to realize the RAC1-drawing of G. 2

6 Large-Angle Crossings

Huang, Eades, and Hong [28] studied the impact of large angles on the readability of drawings,
and concluded that large angles improve the readability of drawings, but the angles do not have
to be right angles. They expressed the hope that the computational problem becomes easier if the
right-angle restriction is relaxed. The crossing resolution of a drawing is the smallest angle formed
by any two crossing edges. RAC-drawings are drawings of crossing resolution π/2.

Using common tricks for the existential theory of the reals, we can show that deciding whether
an n-vertex graph has a straight-line drawing with crossing resolution at least π/2 − εn is ∃R-
complete, where εn depends on n, doubly exponentially so.

Remark 16 The large-angle crossing problem was introduced by Dujmović, Gudmundsson, Morin,
and Wolle [22] who refer to α-angle crossing (αAC) drawings, and independently by Di Giacomo,
Didimo, Liotta, and Meijer [17] who talk about Large Angle Crossing (LACα) drawings. For more
background, see the survey by Didimo and Liotta [20, Section 4.2].

For the following theorem, the area of a drawing is the area of a smallest bounding box contain-
ing the drawing, assuming that every two vertices and every vertex and non-adjacent edge have at
least unit distance.

Theorem 17 An n-vertex graph G has a RAC-drawing if and only if it has a straight-line drawing

of area at most 22
c1n4

and crossing resolution at least π/2− εn, where εn = 2−2c2n4

, and c1, c2 > 0
are fixed constants not depending on the graph (or n). The two drawings are isomorphic.

By the theorem, RAC-drawability cannot be distinguished from the α-crossing resolution prob-
lem if α is sufficiently (double-exponentially) close to a right angle and the drawing area is bounded
(again doubly-exponentially). Why do we need to bound the area? The reason is that a graph
may have straight-line drawings with crossing resolution arbitrarily close to π/2, without a crossing
resolution of π/2 being realizable. As the crossing resolution approaches the limit π/2, vertices in
the drawing may be forced to overlap other vertices, or lie on edges they are not incident to. If
we require unit distance between vertices and vertices and edges, then the drawing area becomes
unbounded.

836 Marcus Schaefer RAC-Drawability is ∃R-complete and Related Results

This effect, however, does not occur with the graphs we construct in Theorem 1, since we do
not create pairs of vertices, or vertices and edges which have to come arbitrarily close to each other.
This allows us to drop the area requirement from the following result, which combines Theorem 1
with Theorem 17.

Corollary 18 Testing whether an n-vertex graph has a straight-line drawing with crossing resolu-

tion at least π/2 − εn is ∃R-complete, for εn = 2−2cn
4

for a fixed integer c > 0.

We do not know whether testing if a graph has crossing resolution at least π/2 − ε remains
∃R-hard for a fixed ε > 0. The current construction very much relies on precision to simulate the
existential theory of the reals. It is not clear whether gadgets can be braced to still work if angles
are only approximate. We say ∃R-hard, rather than ∃R-complete, since we cannot necessarily
express crossing resolution at least π/2 − ε in ∃R, depending on ε; this issue could be resolved by
parameterizing the problem by the sine of the angle rather than the angle itself.

To prove the theorem we need the following definability result, which is similar to Lemma 4
and was again first proved by Bieker [11].

Lemma 9 (Bieker [11, Section 6.3]) Given a graph G = (V,E) and a variable δ we can ef-
ficiently compute a polynomial fG with variables (vx, vy) for v ∈ V , (cx, cy) for c ∈

(
E
2

)
, δ and

additional variables λi, i ∈ I so that the following two statements are equivalent:

� G has a straight-line drawing in which every vertex v is placed at location (vx, vy), every
vertex has at least unit distance from every other vertex, and every edge it is not incident to,
and for every pair of edges c ∈

(
E
2

)
that crosses, the crossing is at (cx, cy) and the absolute

value of the cosine of the crossing angle at (cx, cy) is at most δ,

� fG((vx, vy)v∈V , (cx, cy)c∈(E
2), δ, (λi)i∈I) = 0 for some choice of the λi, i ∈ I.

The polynomial fG has total degree at most 12, the bit-length of f is O(log n), and |I| = O(n4),
where n = |V |.

Proof: We follow the proof of Lemma 4 and only sketch the differences. We need to express that
the lines through pq and st cross at an angle with cosine at most δ. With vectors a = q − p and
b = t− s the cosine of the angle formed by pq and st is a · b/(|a||b|), where · is the dot-product of
two vectors. So the condition turns into a · b ≤ δ(|a||b|); squaring both sides gives us a polynomial
condition in px, py, qx, qy, δ. We then build a polynomial f as follows: for every vertex v in V we

have variables (vx, vy) and for every pair of edges c ∈
(
E
2

)
we have variables (cx, cy). Using the

polynomials we built, we express that

� every two vertices have at least unit distance,

� every vertex has at least unit distance from every edge it is not incident to,

� every pair of edges is either parallel or crosses in c, where c is the variable representing the
pair of edges

� if c is a crossing of two edges, the cosine of their crossing angle is at most δ.

The resulting polynomial fG has a zero for some choice of the λ-variables if and only if G has
a straight-line drawing with vertices at (vx, vy) and crossings at (cx, cy) with all crossing angles
having cosine at least δ.

JGAA, 27(9) 803–841 (2023) 837

The analysis of fG only differs in the bound on |I|; since we do not know that the drawing is a
RAC-drawing, we can no longer assume a linear bound on |E|, so |E| = O(n2), which implies that
|I| = O(n4). 2

To complete the proof of Theorem 17 we need a second result from algebraic geometry, often
known as an effective Lojasiewicz inequality; there are many of these, we work with the following
version, which is based on Jeronimo, Perruci, Tsigaridas [30, Theorem 1].

Theorem 19 (Jeronimo, Perruci, Tsigaridas [30]) Suppose f and g are polynomials of total
degree d in n variables with coefficients of bitlength at most M . If Z = {x : f(x) = 0} is compact,
and g(x) > 0 for all x ∈ Z, then

g(x) > 2−Mn22ndn+1

.

Proof: [Proof of Theorem 17] We are given a graph G = (V,E) with n = |V |. Let fG(v, c, δ, λ) be

the polynomial from Lemma 9, where v ∈ R2n, c ∈ R(n
2), δ ∈ R, and λ ∈ RO(n4). Then G has a

straight-line drawing with the absolute values of all cosines of all crossing angles being less than δ
if and only if fG(v, c, δ, λ) has a zero (for the fixed value δ). If fG(v, c, δ, λ) has a zero with δ = 0
then G has a RAC-drawing.

Remember that fG has total degree at most 12, and the bit-length M of fG is O(log n), and
the total number of variables is O(n4). It follows from Theorem 13 that there is a fixed integer
constant c′1 > 0 such that fG has a zero with δ = 0 if and only if it has such a zero within distance

at most R = 22
c′1n4

from the origin.

In particular, if G has a RAC-drawing, then fG has a zero with δ = 0, and that zero has

distance at most R = 22
c′1n4

from the origin. Since the upper bound of R applies to all coordinate

variables in v, the area of the RAC-drawing is at most (2R)2 ≤ 22
(c′1+2)n4

, which proves the forward
direction with c1 = c′1 + 2.

For the other direction, assume that G = (V,E) has a straight-line drawing with area 22
c1n4

,
in which all crossing angles differ by at most εn from π/2. Fix such a drawing. We need to show
that G has a RAC-drawing.

Suppose α is a crossing angle in the drawing we fixed, that is, α = π/2 + δ with |δ| ≤ εn. Then
cos(α) = sin(δ) ≤ δ. Hence, if all crossing angles in the drawing differ by at most εn from π/2,
then all the cosines of crossing angles are at most εn.

If fG has a zero within radius R = 22
c′1n4

of the origin with δ = 0, then G has a RAC-drawing

of area at most 22
c1n4

and we are done.

We can therefore assume that fG(v, c, δ, λ) has no zero with δ = 0 within radius R. Let
B(0, R) denote the ball around the origin of radius R. We build a polynomial f(v, c, δ, λ, µ) from

fG by adding O(n4) variables µ ∈ RO(n4) to compute R (using repeated squaring) and adding
constraints restricting all variables of fG to have (absolute) value at most R. Then Z = {x =
(v, c, δ, λ, µ) : f(v, c, δ, λ, µ) = 0} is a compact set lying inside B(0, R). Define the projection
function g : (v, c, δ, λ, µ) 7→ δ. By assumption, g(x) > 0 for all x ∈ Z, so we can apply Theorem 19

to conclude that g(x) > 2−2c2n4

for some fixed integer c2 > 0 which does not depend on G.

Therefore, if we let εn = 2−2c2n4

, then if f contains a zero in Z with g(x) < εn, we must
conclude that there is a zero of fG with δ = 0, which contradicts our assumptions in this case. 2

838 Marcus Schaefer RAC-Drawability is ∃R-complete and Related Results

7 Open Questions

We saw that testing RAC-drawability remains ∃R-hard, even if there is a RAC-drawing with at
most 11 crossings per edge. Can the number of crossings be lowered? It is known that the problem
remains NP-hard even for 1-planar drawings (at most one crossing per edge) [9]. Does the 1-planar
version of the problem belong to NP? In that case, we would have a situation analogous to what
happens for the geometric local crossing number, lcr(G), that is, the smallest number of crossings
along each edge in a straight-line drawing of G. Testing whether lcr(G) ≤ 1 is NP-complete [37],
but there is a fixed k so that testing lcr(G) ≤ k is ∃R-complete [38].

Does RAC-drawability remain ∃R-hard for bounded-degree graphs? Nearly all of our gadgets
have bounded degree. The only exception is the empty-face gadget, which is based on K2,n’s,
and requires unbounded degree. Can this gadget be replaced with a bounded degree gadget or
eliminated from the construction in another fashion? Since we do not use this gadget in the fixed
embedding case, we can conclude that RAC-drawability does remain ∃R-hard for bounded degree
graphs with fixed embedding. Can we get a good bound on the degree in this case? It is conjectured
that all cubic graphs have a RAC-drawing, for recent progress on that question, see [4].

The right-angle crossing number of a graph is the smallest k so that G has a RAC-drawing with
at most k crossings. Our result implies that testing whether the right-angle crossing number is
finite is ∃R-complete. Does the problem remain ∃R-complete for small, fixed values of k, like the
geometric local crossing number mentioned above? Or can we test whether a graph has a RAC-
drawing with one, two, three crossings in polynomial time, as we can for the rectilinear crossing
number?

When showing that every RAC1-drawing can be realized on a grid, we obtained a grid of size

at most 22
O(n2)

; can the bound of O(n2) be improved? The bottle-neck in the current proof is
Lemma 4; the encoding in that lemma introduces a quadratic number of variables, which directly
leads to the n2 in the double exponent. If the encoding could be done with a linear number of

variables, the resulting grid would have size 22
O(n)

. Whether it is possible to push below that will
likely depend on whether RAC1-drawability is ∃R-hard or not, and this is one of the big open
problems, of course. A first step towards that may be to see whether there are graphs requiring
exponential area in a RAC1-drawing.

We saw that RAC-drawings require algebraic coordinates (Chapter 5), RAC1-drawings can
be realized on a double-exponential grid (Theorem 15), and it is known that RAC3-drawings are
possible on a polynomial-size grid [19]. Where does that leave RAC2-drawings? Theorem 15 does
not obviously imply any upper bound on the grid complexity of RAC2-drawings, though the same
techniques should be useful. Is it possible that for RAC2-drawings an exponential-size grid is
always sufficient?

Acknowledgments

I would like to thank the anonymous referees for their careful and detailed feedback on this paper,
which has led to significant improvements to the presentation.

References

[1] Abrahamsen, M.: Covering polygons is even harder. In: 2021 IEEE 62nd Annual Symposium
on Foundations of Computer Science—FOCS 2021, pp. 375–386. IEEE Computer Soc., Los

JGAA, 27(9) 803–841 (2023) 839

Alamitos, CA ([2022] ©2022), https://doi.org/10.1109/FOCS52979.2021.00045

[2] Abrahamsen, M., Adamaszek, A., Miltzow, T.: The art gallery problem is ∃R-complete. J.
ACM 69(1), Art. 4, 70 (2022), https://doi.org/10.1145/3486220

[3] Angelini, P., Bekos, M.A., Förster, H., Kaufmann, M.: On RAC drawings of graphs with one
bend per edge. Theoret. Comput. Sci. 828(829), 42–54 (2020), https://doi.org/10.1016/j.tcs.
2020.04.018

[4] Angelini, P., Bekos, M.A., Katheder, J., Kaufmann, M., Pfister, M.: RAC drawings of graphs
with low degree. In: 47th International Symposium on Mathematical Foundations of Computer
Science, LIPIcs. Leibniz Int. Proc. Inform., vol. 241, pp. Art. No. 11, 15. Schloss Dagstuhl.
Leibniz-Zent. Inform., Wadern (2022), https://doi.org/10.4230/lipics.mfcs.2022.11

[5] Angelini, P., Cittadini, L., Di Battista, G., Didimo, W., Frati, F., Kaufmann, M., Symvonis,
A.: On the perspectives opened by right angle crossing drawings. J. Graph Algorithms Appl.
15(1), 53–78 (2011), https://doi.org/10.7155/jgaa.00217

[6] Argyriou, E.N., Bekos, M.A., Symvonis, A.: The straight-line RAC drawing problem is NP-
hard. J. Graph Algorithms Appl. 16(2), 569–597 (2012), https://doi.org/10.7155/jgaa.00274

[7] Arikushi, K., Fulek, R., Keszegh, B., Morić, F., Tóth, C.D.: Graphs that admit right angle
crossing drawings. Comput. Geom. 45(4), 169–177 (2012), https://doi.org/10.1016/j.comgeo.
2011.11.008

[8] Beinerts, L.: The expert (2014), available at https://www.youtube.com/watch?v=
BKorP55Aqvg (last accessed 5/29/2021)

[9] Bekos, M.A., Didimo, W., Liotta, G., Mehrabi, S., Montecchiani, F.: On RAC drawings of 1-
planar graphs. Theoret. Comput. Sci. 689, 48–57 (2017), https://doi.org/10.1016/j.tcs.2017.
05.039

[10] Bertschinger, D., El Maalouly, N., Linda, K., Miltzow, T., Weber, S.: The complexity of
recognizing geometric hypergraphs. CoRR abs/2302.13597 (2023), http://arxiv.org/abs/
2302.13597

[11] Bieker, N.: Complexity of Graph Drawing Problems in Relation to the Existential Theory of
the Reals. Bachelor’s thesis, Karlsruhe Institute of Technology (August 2020)

[12] Blum, L., Cucker, F., Shub, M., Smale, S.: Complexity and real computation. Springer-Verlag,
New York (1998), https://doi.org/10.1007/978-1-4612-0701-6

[13] Brandenburg, F.J., Didimo, W., Evans, W.S., Kindermann, P., Liotta, G., Montecchiani,
F.: Recognizing and drawing IC-planar graphs. Theoret. Comput. Sci. 636, 1–16 (2016),
https://doi.org/10.1016/j.tcs.2016.04.026

[14] Buss, J.F., Frandsen, G.S., Shallit, J.O.: The computational complexity of some problems of
linear algebra. J. Comput. System Sci. 58(3), 572–596 (1999), https://doi.org/10.1006/jcss.
1998.1608

[15] Canny, J.: Some algebraic and geometric computations in PSPACE. In: STOC ’88: Proceed-
ings of the twentieth annual ACM symposium on Theory of computing. pp. 460–469. ACM,
New York, NY, USA (1988), http://doi.acm.org/10.1145/62212.62257

https://doi.org/10.1109/FOCS52979.2021.00045
https://doi.org/10.1145/3486220
https://doi.org/10.1016/j.tcs.2020.04.018
https://doi.org/10.1016/j.tcs.2020.04.018
https://doi.org/10.4230/lipics.mfcs.2022.11
https://doi.org/10.7155/jgaa.00217
https://doi.org/10.7155/jgaa.00274
https://doi.org/10.1016/j.comgeo.2011.11.008
https://doi.org/10.1016/j.comgeo.2011.11.008
https://www.youtube.com/watch?v=BKorP55Aqvg
https://www.youtube.com/watch?v=BKorP55Aqvg
https://doi.org/10.1016/j.tcs.2017.05.039
https://doi.org/10.1016/j.tcs.2017.05.039
http://arxiv.org/abs/2302.13597
http://arxiv.org/abs/2302.13597
https://doi.org/10.1007/978-1-4612-0701-6
https://doi.org/10.1016/j.tcs.2016.04.026
https://doi.org/10.1006/jcss.1998.1608
https://doi.org/10.1006/jcss.1998.1608
http://doi.acm.org/10.1145/62212.62257

840 Marcus Schaefer RAC-Drawability is ∃R-complete and Related Results

[16] Cardinal, J., Hoffmann, U.: Recognition and complexity of point visibility graphs. Discrete
Comput. Geom. 57(1), 164–178 (2017), https://doi.org/10.1007/s00454-016-9831-1

[17] Di Giacomo, E., Didimo, W., Liotta, G., Meijer, H.: Area, curve complexity, and crossing
resolution of non-planar graph drawings. Theory Comput. Syst. 49(3), 565–575 (2011), https:
//doi.org/10.1007/s00224-010-9275-6

[18] Didimo, W.: Right angle crossing drawings of graphs. In: Hong, S., Tokuyama, T. (eds.) Be-
yond Planar Graphs, Communications of NII Shonan Meetings, pp. 149–169. Springer (2020),
https://doi.org/10.1007/978-981-15-6533-5 9

[19] Didimo, W., Eades, P., Liotta, G.: Drawing graphs with right angle crossings. Theoret. Com-
put. Sci. 412(39), 5156–5166 (2011), https://doi.org/10.1016/j.tcs.2011.05.025

[20] Didimo, W., Liotta, G.: The crossing-angle resolution in graph drawing. In: Thirty essays on
geometric graph theory, pp. 167–184. Springer, New York (2013), https://doi.org/10.1007/
978-1-4614-0110-0 10

[21] Didimo, W., Liotta, G., Montecchiani, F.: A survey on graph drawing beyond planarity. ACM
Comput. Surv. 52(1) (Feb 2019), https://doi.org/10.1145/3301281

[22] Dujmović, V., Gudmundsson, J., Morin, P., Wolle, T.: Notes on large angle crossing graphs.
Chic. J. Theoret. Comput. Sci. pp. Article 4, 14 (2011), https://doi.org/10.4086/cjtcs.2011.004

[23] Erickson, J., van der Hoog, I., Miltzow, T.: Smoothing the gap between NP and ER. In: 61st
Annual Symposium on Foundations of Computer Science—FOCS 2020, pp. 1022–1033. IEEE
Computer Soc., Los Alamitos, CA (2020), https://doi.org/10.1109/FOCS46700.2020.00099

[24] Förster, H., Kaufmann, M.: On compact RAC drawings. In: Grandoni, F., Herman, G.,
Sanders, P. (eds.) 28th Annual European Symposium on Algorithms, ESA 2020, September
7-9, 2020, Pisa, Italy (Virtual Conference). LIPIcs, vol. 173, pp. 53:1–53:21. Schloss Dagstuhl
- Leibniz-Zentrum für Informatik (2020), https://doi.org/10.4230/LIPIcs.ESA.2020.53

[25] Goodman, J.E., Pollack, R., Sturmfels, B.: The intrinsic spread of a configuration in Rd. J.
Amer. Math. Soc. 3(3), 639–651 (1990), https://doi.org/10.2307/1990931

[26] Grigor’ev, D.Y., Vorobjov, Jr., N.N.: Solving systems of polynomial inequalities in
subexponential time. J. Symbolic Comput. 5(1-2), 37–64 (1988), https://doi.org/10.1016/
S0747-7171(88)80005-1

[27] Hoffmann, U.: On the complexity of the planar slope number problem. J. Graph Algorithms
Appl. 21(2), 183–193 (2017), https://doi.org/10.7155/jgaa.00411

[28] Huang, W., Eades, P., Hong, S.: Larger crossing angles make graphs easier to read. J. Vis.
Lang. Comput. 25(4), 452–465 (2014), https://doi.org/10.1016/j.jvlc.2014.03.001

[29] Huang, W., Hong, S., Eades, P.: Effects of crossing angles. In: IEEE VGTC Pacific Visual-
ization Symposium 2008, PacificVis 2008, Kyoto, Japan, March 5-7, 2008. pp. 41–46. IEEE
Computer Society (2008), https://doi.org/10.1109/PACIFICVIS.2008.4475457

[30] Jeronimo, G., Perrucci, D., Tsigaridas, E.: On the minimum of a polynomial function on
a basic closed semialgebraic set and applications. SIAM J. Optim. 23(1), 241–255 (2013),
https://doi.org/10.1137/110857751

https://doi.org/10.1007/s00454-016-9831-1
https://doi.org/10.1007/s00224-010-9275-6
https://doi.org/10.1007/s00224-010-9275-6
https://doi.org/10.1007/978-981-15-6533-5_9
https://doi.org/10.1016/j.tcs.2011.05.025
https://doi.org/10.1007/978-1-4614-0110-0_10
https://doi.org/10.1007/978-1-4614-0110-0_10
https://doi.org/10.1145/3301281
https://doi.org/10.4086/cjtcs.2011.004
https://doi.org/10.1109/FOCS46700.2020.00099
https://doi.org/10.4230/LIPIcs.ESA.2020.53
https://doi.org/10.2307/1990931
https://doi.org/10.1016/S0747-7171(88)80005-1
https://doi.org/10.1016/S0747-7171(88)80005-1
https://doi.org/10.7155/jgaa.00411
https://doi.org/10.1016/j.jvlc.2014.03.001
https://doi.org/10.1109/PACIFICVIS.2008.4475457
https://doi.org/10.1137/110857751

JGAA, 27(9) 803–841 (2023) 841

[31] Kim, E., de Mesmay, A., Miltzow, T.: Representing matroids over the reals is ∃r-complete.
CoRR abs/2301.03221 (2023), https://doi.org/10.48550/arXiv.2301.03221

[32] Matoušek, J.: Intersection graphs of segments and ∃R. ArXiv e-prints (2014),
arXiv:1406.2636 (last accessed 6/10/2020)

[33] Miltzow, T., Schmiermann, R.F.: On classifying continuous constraint satisfaction problems.
In: 2021 IEEE 62nd Annual Symposium on Foundations of Computer Science—FOCS 2021,
pp. 781–791. IEEE Computer Soc., Los Alamitos, CA ([2022] ©2022), https://doi.org/10.
1109/FOCS52979.2021.00081

[34] Mnëv, N.E.: The universality theorems on the classification problem of configuration varieties
and convex polytopes varieties. In: Topology and geometry—Rohlin Seminar, Lecture Notes
in Math., vol. 1346, pp. 527–543. Springer, Berlin (1988)

[35] Poonen, B.: Characterizing integers among rational numbers with a universal-existential for-
mula. Amer. J. Math. 131(3), 675–682 (2009), https://doi.org/10.1353/ajm.0.0057

[36] Richter-Gebert, J.: Mnëv’s universality theorem revisited. Sém. Lothar. Combin. 34 (1995)

[37] Schaefer, M.: Picking planar edges; or, drawing a graph with a planar subgraph. In: Graph
drawing, Lecture Notes in Comput. Sci., vol. 8871, pp. 13–24. Springer, Heidelberg (2014),
https://doi.org/10.1007/978-3-662-45803-7 2

[38] Schaefer, M.: Complexity of geometric k-planarity for fixed k. J. Graph Algorithms Appl.
25(1), 29–41 (2021), https://doi.org/10.7155/jgaa.00548

[39] Schaefer, M.: The complexity of angular resolution. J. Graph Algorithms Appl. 27(7), 565–580
(2023), https://doi.org/10.7155/jgaa.00634

[40] Schaefer, M., Štefankovič, D.: Fixed points, Nash equilibria, and the existential the-
ory of the reals. Theory Comput. Syst. 60(2), 172–193 (2017), https://doi.org/10.1007/
s00224-015-9662-0

[41] Shor, P.W.: Stretchability of pseudolines is NP-hard. In: Applied geometry and discrete
mathematics, DIMACS Ser. Discrete Math. Theoret. Comput. Sci., vol. 4, pp. 531–554. Amer.
Math. Soc., Providence, RI (1991)

[42] Wikipedia contributors: Existential theory of the reals — Wikipedia, the free encyclope-
dia (2021), https://en.wikipedia.org/w/index.php?title=Existential theory of the reals (last
accessed 5/28/2021)

https://doi.org/10.48550/arXiv.2301.03221
http://arxiv.org/abs/1406.2636
https://doi.org/10.1109/FOCS52979.2021.00081
https://doi.org/10.1109/FOCS52979.2021.00081
https://doi.org/10.1353/ajm.0.0057
https://doi.org/10.1007/978-3-662-45803-7_2
https://doi.org/10.7155/jgaa.00548
https://doi.org/10.7155/jgaa.00634
https://doi.org/10.1007/s00224-015-9662-0
https://doi.org/10.1007/s00224-015-9662-0
https://en.wikipedia.org/w/index.php?title=Existential_theory_of_the_reals

	Introduction
	Area Requirements and Bends
	Overview of the Paper

	The Existential Theory of the Reals
	An R-Complete Problem
	Existential Theories of the Rationals

	Drawings with Junctions
	The Complexity of Junction Drawings
	Gadgets
	Gadgets for Creating and Moving Data
	Arithmetical Gadgets

	Proof of Theorem 5
	Forcing Empty Faces

	Proof of Theorem 1
	From Junctions to RAC-Drawings
	Proof of Theorem 9

	Area Bounds and Grid Drawings
	Area Upper Bound
	RAC-Drawings on the Grid
	Grid Drawings with Bends

	Large-Angle Crossings
	Open Questions

