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Abstract. Ordinal real-world data such as concept hierarchies, ontologies, genealo-
gies, or task dependencies in scheduling often has the property to not only contain
pairwise comparable, but also incomparable elements. Order diagrams provide an im-
portant tool for understanding and thus discovering knowledge in such data. Easily
readable drawings of such order diagrams are hard to come by, even for small ordered
sets. Many attempts were made to transfer classical graph drawing approaches to or-
der diagrams. Although these methods produce satisfying results for some ordered
sets, they unfortunately perform poorly in general. In this work, we present the novel
algorithm DimDraw to decompose an ordered set (e.g., a concept hierarchy) in linear
orders and to produce a corresponding order diagram. This algorithm is based on a
relation between the dimension of an ordered set and the bipartiteness of its transi-
tive incompatibility graph. To evaluate the quality of the algorithm, a user study was
conducted where generated drawings were compared with ones from state-of-the-art
drawing algorithms.

1 Introduction

Order is — together with proximity/distance — the predominant paradigm for humans to organize
their physical and social environment. The exploration of order relations is thus an important
knowledge discovery task. Ordered sets are used for modeling concept hierarchies in ontologies and
track dependencies in scheduling. Order diagrams, also called line diagrams or Hasse diagrams,
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are a great tool for visualizing the underlying structure of ordered sets. In particular, they enable
the reader to explore and interpret complex information through a compact representation.

In order diagrams every element is visualized by a point on the plane. Each edge of the covering
relation is visualized as an ascending line connecting its points; and these lines are not allowed to
touch other points. These strong requirements are often complemented with further soft conditions
to improve the readability of diagrams. Examples of such conditions are the minimization of the
number of crossing lines or of the number of different slopes. Another desirable condition is to
draw as many chains as possible on straight lines to indicate structural dependencies. Lastly, the
distance of points to (non-incident) lines should be maximized for improved readability.

Experience shows that in order to obtain (human) readable drawings one has to balance those
criteria. Based on this, there are algorithms that produce drawings optimizing towards some of
the criteria mentioned above. Drawings produced by such algorithms are sufficient to some extent.
Still, they may not compete with those created manually by an experienced human. However,
such experts are often not available, too expensive, or not efficient enough to create large numbers
of order diagrams. Hence, finding efficient algorithms that visualize order diagrams at a suitable
quality is still an open task.

An exemplary field of research in this domain is formal concept Analysis (FCA) [13], a theory
that can be used to extract knowledge from data through clustering and ordering it. In this work
we present a novel approach that does not employ the optimization techniques as described above.
For this we make use of the structure and its properties that are already encapsulated in the
ordered set. We base our idea on the observation that ordered sets of order dimension two can be
embedded into the plane in a natural way. Building up on this, we show a procedure to embed the
ordered sets of order dimension three and above by reducing them to the two-dimensional case.
To this end we prove an essential fact about inclusion-maximal bipartite induced subgraphs in this
realm. Based on this we link the naturally emerging N P-hard computation to an instance of the
SAT problem. Our main contribution with respect to this is Theorem 6 (see Section 5).

We investigate our theoretical result on different real-world datasets using the just introduced
algorithm DimDraw. The ordered sets used for this experiment arise from the theory of FCA and
are evaluated through a user study of domain experts, as those are experienced in working with
order diagrams. In this user study, the visualizations generated by the algorithm are compared
with two classical approaches of automated order diagram drawing. Furthermore, we note how to
incorporate heuristical approaches replacing the SAT solver for faster computations. Finally, we
discuss surprising observations and formulate open questions.

2 Related Work

Order diagrams can be considered as acyclic (intransitive) digraphs that are drawn upward in the
plane, i.e., every arc is a curve monotonically increasing in the y-direction. Much research has
been conducted for such upward drawings. A frequently employed algorithm framework to draw
such graphs is known as Sugiyama’s framework [26]. This algorithm first divides the set of vertices
of a graph into different layers, then embeds each layer on the same y-coordinate and minimizes
crossings between consecutive layers. Crossing minimization can be a fundamental aesthetic for
upward drawings. However, the underlying decision problem is known to be N P-hard even for the
case of two-layered graphs [7]. A heuristic for crossing reduction can be found in [8]. The special
case for drawing rooted trees can be solved using divide-and-conquer algorithms [23]. Such divide-
and-conquer strategies can also be used for non-trees as shown in [22]. Several algorithms were
developed to work directly on order diagrams. Relevant for our work is the dominance drawing



JGAA, 27(9) 783-802 (2023) 785

approach. There, comparable elements of the order relation are placed such that both Cartesian
coordinates of one element are greater than the ones of the other [15]. This, combined with lattice-
completions, is employed in [10] to draw ordered sets. Weak dominance drawings allow a certain
number of elements that are placed as if they were comparable [17] even when they are not. Our
approach is based on this idea. Previous attempts to develop heuristics are described in [18]. In
[16] an algorithm is described that leverages weak dominance drawings to generate well-readable
orthogonal drawings. Weak dominance drawings can also be used as an index structure [28] to
provide reachability information in graphs. If an ordered set is a lattice there are algorithms that
make use of the structure provided by this to compute drawings. The authors in [25] make use of
geometrical representations for drawings of lattices. In [11] a force directed approach is employed,
together with a rank function to guarantee that the “upward property” is preserved. A focus on
additive diagrams is laid out in [12].

3 Notation and Definitions

We start by recollecting notation and notions from order theory [27]. In this work we call a
pair (X, R) an ordered set, if R C X x X is an order relation on a set X, i.e., R is reflexive,
antisymmetric, and transitive. In this setting X is called the ground set of (X, R). In some cases,
we write (X, <) instead of (X, R), to use the notation (a,b) € <, a < b and b > a interchangeably.
We write a < b iff a < b and a # b. Alike, if b > a and b # a, we write b > a. We say that
a pair (a,b) € X x X is comparable, if a < b or b < a, otherwise it is incomparable. An order
relation L on X is called linear (or total) if all elements of X are pairwise comparable. For (X, <)
L called a linear extension of < iff L is linear and < C L. If R is a family of linear extensions
of <and < =) rer L, we call R a realizer of <. The minimal d such that there is a realizer of
cardinality d for (X, <) is called its order dimension. We use the denotation of order dimension
for ordered sets and order relations interchangeably. For a set X and C C X x X we denote
C~1:={(a,b) | (b,a) € C}. The transitive closure of R C X x X is denoted by R™.

For our work, we consider simple graphs denoted by (V, E), where E C (‘2/) For an ordered
set (X, <), its comparability graph is defined as the undirected graph (X, F), such that {a,b} € E,
if and only if a,b € X are comparable. Similarly, the co-comparability graph (sometimes called
incomparability graph) is the undirected graph on X where {a, b} is an edge if and only if a,b € X
are incomparable. The comparability graph and co-comparability graph are thus complementary
to each other, i.e., they are defined on the same vertex set and one has exactly the edges that the
other lacks. They depict the comparable or incomparable element pairs of the order respectively.
Two order relations on the same ground set are called conjugate to each other, if the comparability
graph of one is the co-comparability graph of the other one. Thus, if an order has a comparable
pair (z,y), its conjugate order is incomparable on the same pair and vice versa. We refrain from a
formal definition of the term drawing of (X, <). However, we need to discuss the elements of such
drawings used in our work. Each element of the ground set is drawn as a point on the plane. The
covering relation is defined as cr(X, <) == {(a,b) € < | fc € X : a < ¢ < b} which is the transitive
reduction of the order relation. It thus contains the pairs of the ordered set that do not follow
from the transitivity of other pairs. In the drawing, each element of the covering relation is drawn
as a monotonically increasing curve connecting its points.

From here on some definitions are less common. For (X, <) we denote the set of incomparable
pairs of elements by inc(X, <). Note that the set of incomparable pairs contains for each pair
(a,b) also the pair (b,a). We call two incomparable pairs (a,b), (¢,d) € inc(X, <) incompatible,
if their addition to < creates a cycle in the emerging relation, i.e., if there is some sequence of
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elements c1,...,c, € X, such that each pair (¢;,¢;+1) € <U{(a,b),(c,d)} with i € {1,...,n} and
¢nt+1 = ¢1. The transitive incompatibility graph is defined as the undirected graph ((inc(X, <), E)
with {(a,b), (¢c,d)} € E iff (a,b) and (¢, d) are incompatible. We denote this graph by tig(X, <). An
example for an ordered set with its transitive incompatibility graph is given in Figure 1. Here, for
example, the relation <U{(4,3), (6,4)} contains the cycle 3, 6,4, and thus the pairs (4,3) and (6, 4)
are incompatible. Therefore, they are connected by an edge in the transitive incompatibility graph.
We say a pair (a,b) € inc(X, <) enforces another pair (c,d) € inc(X, <) iff (¢,d) € (SU{(a,b)})".
If (a,b) enforces (c,d) in <, we use the notation (a,b) — (¢,d). In the ordered set of Figure 1, it
holds that (4,6) — (1,6), as (1,6) € (SU{(4,6)})T.

Figure 1: Left: the ordered set Bs. Right: its transitive incompatibility graph (tig). This graph
has the incomparable pairs of B3 as its vertices. Incompatible pairs are connected by an edge.

4 Drawing Ordered Sets of Dimension Two

Ordered sets of order dimension 2 have a natural way to be visualized using a realizer by their
dominance drawings [15]. Let (X, <) be an ordered set of dimension two. First define the position
for each € X in a linear extension L as the number of vertices that are smaller, i.e., posy (x) ==
H{y € X | y < x}|. Thus, it holds for two elements = and y with « # y that pos; (z) < posy (y) if
and only if (x,y) € L.

Now let R = {<1,<3} be a realizer consisting of two linear extensions of the order re-
lation <. Each element is embedded into a two-dimensional grid at the pair of coordinates
(pos<, (7),pos<,(r)). Embedding this grid into the plane is done using the generating vector
(=1,1) for z; and (1,1) for 25. The coordinate system is depicted in Figure 2, the ticks correspond
to the positions of the elements.

Each embedded element point then divides the plane into four quadrants using the two lines
that are parallel to 1 and x5. It holds that a < b, if and only if the point b is in the quadrant above
the point a. For the generated drawing, the lines of the covering relation are drawn as straight
lines. This guarantees that they are monotonically increasing curves.
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Figure 2: The grid an order diagram is embedded into.

In order to compute such drawings we first have to check whether a dominance drawing for
a given ordered set exists. The following theorem gives a characterization for orders with this

property.

Theorem 1 (Dushnik and Miller, 1941 [3]). The dimension of an ordered set (X, <) is at most
2, if and only if there is a conjugate order < on X. A realizer of (X,<) is given by R =
{<U<¢e,<U>¢} where >¢ is defined as the relation {(a,b) C X x X | (b,a) € <¢}.

This theorem does not only provide a connection between the existence of a conjugate order and its
two-dimensionality, it also gives a way to compute the realizer if the conjugate order is known. The
computation of the conjugate order is possible in polynomial time because of an algorithm proposed
by Golumbic in 1977 [14]. This algorithm checks whether a graph has a transitive orientation, i.e.,
whether there is an order on its vertices, such that the graph is exactly the comparability graph of
this order. It computes such an order, if it exists. This algorithm runs in O(n?), with n being the
number of vertices of the graph. When this algorithm is executed on the co-comparability graph of
an ordered set, it computes its conjugate order. This, together with the theorem by Dushnik and
Miller from above, thus composes an algorithm for an ordered set to check if it is two-dimensional
and compute the realizer in this case. For the sake of completeness, note that there are faster
algorithms (as fast as linear [21]) for computing transitive orientations. However, those only work
if the graph is actually transitive orientable and return erroneous results otherwise. On a final
note, deciding dimension three or larger is known to be N P-complete as shown by Yannakis in
1982 [29]. This is in contrast to the just stated fact about two-dimensional orders.

5 Drawing Ordered Sets of Higher Dimensions

The idea of embedding two-dimensional orders does generalize in a natural way to higher di-
mensions, i.e., gives us a nice way to embed n-dimensional ordered sets into n-dimensional space
(Euclidean space) by using an n-dimensional realizer. However, this approach turns out to result
in two problems. Deciding the order dimension of an ordered set is N P-complete for ordered sets
of dimensions 3 or more. This results in the fact that computing realizers of such ordered sets is
computationally hard. Furthermore, this results in an embedding of the ordered set in a higher-
dimensional space while we are interested in embeddings into only two dimensions. One could
try to project the so-generated higher-dimensional drawings into two dimensions. However, our
experiments in this direction were not successful. See, for example, the parallel-projections of an
ordered set in example Figure 3, which are all not readable to a sufficient degree. For this reason
our algorithm makes use of a different method to compute higher dimensional drawings that is still
based on the concept of using the realizer.
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Figure 3: A three-dimensional ordered set embedded — based on its realizer — into three-
dimensional Euclidean space and then projected into the plane using a parallel projection from
multiple angles. Even though the structure of the ordered set is recognizable, the drawings are all
not satisfactory. For better drawings of the same ordered set refer to Figure 7.

In short, the main idea of this section is the following: for a given order relation we want to
insert some number of additional pairs to make it two-dimensional. This allows the resulting order
to be drawn using the algorithm for the two-dimensional case described in the previous section.
Afterwards we remove all the inserted pairs. By construction, the property that if ¢ < b in the
original order, the point a is inserted in the quadrant below b is still preserved. The quadrant below
a hereby refers to area that is spanned by the lines parallel to the axes of the coordinate system.
Such drawings are sometimes called weak dominance drawings [17]. However, for each inserted
pair (a,b), we obtain two points in the drawing that are drawn as if @ and b were comparable. This
poses the question of minimizing the number of inserted pairs.

Definition 2. Let (X, <) be an ordered set. A set C C inc(X) is called a two-dimension-extension
of (X, <) iff <UC is an order on X and the ordered set (X, <UC) is two-dimensional.

A two-dimension extension exists for every ordered set (X, <) of higher dimension. To see this,
consider a linear extension <y, of the order <. For some incomparable pair (a,b) with respect
to <, the relation <y, \ {(a,b)} is a superset of < and has order dimension two. Thus, it is a
two-dimension extension of <.

It is known to be N P-complete to decide whether an ordered set can be altered to be two-
dimensional by inserting k pairs [1]. Hence, we propose an algorithm that tackles the problem for
approximating the corresponding optimization problem using an idea that is based on the following
theorem.

Theorem 3 (Doignon et al. 1984 [2]). The ordered set (X, <) has order-dimension at most two if
and only if tig(X, <) is bipartite.

Thus, for (X, <) of dimension greater than two, tig(X, <) is non-bipartite. Consider for example
Figure 1. Because of the cycle of length 3 given by the pairs (4, 3), (6,1) and (5,2) in its transitive
incompatibility graph, it cannot have dimension two. Our approach is therefore to find a maximal
induced bipartite subgraph in tig(X, <). The idea is that this subset will correspond to a part of
the order relation that is already two-dimensional. From here on, we use the dual formulation of
this problem, i.e., we look for an inclusion minimal set of vertices, which, when deleted, make the
transitive incompatibility graph bipartite.



JGAA, 27(9) 783-802 (2023) 789

Lemma 4. Let (X, <) be an ordered set and (a,b), (c,d) € inc(X,<). Then the following state-
ments are equivalent:

i) d<aandb<c.

Proof. (i) = (iv). Consider the relation <:= <U (a,b) U (¢,d). This yields d < a < b < ¢ < d, i.e,
< contains a cycle. Analogously (i) = (v).

(iv) = (ii). The assumption directly implies that (d,c) € (< U (a,b))™ due to the cycle generated
by (a,b) and (c,d). By the same argument (v) = (ii).

(i1) = (i). Assume d £ aor b £ c. Since (d,c) € (<U(a,b))" it follows (d, ¢) € < which contradicts
(¢,d) € inc(X, <). Similarly, follows (#i7) = (). O

Recall the definition of tig(X, <) defined on inc(X, <) with incompatible pairs being connected.
We call a cycle in tig(X, <) strict if and only if for each two adjacent pairs (a,b) and (¢, d) it holds
that d < a and b < ¢. A strict path is defined analogously.

Lemma 5 (Doignon et al. [2]). Let (X, <) be an ordered set and let the pair v € inc(X,<). Then
the following statements are equivalent:

i) v is contained in an odd cycle in tig(X, <).
i1) v is contained in an odd strict cycle in tig(X, <).
Remark. This is stated implicitly in their proof of Proposition 2.

Theorem 6. Let (X,<) be an ordered set. Let C C inc(X, <) be minimal with respect to set
inclusion, such that tig(X, <)\C™! is bipartite. Then (X,<UC) is an ordered set.

Proof. Refer to the bipartition elements of tig(X, <)\C~! with P; and P,.

Claim. The arrow relation is transitive, i.e., if (a,b) — (¢, d) and (¢, d) — (e, f) then (a,b) — (e, f).
If (a,b) — (¢,d) then ¢ < a and b < d by definition. Similarly, (¢,d) — (e, f) implies e < ¢ and
d < f. By transitivity of <, this yields that e < a and b < f, which in turn implies that
(a,b) = (d. ).

Claim (x). Let (a,b),(c,d) € inc(X, <) with (a,b) € C~! and (a,b) — (c,d), then (c,d) & C~L.
Assume the opposite, i.e., (¢,d) € C~1. Without loss of generality let (a,b) € P;. As (c,d) € C~!
there has to be a pair (e, f) € P; that is incompatible to (¢, d), i.e., (e, f) — (d, ¢), otherwise (¢, d)
can be added to P; without destroying the independent set. However, (a,b) — (¢, d) is equivalent
o (d,c) — (b,a) and yields together with the transitivity of the arrow relation (e, f) — (b, a). But
than (e, f) and (a,b) are incompatible, a contradiction since both are in the independent set P;.

Claim (%x). If (z,y) € C, then (y,x) € C. As (y,x) € C~!, there is a pair (a,b) in P;, such
that (a,b) and (y,z) are incompatible, i.e., (a b) — (z,y), otherwise (y,x) can be added to P.
However, since (a,b) ¢ C~* follows (z,y) & C L directly from Claim ().
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Reflexivity: Vo € X we have (x,2) € < C <UC.

Antisymmetry: assume (x,y) € <UC and (y,x) € <UC. We have to consider three cases. First,
(z,y) € < and (y,z) € <. Then & = y, as < is an order relation. Secondly, (z,y) € < and
(y,z) € C. If (x,y) € <, then z and y are comparable, i.e., the pair (y,z) can’t be in inc(P, <).
Then (y,z) ¢ C, a contradiction. Thirdly, (z,y) € C and (y,x) € C. This may not occur because
of Claim (xx).

Transitivity: let (z,y) € <UC and (y, z) € <UC we show (y, z) € <UC. We have to consider four
cases. First, (z,y) € < and (y, z) € < implies (z,2) € <. Secondly, (z,y) € < and (y,2) € C and
assume that (z,2) € (SUC). Then (z,z) ¢ C™1, but (z,2) — (2,y), as (z,y) € <. From Claim (%)
follows that (z,y) & C~', a contradiction to (y, z) € C. The case (z,y) € C and (y,2) € < is treated
analogously. Lastly, (z,y) € C and (y, z) € C and assume (z, z) ¢ C, i.e., (z,2) € C~*. There has to
be an odd cycle in P; U P, together with (y, z), otherwise (y, z) can be added to Py U P, to create
a larger bipartite graph. By Lemma 5, there also has to be a strict odd cycle. Let the neighbors
of (y,%) in P, U P, be (a,b) and (¢,d). Then a < z, ¢ < z, y < b and y < d, and the pairs (a,b)
and (c,d) are connected by a strict path on an even number of vertices through the strict odd
cycle. By the same argument there are pairs (e, f) and (g,h) withe <y, g <y, x < fand x < h
and (e, f) and (g, h) connected by a strict odd path. We now show that (z,z) is in an odd cycle
with P; U P to yield a contradiction. For this consider the following paths A = (¢, f)(z, z)(h, a),
B = (d,h)(h,g) and C = (f,e)(e,b). Each of those is a path in tig(P, <) by definition.

Claim. Between (h,a) and (d, h) there is a path on an even number of vertices in P; U P,. To show
this, let (a1,b1), ..., (agk, bog) be the strict path on an even number of vertices connecting (a, b)
and (d, C) such that (al, bl) = (a, b) and (agk,bgk) = (d, C). This implies agit1 < boit+a, a2; < boit1,
boit1 > agiy2 and ag; > be;y1 and for each ¢ € {0,...,k — 1}. However, this yields the path
(hya) = (h,a1)(be,h)(h,as3) - (bax, h) = (d,h) which is even and connecting (h,a) and (d, h) in
P, U Py, as required.

Analogously we obtain a path between (c, f) and (b, f) on an even number of vertices. Moreover,
(h,g) and (f,e) are also connected by a path on an even number of vertices in P; U Py, since
(g,h) and (e, f) are connected by an even path. Reversing all pairs of this path yields the required
path. Combining the segments A, B and C with the paths connecting them yields an odd cycle in
P, UP,U{(z,2)}, a contradiction. O

5.1 The Importance of Inclusion-Minimality

Consider once again the example from Figure 1. The ordered set corresponding to the order
diagram on the left is well-known to be three-dimensional. However, it becomes an order relation
of dimension two by the insertion of a single one of the pairs (2,5), (1,6), or (3,4). Thus, if one
of the pairs (5,2), (6,1), or (4, 3) is removed from the transitive incompatibility graph, this graph
becomes bipartite. The sets {(5,2)}, {(6,1)}, or {(4,3)} are inclusion minimal sets as required
by Theorem 6. To see that inclusion minimality is a necessary condition, consider for example
the set {(5,2),(2,5)}. Its removal makes the transitive incompatibility graph bipartite, however it
is not inclusion minimal with respect to this property, as it contains the previously discussed set
{(5,2)} as a subset. The important observation is that the relation <U (5,2),(2,5) is not an order
relation, otherwise it would follow from the antisymmetry of order relations that 5 = 2. Thus,
inclusion-minimality is a necessary condition in Theorem 6.



JGAA, 27(9) 783-802 (2023) 791

d
b
ea
|
|
|
oc
Figure 4: An example how new incom- Figure 5: The transitive incompatibility graph of this
patibilities can arise. < is the continu- ordered set has an inclusion-minimal bipartite sub-
ous line, C is the dashed line. (a,b) and graph that does not give rise to a two-dimension ex-
(¢, d) are not incompatible in < and in- tension.

compatible in < UC.

5.2 Finding Bipartite Subgraphs is not Sufficient

From Theorem 6 one might conjecture that finding an inclusion-minimal bipartite subgraph of
tig(X, <) is sufficient to find a two-dimensional extension of (X, <). However, it may occur that
two pairs are not incompatible in < but are incompatible in < U C with C being an inclusion-
minimal set such that tig(X,<)\C~! is bipartite. This can arise in particular, if the following
pattern occurs: the ordered set contains the elements a,b,c and d, such that all elements are
pairwise incomparable, except b < d and (¢,a) € C; see Figure 4. Then (a,b) and (¢,d) are not
incompatible in tig(X, <), but they become incompatible with the relation <UC. An example for
this is provided by the ordered set in Figure 5. The transitive incompatibility graph of this ordered
set has 206 vertices. An inclusion minimal set that makes the tig graph bipartite if it is deleted is
given by

(5,9, (3,13), (6,15), (17,15), (5,15), (5,13), (11,10), (9,6), (5,6),

(4,15), (1,8), (3,18), (11,12), (2,8), (11,7, (0,15), (1,16).
However, if we insert the complement of this set into the order relation and compute the transitive
incompatibility graph of the emerging order, we receive once again a non-bipartite graph. Thus,
the newly generated ordered set is also not two-dimensional. We have to add the additional pair
(8,17) to obtain an ordered set of dimension two. It may be remarked at this point that it is in
fact possible to make the transitive incompatibility graph bipartite by adding only eleven pairs (in
contrast to the seventeen added in this particular example), see Figure 11. Those pairs give rise
to a two-dimension extension.

6 Algorithm

Building up on the ideas and notions from the previous sections we propose the algorithm DimDraw
as depicted in Algorithm 1. Given an ordered set (X, <), one calls Compute_Coordinates. Until
this procedure identifies a conjugate order using the Compute_Conjugate_Order (and in turn the
algorithm of Golumbic [14]), it computes the transitive incompatibility graphs using Lemma 4.
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Algorithm 1 DimDraw

Execute Compute_Coordinates on the ordered set that is to be drawn.

Input: Ordered set (P,<)
Output: Conjugate order of (P,<)

def Compute_Conjugate_Order (P ,<):
C = Co_comparability_Graph (P ,<)
if Has_Transitive_Orientation (C):
(P,<¢) = Transitive_Orientation (C)
return <o
else:
return |

Input: Ordered set (P,<)
Output: Coordinates of the drawing of (P,<)

def Compute_Coordinates (P, <):
<¢ = Compute_Conjugate_Order (P, <)
C =10
while <o = 1:
I = Transitive_.Incompatibility_Graph (P,<UC)
B = Maximal_Bipartite_Subgraph (1)
C =Ccuv(I\B)!
<¢ = Compute_Conjugate_Order (P ,<UC)

Coord(z,1) = |{k|k<i 2} -1
Coord(z,2) = [{k|k<sz}| -1
return Coord

It then identifies which vertices should be removed from the transitive incompatibility graph and
adds the reverse pairs to the order <. Once the Compute_Coordinates identifies a conjugate order,
it uses this order to compute the realizer. The positions in the realizer are then used to compute
the coordinates of all elements which are returned by the algorithm. As, for finite ground sets, the
number of incomparable pairs decreases in every repetition step of the algorithm, the number of
vertices of the transitive incompatibility graph also decreases and the algorithm thus terminates.
However, the computation of the bipartite subgraph, which the algorithm has to solve in each step,
entails an [N P-complete problem.

6.1 Postprocessing

The algorithm does not prevent a point from being placed on top of lines connecting two different
points. This however is not allowed in order diagrams. Possible strategies to deal with this problem
are the following. One strategy is to modify the coordinate system, such that the marks of different
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integers are not equidistant. Another one is to perturb the points on lines slightly. A third way is
to use splines for drawing the line in order to avoid such crossings.

6.2 Runtime Discussion

The problem that we investigate in this work entails the N P-complete problem related to the
two-dimension extension. The algorithm that we propose tries to find a maximal induced bipartite
subgraphs in each step of the algorithm. As deciding on the vertex cardinality of the maximal bipar-
tite subgraph is also N P-complete, the algorithm proposed has exponential runtime. Nonetheless,
we give a short analysis of the different computations in the algorithm. Let for this purpose n be
the number of elements of the ordered set. The Compute_Conjugate_Order routine makes use of the
Transitive Orientation-Algorithm proposed by Golumbic [14] and runs therefore in O(n?3) time.
The size of the transitive incompatibility graph can be quadratic in n, if every pair of elements is
incompatible. Computing this graph can be done in O(n?) time using Lemma 4. So, additionally
to the exponential task of computing bipartite subgraphs, each repetition has a runtime complexity
of at least O(n?). By our experience, which stems mostly from ordered sets generated using the
theory of formal concept analysis, the algorithm terminates after a small number of repetitions,
i.e., at most two or three.

7 Finding Large Induced Bipartite Subgraphs

Our algorithm has to compute an inclusion-minimal set of vertices C such that removing those
vertices from the transitive incompatibility graph results in a bipartite graph. For each vertex in C
we will have two incomparable elements in the drawing that are drawn as if they were comparable.
It is therefore desirable to remove a truly minimal set of vertices to reduce the amount of such
inaccurately drawn pairs. Deciding for a graph whether it is possible to make it bipartite by
removing a set of cardinality k is known to be N P-complete [19]. Even approximations are known
to be in this complexity class [20]. Therefore, we propose different approaches to tackle this
problem.

7.1 Exact Solution using a Reduction to SAT

Even for small examples, i.e., orders on fewer then 30 elements, a naive approach is infeasible. As
we will see in Section 8 the question of computing C results in (122) tests for an example on 19
elements (Figure 7) and (%)) tests for example (Figure 8) on 24 elements. Therefore, we need a
more sophisticated solution for the problem. We reduce the problem for finding bipartite subgraphs
to a SAT problem and then solve this problem with a SAT-Solver, in our case MiniSat [9] in version
2.2. In other words we want to know for some graph G = (V| F) on n vertices and m edges whether
by deleting k vertices we can make the graph bipartite. Solving is done by finding a partition of
V into the three sets P;, P,,C~', such that P, and P, are independent sets and |C_1\ < k. For
this we construct a conjunctive normal form as follows: for each vertex v; we have three variables,
call them V;1,V;2,V;3. The first two variables indicate, whether the vertex is placed in P; or
P,, respectively and the third variable indicates, whether the vertex is placed in C~!. For each
vertex we have to guarantee, that it is placed in at least one of P, P, or C™1, i.e., at least one of
Vi, Vi, Vi g is true for each i. We achieve this with the clause V; 1 VV; 2V V; 5 for alli € {1,...,n}.
Also, we want to guarantee that P, and P, are independent sets, i.e., no two vertices in P; or P
are connected by an edge. We achieve this by adding the two clauses =V; 1 V=V 1 and =V; 2 V=V 5
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Clauses to guarantee that every vertex is assigned to at least one of the classes Py, P or C:

(3, >1v<3 45V (3, 4)) A (3, 1>1v<3,1>2v(371> YA ((5.4)1V (5, 4)2 V (5,4)3) A ((6,4)1 V/ (6, 4)2 V
(6,4)3) A((1,3)1V(1,3)2V(1,3)3) A ((4,3)1V(4,3)2V (4,3)3) A ((4,6)1 V (4,6)2 V (4,6)3) A ((1,6)1 V
(1,6)2V (1,6)3) A ((4,5)1V (4,5)2V (4,5)3) A((6,1)1V (6,1)2V (6,1)3) A ((5,2)1 V (5,2)2V (5,2)3) A
((1,2)1V(1,2)2V(1,2)3) A((2, 1)1V (2,1)2 V(2,1)3) A((5,6)1 V (5,6)2 V (5,6)3) A((2,3)1V(2,3)2V
(2’ ) ) ((2 5)1\/(2 5)2\/(2 5) ) ((675)1\/(675)2\/(675) )

Clauses to ensure that no two adjacent vertices are placed in the same class Py or Ps:
(=(3,4)1V=(4,3)1) A (2(3,4)2 V (4,3)2) A (—(4,3)1 V (3, 1)1) A (—(4,3)2 V (3, 1)2) A (—(4,3)1 V
2(6,4)1) A (—(4,3)2 V=(6,4)2) A (2(3,1)1 V =(1,3)1) A (2(3,1)2 V =(1,3)2) A (=(6,4)1 V (4, 6)1) A
(=( ,4)2\/ﬂ(476)z)A(ﬁ(173)1Vﬂ(ﬁ,1)1)A(ﬂ(1,3)zvﬁ(671)2)A(ﬁ(4,6)1V (6,1)1) A (—(4,6)2 v
=(6,1)2) A (=(4,3)1V =(6,1)1) A (=(4,3)2 V =(6,1)2) A (=(4,3)1 V (5, 2)1) A (=(4,3)2 V (5, 2)2) A
(=(4,3)1V =(3,2)1) A (=(4,3)2V (3, 2)2) A (2(4,3)1 V (5, 4)1) A (=(4,3)2 V =(5,4)2) A (=(3,2)1 V
=(2,3)1) A (2(3,2)2V (2,3)2) A (—(5,4)1 V =(4,5)1) A (=(5,4)2 V =(4,5)2) A (—(4,5)1 V =(5,2)1) A
(=(4,5)2V =1(5,2)2) A (=(2,3)1 V (5,2)1) A (2(2,3)2 V (5, 2)2) A (=(6,1)1 V =(1,6)1) A (—(6,1)2 v
~(1,6)2) A (2(5,2)1 V =(2,5)1) A (2(5,2)2 V —(2,5)2) A (=(6,1)1 V —(1,2)1) A (=(6,1)2 V (1, 2)2) A
(=(1,2)1 V=(2,1)1) A (2(1,2)2 V (2, 1)2) A (2(2, 1)1V =(5,2)1) A (=(2,1)2 V =(5,2)2) A (—(6,1)1 V
=(5,6)1) A (=(6,1)2 V =(5,6)2) A (=(5,6)1 V =(6,5)1) A (=(5,6)2 V =(6,5)2) A (=(6,5)1 V =(5,2)1) A
(=(6,5)2 V =(5,2)2) A (=(6,1)1 V =(5,2)1) A (=(6,1)2 V =(5,2)2)

Figure 6: The SAT clauses for our running example from Figure 1. Additionally, clauses are needed
to ensure that at most k of the variables {(a, b)s | (a,b) € inc(X, <)} are assigned true.

for each edge {v;,v;} € E. This ensures that no two vertices connected by an edge are placed in
set P; or P,. Finally, we have to guarantee that there are at most k vertices in Ps, i.e. that at
most k of the variables {Vi 3,Va33,...,V, 3} are true. There are multiple ways to achieve this. We
employ the method from [24]. This results in (n — 1) - k auxiliary variables and 2nk +n — 3k — 1
clauses. Altogether our SAT instance has (n — 1)(k + 3) + 3 variables and 2m + 2nk + 2n — 3k — 1
clauses. For this CNF the following holds by construction.

Theorem 7. The SAT instance as constructed above is satisfiable if and only if G has an induced
bipartite subgraph on n — k vertices.

For our running example from Figure 1, the SAT clauses introduced in this work are depicted in
Figure 6. Now we build this SAT instance for k increasing from 1 until it is satisfiable. Then the set
{v; | Vi,;3 = true} is exactly the subset of vertices we have to remove to make the graph bipartite.
Obviously methods like binary search may be applied here. For the instances we experimented
with, it was always possible to compute the set C using the SAT-solver approach discussed above.
We suspect that for the ordered sets of sizes, for which it is of interest to compute visualizations,
this is always possible. Still, we could also plug heuristic procedures into our algorithm to find the
inclusion-minimal set C. To do so, we experimented with a greedy algorithm, a simulated annealing
approach, and a genetic algorithm with promising results, especially for the genetic algorithm.
However, it is preferred to use the SAT algorithm as long as there is enough computational power.

8 Evaluation

The DimDraw algorithm was originally designed with the idea in mind of drawing the order diagram
of lattices. Those are employed in particular in formal concept analysis (FCA), a mathematical
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Figure 7: Three drawings of the “Living Beings and Water” lattice, by hand (left), with Sugiyama’s
framework (middle), and with our algorithm (right).

Figure 8: The “Drive concepts for motorcars” lattice. Drawn by an expert (far left), with
Sugiyama’s framework (middle left) and two drawings of our algorithm (middle and far right).

theory for analyzing data. Note that any complete lattice can be represented by a concept lattice
in FCA. We tested our algorithm on all lattice examples from a standard literature book on
FCA [13]. In all those cases the quality of the produced drawings seemed to reflect the underlying
order structure, similarly to the hand drawn versions of experts. For example, consider the lattice
that arises from “Living Beings and Water” [13, p.18]. In Figure 7 we compare the hand-drawn
example (left) to the result drawn by our algorithm (right). For Figure 8 [13, p.40] there are
two different solutions depicted, both having the minimal number of pairs inserted, note that the
algorithm stops after it finds a single solution. Because of the importance of drawings in FCA we
tested the algorithm on every lattice with eleven or fewer vertices. The reader may wish to have
a look at the document containing all 44994 drawings on 7499 pages [4].

As it is however hardly possible to come up with a metric that quantifies a generated order
diagram to be close to a hand-drawn drawing, we also conducted a user study. In this study, in
each step the user was presented with three drawings of the same ordered set, one being generated
by DimDraw, one by Sugiyama’s framework, and one using Freese’s algorithm. The user then had
to decide which drawing was perceived as most readable. To ensure that no algorithm was at an
advantage based on the positioning of the drawing, the order of the drawings was randomized in
each step. Furthermore, the user was not told which drawing corresponds to which algorithm.
Finally, the order in which the ordered set were presented to each user was also randomized. The
dataset we compiled for this user study consists of 100 formal contexts from real world data as
well as randomly generated contexts. For reproducibility we published the dataset at [5], together
with a description of how every formal context in this set was collected. The ordered sets in this
dataset have between 7 and 49 elements with an average of 18.34. The cardinality of the covering
relation was between 7 and 100 and the mean was 31.96. On average, the ordered sets had 1.67
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Total votes for each algorithm Drawings won by each algorithm
1000 -
£ 60
750 g
S 40
500 2
3
250 - & 201
0- 0- . .
DimDraw Sugivama Freese DimDraw Suaivama Freese Draw

Figure 9: Total votes in the user study: A draw- Figure 10: Most selected drawings by algorithm:
ing generated by DimDraw was voted 1030 times Of all 100 ordered sets, DimDraw’s was 73 times
as the best drawing, a drawing by Sugiyama’s voted as the best drawing, Sugiyama’s 24 times
framework was voted 510 times and Freese’s and Freese’s 1 time. The remaining two times
drawings were voted 54 times. Sugiyama and DimDraw tied.

pairs in the order relation per element.

We restricted the user study to experts of the FCA community, as those are domain experts
and experienced in working with order diagrams. A total of 42 such domain experts participated
in the study, each rating 37.95 drawings on average, yielding a total of 1594 ratings. The results of
this study broken down to the individual drawings is published at [6]. Of all the 1594 ratings, 1030
were in favor of DimDraw, 510 in favor of Sugiyama’s framework and 54 in favor of Freese. The
above results are visualized in Figure 9. We also compare for each ordered set of the study which
drawing was perceived as best by the majority of users, i.e., which drawing got the most votes for
each ordered set in Figure 10. Here the drawing generated by DimDraw was chosen 73 times, while
Sugiyama’s framework and the Freese layout was chosen 24 times and 1 time respectively. The
remaining two drawings were tied between DimDraw and Sugiyama. Thus, it can be concluded
that the quality of the drawings generated by DimDraw outperformed both Sugiyama and Freese
in this user study.

Even though, we do not explicitly optimize on the number of crossings of the drawings we
decided to test the number of crossings produced in the drawings. Surprisingly, DimDraw was able
to outperform Sugiyama’s framework on several instances, an algorithm that explicitly optimizes
on the number of crossings in an upward graph, compare to Table 1. For the dataset we compiled
for the user study, DimDraw is the only one that was able to draw each of the 27 included planar
ordered sets without crossings. Sugiyama’s framework drew 13 drawings without crossings and
Freese produced 3 crossing-free drawings.

Concluding the experiments we want to present an example that our algorithm also works on
non-lattices. Consider the ordered set from Figure 5. While the hand-drawn version of this order
diagram makes use of splines, our algorithm-generated version Figure 11 uses exclusively straight
lines.

An interesting observation during our experiments was the following. For all examples that we
are aware of, one pass of the SAT solver approach is sufficient for reducing their order dimension
to two. This is surprising, in particular in light of Figure 5 from Section 5.2.
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Table 1: Comparing the number of crossings in the drawings of some ordered set as produced by
Sugiyama’s framework and DimDraw.

‘ Sugiy. DimDraw ‘ Sugiy. DimDraw
Figure 7 | 6 5 Figure 15 | 4 4
Figure 8 | 39 43 Figure 16 | 3 4
Figure 11 | 6 13 Figure 17.1 | 0 0
Figure 12 | 70 64 Figure 17.2 | 2 2
Figure 13 | 102 98 Figure 17.3 | 22 20
Figure 14 | 26 31 Figure 17.4 | 152 130

Figure 11: A non-lattice example of an ordered set. One drawing is produced by Sugiyama’s
framework (left) and one by our algorithm (right). See Figure 5 for a hand-drawn version.

9 Conclusion and Outlook

We presented in this work a novel approach for drawing diagrams of order relations. To this end
we employed an idea by Doignon et al. [2] relating order dimension and bipartiteness of graphs and
proved an extension. Furthermore, we linked the naturally emerging problem to SAT. Finally, we
demonstrated various drawings in a user study. A user study with domain experts confirmed this
observation. We would have liked to compare our algorithms to the heuristics developed in [18].
Unfortunately, we were not able to reproduce their results based on the provided description.

A notable observation is the fact that in all our experiments the SAT-Solver blend of DimDraw
was able to produce a solution in the first pass, i.e., the algorithm found a truly minimal two-
dimension extension. This raises the natural question whether the maximal induced bipartite sub-
graph approach does always result in a minimal two-dimension extension. Further open questions
are concerned with employing heuristics and improving the postprocessing stage. The SAT-solver
version of DimDraw is included in the software conexp-clj!. At a later time we also want to include
heuristic versions.

Thttps://github.com/tomhanika/conexp-clj
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A Availability of data and material
o dataset used for the user study: https://zenodo.org/record/4075207

e results of the user study: https://zenodo.org/record/4075215

B Code availability

The source code is available as a part of the research software conexp-clj https://github.com/
tomhanika/conexp-clj.

C Additional Drawings

In this section we provide some additional drawings generated by DimDraw.

Figure 12: An example from [13, p.53]. The hand-drawn version is on the left, Sugiyama’s frame-
work in the middle, our version on the right.

Figure 13: An example from [13, p.35]. The hand-drawn version is on the left, Sugiyama’s frame-
work in the middle, our version on the right.
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Figure 14: An example from [13, p.30]. The hand-drawn version is on the left, Sugiyama’s frame-
work in the middle, our version on the right.

Figure 15: An example from [13, p.45]. The hand-drawn version is on the left, Sugiyama’s frame-
work in the middle, our version on the right.

D

Figure 16: Order diagram of the lattice used in [12]. From left to right: Hand drawn, Ganter’s
algorithm, Sugiyama’s framework, our algorithm.
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Figure 17: Order diagrams for Boolean lattices of dimension two, three, four, and five drawn by
Sugiyama’s framework (top) and our algorithm (bottom).
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