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Abstract. The creation of scientific supercomputers is one of the most pressing
issues confronting technology today. Experts in computer science anticipate that fu-
ture supercomputers will be built on large-scale parallel processing. A system with
multiple processors and memories will be used in such a computer. The interconnec-
tion network that allows communication between the system’s processors and memories
is a critical component of such systems. In the topic of interconnection networks for
parallel computer architectures, graph embedding problems have grown in relevance.
Network embedding has been recognized as a valuable method for developing efficient
algorithms and simulating various architectures in parallel and distributed computing.
In this paper, we obtain the maximum subgraph of the generalized Sierpinski graphs
S(n,m), n ≥ 2,m ≥ 3, and calculate the minimum linear arrangement of generalized
Sierpinski graphs by graph embeddings.

1 Introduction

The mathematical representation of the interconnection network’s structure is a graph, where the
edges represent the connections between the processors and the vertices represent the network’s
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structure. An interconnection network is a critical component in parallel computing systems. It
consists of physical connections (such as wires or optical fibers) and communication protocols
that enable the transfer of data between the different processing units. In a parallel computing
environment, multiple computers or processing units work together to solve a problem or perform
tasks concurrently. To make this collaboration efficient, a fundamental requirement is the ability
to exchange data seamlessly between these parallel computing nodes. Graph embedding stands out
as a highly efficient technique for simulating guest graphs into host graphs. Various domains, such
as VLSI designs, representations, data structures, biological models of cloning, parallel computer
network architecture, and structural engineering, all contribute to the mathematical framework of
graph embedding. In addition, dilation, congestion, and wirelength are significant parameters to
consider when assessing an embedding.

Edge isoperimetric problems (EIP) and Convex edge partition play a significant role in demon-
strating embedding, which is about finding the maximum number of edges induced when particular
numbers of vertices are chosen. The concept of edge isoperimetric problems is applied to the guest
graph and has a broad range of applications in the fields of computer science and combinatorics
[4]. The Convex edge partition is about finding the shortest path within the component when
the graph is partitioned into two different components. This concept of convex edge partition is
applied in the host graph [2, 7, 20, 23, 25, 22].

Concerning vertex degree, chromatic number, clique number, and network size, the generalized
Sierpinski graphs S(n,m) [24] are the most vital networks. Several network topologies based on the
generalized Sierpinski graph have been developed and researched in the literature due to their ideal
properties [16]. In the last 25 years, many studies have been done on the generalized Sierpinski
graph. The study of connection networks, topology, physics, and research into a specific class
of universal topological spaces all contribute to the interest in these graphs. Other sources of
fascination include games like Chinese Rings or the Tower of Hanoi. Sierpinski graphs, which have
applications in topology, the Tower of Hanoi, and computer science, are highly explored fractal
graphs. S(n,m) has been utilized in the development of computer and communications networks
for decades due to its superior fault-tolerance and routing features. Additionally, it is employed
in distributed computing and VLSI design. As a combinatorial optimization problem, finding
the ideal linear arrangement of a network in terms of an objective cost function is known as the
Minimum Linear Arrangement (MinLA) problem. Overall, the MinLA problem is an NP-complete
problem [9].

The family of graphs, known as the generalized Sierpinski graph, has been studied as a model for
interconnection networks of multiprocessor computers. Solution and investigation of combinatorial
optimization problems on the generalized Sierpinski graph have implications for estimating the
communication complexity of a layout, and it has practical importance in the area of VLSI circuit
design, and network optimization for parallel computer architecture. Lexicographic ordering has
been previously used as a tool for solving problems of the generalized Sierpinski graphs. The vertex
set of S(n,m) consists of all n-tuples of integers 1, 2, . . . ,m for positive integers n and m with the
vertex set V = {0, 1, . . . ,m−1}n. Each of the vertices can be numbered from 0 to mn−1, and each
vertex can be given a label which is them-ary representation of its number. It was shown by Harper
[10] that initial segments of the lexicographic order are solutions of the edge-isoperimetric problem
on the generalized Sierpinski graphs. A different example of using the lexicographic ordering of
the vertices is the construction of a minimum connected hub set [19], where each vertex needs
to examine its own label to determine whether it is in a hub set or not. In this paper, we show
that initial segments of the lexicographic order are solutions to the maximum subgraph problem
on S(n,m). In addition, we solve the minimum linear arrangement on the generalized Sierpinski
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graph by labeling the vertices of S(n,m) in lexicographic order, and labeling the vertices of the
path graph sequentially, starting from the leftmost vertex.

There have been extensive studies on various mathematical problems related to generalized
Sierpinski graphs [13]. These include solving the edge-isoperimetric problem on the Sierpinski
graph, and achieving a conclusive resolution by Harper [10]. In addition, Harper [12] investigated if
S(n,m) which is the generalized Sierpinski graph could be embedded in Kn

m which is the Hamming
graph with the same vertex set and confirmed that the answer is affirmative. In 2015, Rajan et al.
[22] conducted a study on the dilation problem of an embedding, and computed the exact dilation
of embedding the circulant network into a triangular grid, Tower of Hanoi graph and Sierpinski
gasket graph.

In the next section, the basic definitions and preliminaries related to embedding problems
are provided. In Section 3 and 4, algorithms to solve the maximum subgraph problem and the
minimum linear arrangement problem on generalized Sierpinski graphs S(n,m), n ≥ 2,m ≥ 3 are
presented, respectively. For both algorithms, proof of correctness and the time complexity analysis
are provided. A Sage code implementation to find the maximum number of edges induced by
l vertices (1 ≤ l ≤ mn) in S(n,m), along with its output, is included in the appendix section.
Readers can gain a better understanding of the algorithm or the underlying logic of the Sage
program by consulting references [25] and [23]. In Sections 5 and 6, some real-world applications
are discussed, and concluding remarks are provided, respectively.

2 Basic Definition

Definition 2.1 [5] Let X(Guest) and Y (Host) be any two graphs. The vertex sets of X and Y
are represented by V (X) and V (Y ) respectively. The edge sets of X and Y are represented by
E(X) and E(Y ) respectively. An one-to-one mapping T : V (X) → V (Y ) is called an embedding
if each edge (u, v) ∈ E(X) is mapped into a path in Y between T (u) and T (v).

Definition 2.2 [5] Let T be an embedding from X into Y . For e ∈ E(Y ), the number of path in
{PT (u, v) : PT (u, v) is a path between T (u) and T (v) in Y for (u, v) ∈ E(Y ) that contains e} is
called the congestion on e with respect to T and is defined by CT (e). For S ⊆ E(Y ), we define
CT (S) =

∑
e∈S CT (e).

Definition 2.3 [5] Let T : X → Y be an embedding. Then the congestion of T : X → Y is
given by CT (X,Y ) = max CT (e). The congestion problem is to determine min

T
CT (X,Y ) where

the minimum is taken along all embedding T : X → Y .

Definition 2.4 [20] The wirelength of an embedding T : X → Y is given by

WLT (X,Y ) =
∑

e∈E(Y )

CT (e)

and min
T

WLT (X,Y ) is called the wirelength of embedding X into Y and is denoted by WL(X,Y )

where the minimum is taken along all embeddings T : X → Y .

When Y is a path, the wirelength of embedding from X into Y is nothing but the minimum
linear arrangement of X. The MinLA of a grid M [3 × 3] with respect to T is given in Figure 1.
The wirelength problem is an NP-complete problem [9].
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Figure 1: Wiring diagram of a grid X into a path Y with MinLAT (X,Y ) = 24.

Definition 2.5 [4] If all of the shortest paths between any two vertices in a subgraph W of a
graph X lies (entirely) only in W , then the subgraph is called convex. If X \ S partitions into
two constituents, say X1 and X2 each of which is convex, then the edge cut S of X is said to be a
convex cut.

Definition 2.6 [4] For a given l, 1 ≤ l ≤ |VX |, find W ⊆ V such that if

IX(l) = max
W⊆V, |W |=l

|IX(W )|

where IX(W ) = {(u, v) ∈ E : (u, v) ∈ W}. A subset of vertices W ⊆ V is called optimal if |W | = l
and |IX(W )| = IX(l). The problem of finding IX is called the maximum subgraph problem.

Definition 2.7 [4] For a given l, 1 ≤ l ≤ |VX |, find W ⊆ V such that if

ΘX(l) = min
W⊆V, |W |=l

|ΘX(W )|

where ΘX(W ) = {(u, v) ∈ E : u ∈ W, v /∈ W}. A subset of vertices W ⊆ V is called optimal if
|W | = l and ΘX(W )| = ΘX(l). The problem of finding ΘX is called the minimum cut problem.

Lemma 2.8 [21] Let T be an embedding from X into Y . Let S be a convex cut of Y such that
Y \S partitions into two constituents Y1 and Y2 and let X1 and X2 be subgraphs of X induced by
T −1(V (Y1)) and T −1(V (Y2)) respectively. Suppose X1 and X2 are maximal induced subgraph on
|V (X1)| and |V (X2)| vertices in X. Then

CT (S) =
∑

v∈V (X1)

degX(v)− 2|E(X1)| =
∑

v∈V (X2)

degX(v)− 2|E(X2)|.

Lemma 2.9 [3, 20] Let T be an embedding from X into Y . Let Er(Y ) be the set of edges of Y
repeated precisely r times. Let {Sj : 1 ≤ j ≤ n} be a partition of Er(Y ) such that each Sj is a
convex cut of Y and fulfills the condition of the Lemma 2.8. Then,

WL(X,Y ) = WLT (X,Y ) =
1

r

n∑
i=1

CT (Sj).
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3 Maximum Subgraph Problem

The maximum subgraph problem for a given graph X, tries to find the maximum induced subgraph
W on l vertices and involves determining the subgraph of X that contains the most edges among
all possible subgraphs induced by l vertices. In the case of generalized Sierpinski graphs, we seek
to find the maximum number of edges in a subgraph induced by l vertices. The edge-isoperimetric
problem (EIP) for generalized Sierpinski graphs has been extensively studied [10]. These solutions
provide valuable insights into estimating the edge congestion over the path embedding of the gen-
eralized Sierpinski graphs.

Structure of generalized Sierpinski graphs S(n,m): In 1944, Scorer et al. introduced the
graph S(n,m), with n ≥ 1 and m ≥ 2 [24]. They demonstrated that S(n, 3) corresponds to
the Tower of Hanoi with n discs. In 1997, Klavžar and Milutinoviá explicitly revealed that the
representation of S(n,m) was implicit in Scorer’s work [15]. The order of S(n,m) is mn, indicating
that it contains mn vertices. In S(n,m), all vertices, except for the corner vertices, have a degree
of m, while the corner vertices have a degree of m− 1. By summing the degrees of all vertices, we
obtain m(m− 1) + (mn −m)m, which simplifies to mn+1 −m. Since each edge is incident to two
vertices, the total number of edges in S(n,m) is (mn+1 −m)/2.

The special cases include S(n, 1) consisting of a single vertex, and S(n, 2) forming a path with
2n vertices. The endpoints of this path are the two corner vertices labeled as 0n and 1n. Each
interior vertex in S(n, 2) is connected to two edges, one leading towards 0n and the other towards
1n. The Sierpinski graph S(n,m) holds significance due to its bi-regular structure, short diameter,
and solid connections. To enhance its effectiveness, various modifications have been made over
time. The metric topological structure of the Sierpinski network S(n,m) is particularly important
in different Sierpinski graph variations, as it is considered more reliable and effective than the
Sierpinski gasket graph ST (n,m). Its fractal nature, self-similarity, and connectivity properties
make it a versatile tool with wide-ranging applications in various fields, including networking, data
processing, simulation, image and signal processing, and theoretical research [13].

Figure 2: Generalized Sierpinski graphs (a) S(2, 3) (b) S(2, 4) (c) S(2, 5).
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Definition 3.1 [14] For positive integers n and m, let S(n,m) be the graph with vertex set
V = {0, 1, . . . ,m−1}n, where two vertices (u1, . . . , un) and (v1, . . . , vn) are adjacent if there exists
an index h ∈ [n] such that

1. ui = vi for i < h,

2. uh ̸= vh and

3. (ui, vi) = (vh, uh) for i > h.

For illustration, the generalized Sierpinski graphs S(2, 3), S(2, 4) and S(2, 5) are given in Fig-
ure 2. We can also number the vertices from 0 to mn − 1, interpreting a vertex as the m-ary
representation of its number, that is, vertex (u1, . . . , un) has number

n−1∑
i=0

un−im
i.

Then the lexicographic order on V agrees with the usual order on the set {0, 1, . . . ,mn − 1}.
It has been proved in [10] that the edge-isoperimetric problem for S(n,m) is solved by taking an
initial interval.

Definition 3.2 (Lexicographic ordering [1]) A collection of n-tuples with integer elements is said
to be in lexicographic order if (u1u2 · · ·un) is bigger than (v1v2 · · · vn) if and only if an index i,
1 ≤ i ≤ n, exists with the property that uj=vj for 1 ≤ j ≤ i and ui > vi.

This lexicographic ordering becomes an important tool for finding the maximum subgraph for the
Sierpinski graph S(n,m). Initial l-segments of V (S(n,m)) in lexicographic order, are solutions to
maximize the number of edges for S(n,m).

Theorem 3.3 [10] Let X = S(n,m) and let l be an integer with 1 ≤ l ≤ mn. Among the sub-
sets W ⊆ {0, 1, . . . ,mn−1} of order W = l, the size of X[W ] is maximized for W = {0, 1, . . . , l−1}.

Algorithm to solve the maximum subgraph problem :

Input: The S(n,m), n ≥ 2, m ≥ 3, on mn vertices.

Algorithm: Label the vertices of S(n,m) by lexicographic ordering from 1 to mn.

Output: Maximum number of edges induced by l vertices in S(n,m), 1 ≤ l ≤ mn.

Proof of correctness: We assume that the labels represent the vertices to which they are as-
signed. Let l =

∑k
i=0 aim

i with ai ∈ {0, 1, . . . ,m− 1}, we set, for i = 1, 2, . . . , k,

αi = min

ai,

 m− 1

mi − 1

i−1∑
j=0

ajm
j


 .

Now, we claim that

fm(l) =
1

2

k∑
i=0

ai
(
mi+1 −m+ ai − 1

)
+

k∑
i=1

αi.
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We proceed by induction on k. For k = 0, we have l = a0 < m and the vertices 0, 1, . . . , l− 1 form
a clique, hence

fm(l) =

(
l

2

)
=

1

2
l(l − 1) =

1

2
a0

(
m0+1 −m+ a0 − 1

)
,

as required. For k ≥ 1, the graph on the first l vertices consists of the following parts:

� ak copies of S(k,m) and
(
ak

2

)
edges between these copies,

� a copy of the graph on the first lk vertices of S(k,m) and αk edges between this incomplete
S(k,m) and the ak complete copies.

Using the induction hypotheses for fm(lk), we conclude

fm(l) = akE(S(k,m)) +

(
ak
2

)
+ f(lk) + αk

= ak
(mk −m)

2
+

ak(ak − 1)

2
+

1

2

k−1∑
i=0

ai
(
mi+1 −m+ ai − 1

)
+

k−1∑
i=1

αi + αk

=
1

2

k∑
i=0

ai
(
mi+1 −m+ ai − 1

)
+

k∑
i=1

αi.

As a consequence of the above algorithm, we have the following results.

Theorem 3.4 If fm(l) is optimal on l-vertices in S(n,m), 1 ≤ l ≤ mn, then fm(mn − l) is also
optimal on mn − l vertices, by considering M ′ = {y = mn − x+ 1 / for all x ∈ fm(mn − l)}.

Time Complexity Analysis of Maximum Subgraph Algorithm :

The maximum subgraph problem algorithm aims to compute the maximum number of edges
induced by l vertices in S(n,m), where 1 ≤ l ≤ mn, n ≥ 2 and m ≥ 3. The algorithm’s time
complexity can be analyzed as follows:

Input: The generalized Sierpinski graphs, S(n,m), n ≥ 2, m ≥ 3.

Algorithm: Maximum subgraph algorithm.

Output: Time taken to compute the maximum number of edges induced by l vertices in S(n,m).

Method: Since the graph S(n,m) has mn vertices, to label them using lexicographic ordering, we
need mn time units, and to find the maximum number of edges for each l-segments, 1 ≤ l ≤ mn,
we need another mn time units. Therefore, the total time taken can be given as 2mn. Hence, the
time taken to compute the maximum number of edges induced by l vertices in S(n,m) is O(mn).
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4 MinLA of Generalized Sierpinski Graphs

Finding the wirelength for embedding irregular graphs into any graph can be a difficult task. In this
part, we made a significant advancement by using Generalised Sierpinski graphs as a guest graph
and path as a host graph, and by doing this, we were able to determine its wirelength (also known
as MinLA). The MinLA problem is an example of a combinatorial optimization problem, with the
goal of obtaining a linear layout of an arrangement in such a manner that some objective cost
function is maximized. In 1964, Harper first brought attention to this problem [11]. Harper aimed
to create error-correcting codes with low average absolute errors for a certain category of graphs.
Later, Mitchison and Durbin looked into this problem as an oversimplified model of certain cogni-
tive nerve movements. Many different areas may benefit from MinLA, including those dealing with
single machines, job scheduling, biology, graph drawing, storage-time product reduction issues, and
other fields. Combinatorial optimization problem MinLA is stated mathematically as follows: For
an undirected graph X = (V,E), find a layout T that minimizes

∑
(u,v)∈E |T (u) − T (v)|. It is

proved that MinLA is NP-complete [9]. This problem is also called optimum linear ordering, edge
sum problem, and minimum-1-sum. Vertices represent modules and edges indicate interconnections
in this abstract concept of VLSI layout arrangement. The total wirelength provides a measure of
the setup cost. MinLA is used in single-machine task scheduling, storage-time product reduction,
biological applications, graph drawing, reordering big space matrices, and other domains [8].

MinLA Algorithm :

Input: The generalized Sierpinski graphs, S(n,m), n ≥ 2, m ≥ 3, on mn vertices and a path Pmn .

Algorithm: Label the S(n,m) vertices from 1 to mn in lexicographic order. Label the ver-
tices of Pmn as 1, 2, . . . ,mn from left to right.

Output: An embedding T of S(n,m) into a path Pmn given by T (u) = u inducing
MinLA (S(n,m)).

Figure 3: Convex cut Sj in Pmn .

Proof of correctness: Each edge (j, j + 1), 1 ≤ j ≤ mn − 1 of Pmn is a convex cut Sj

and its removal disconnects Pmn into two constitutes Yj1 and Yj2, where V (Yj1) = {1, 2, . . . , j}
and V (Yj2) = {j + 1, . . . ,mn}. Let Xj1 and Xj2 be the subgraph induced by T −1(V (Yj1)) and
T −1(V (Yj2)) respectively. Since the labeling pattern of the S(n,m) is lexicographic and by The-
orem 3.3, it is clear that E(Xj1) is the maximum subgraph on |V (Xj1)| = j vertices in X and by
Theorem 3.4, E(Xj2) is the maximum subgraph on |V (Xj2)| = mn − j vertices in X. Thus, each
Sj satisfies the condition of the Lemma 2.8. Therefore, CT (Sj) is minimum. Lemma 2.9, implies
that the linear arrangement is minimum.
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Theorem 4.1 Let X be a generalized Sierpinski graphs S(n,m), n ≥ 2, m ≥ 3. Then the
minimum linear arrangement of X is given by

MinLA(X) =
m+ 1

6(m− 1)

[
(m− 1)(m− 2)×mn × n+mn+1 −m

]
.

Proof: Label the vertices of S(n,m) and Pmn using MinLA Algorithm. Again by the MinLA
Algorithm, the congestion on each Sj , 1 ≤ j ≤ mn − 1 is minimum and is given by

CT (Sj) = mi− j − 2IX(i), 1 ≤ j ≤ m− 1, (j − 1)

(
mn − 1

m− 1

)
+ 1 ≤ i ≤ j

(
mn − 1

m− 1

)
Then by Partition Lemma, we have

MinLA(X) =

m−1∑
j=1

j(mn−1
m−1 )∑

i=(j−1)(mn−1
m−1 )+1

[
mi− j − 2IX(i)

]

=

m−1∑
j=1

j(mn−1
m−1 )∑

i=(j−1)(mn−1
m−1 )+1

(
mi− j

)
− 2

m−1∑
j=1

j(mn−1
m−1 )∑

i=(j−1)(mn−1
m−1 )+1

IX
(
i
)

=
1

2
m
(
mn − 1

)2 − 2

m−1∑
j=1

j(mn−1
m−1 )∑

i=(j−1)(mn−1
m−1 )+1

IX
(
i
)
.

=
m+ 1

6(m− 1)

[
(m− 1)(m− 2)×mn × n+mn+1 −m

]
.

□

Time Complexity Analysis of the MinLA Algorithm :

The MinLA algorithm aims to compute the MinLA of generalized Sierpinski graphs S(n,m), where
n ≥ 2 and m ≥ 3. The algorithm’s time complexity can be analyzed as follows:

Input: The generalized Sierpinski graphs, S(n,m), n ≥ 2, m ≥ 3 and Pmn .

Algorithm: MinLA Algorithm.

Output: Time taken to compute the MinLA of generalized Sierpinski graph S(n,m).

Method: The input graph S(n,m) contains mn vertices, so the total time for labeling all mn

vertices is mn time units. The MinLA algorithm performs mn − 1 edge cuts. Each cut operation
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takes one unit of time. Additionally, the algorithm computes the edge congestion, which also takes
one unit of time for each cut in the path. Thus, the total time for edge congestion calculations
is mn − 1 time units. Finally, by using Lemma 2.9, one unit of time is required to calculate the
wirelength. Therefore, the total time taken can be given as mn+2(mn−1)+1. Hence, to compute
the exact MinLA of S(n,m), the time taken is O(mn).

5 Real-World Applications

Graph theory is a fascinating and essential field of mathematics that deals with the study of net-
works, which are represented by mathematical models called graphs. Graph theory has numerous
practical applications in various fields such as computer science, VLSI circuit design, and net-
work optimization for parallel computer architecture. One of the essential tools for implementing
parallel algorithms efficiently is graph embedding, which is calculated using cost criteria such as
dilation, congestion, wirelength, load, and expansion. Graph embedding is crucial in minimizing
wirelength, which is a critical factor in reducing the cost of implementing interconnected networks
in VLSI circuit design. The minimum linear arrangement problem, also known as the minimum

Figure 4: Layouts of (a) S(2, 3), (b) S(2, 4).

linear ordering problem, is a well-studied problem in graph theory and combinatorial optimization.
It involves finding a linear ordering of the vertices of a graph that minimizes a certain objective
function. This problem has applications in various fields [6, 18]. Here are a few examples:

� VLSI Design: In VLSI layout design, the MinLA problem is used to optimize the placement
of components or modules on a chip. By finding an optimal linear ordering of the modules,
the problem aims to minimize the total wirelength or signal delay in the integrated circuit.
This, in turn, improves the overall performance and efficiency of the VLSI system.
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� Network Routing: In communication networks, the MinLA problem is relevant for optimizing
the routing paths between nodes. By finding an optimal linear ordering of the network nodes,
the problem helps minimize the total transmission delay or congestion in the network. This
is crucial in improving the efficiency and performance of data routing in various network
architectures, including computer networks and telecommunication systems.

� Data Clustering: The MinLA problem has applications in data clustering and visualization.
By arranging data points linearly based on their similarities or dissimilarities, the problem
aids in identifying meaningful patterns or clusters in the data. This helps in data exploration,
visualization, and understanding of complex datasets in fields such as machine learning, data
mining, and pattern recognition.

Indeed, the problem of minimizing the total edge length and the problem of reducing the
number of crossing edges are important in graph drawing and visualization. While they are distinct
problems, there is a relationship between them that can be exploited to approximate the crossing
number of non-planar graphs. In graph drawing, the MinLA problem focuses on finding a layout of
the graph that minimizes the total length of the edges. By optimizing the edge lengths, we aim to
improve the comprehensibility and readability of the graph representation. Various algorithms and
techniques have been developed to tackle the MinLA problem, including force-directed algorithms,
spectral methods, and hierarchical approaches [8].

On the other hand, the crossing number problem deals with determining the minimum number
of edge crossings in a graph drawing. A crossing occurs when two edges intersect or cross over
each other. Minimizing the number of crossings is desirable as it enhances the clarity and reduces
visual clutter in the graph, See Figure 4. However, finding the exact crossing number of a graph
is a challenging task and is known to be NP-hard [17]. One approach is to use the solutions of
the MinLA problem as an approximation for the crossing number problem. By minimizing the
total edge length in the graph drawing, we indirectly reduce the number of crossings, as shorter
edges are less likely to intersect with others. While this approximation provides a practical way
to estimate the crossing number, it is important to note that it may not always yield an optimal
solution. There might be cases where a layout with minimal edge length does not necessarily
correspond to the layout with the fewest crossings. However, exploiting the MinLA problem can
still provide valuable insights and improvements in graph drawing, contributing to better visual
representations of non-planar graphs.

6 Concluding Remarks

In this paper, we have obtained the maximum number of edges induced by any l, 1 ≤ l ≤ mn of
the generalized Sierpinski graphs S(n,m), n ≥ 2, m ≥ 3. Further, we have obtained its minimum
linear arrangement. Finding the wirelength of embedding generalized Sierpinski graphs into other
good candidates for interconnection networks is under investigation.
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of hypercubes into grids. In Mathematical Foundations of Computer Science 1998: 23rd
International Symposium, MFCS’98 Brno, Czech Republic, August 24–28, 1998 Proceedings
23, pages 693–701. Springer, 1998. doi:10.1007/BFb0055820.

[6] A. Caprara, M. Oswald, G. Reinelt, R. Schwarz, and E. Traversi. Optimal linear arrangements
using betweenness variables. Mathematical Programming Computation, 3:261–280, 2011. doi:
10.1007/s12532-011-0027-7.

[7] J. G. Carlsson, B. Armbruster, and Y. Ye. Finding equitable convex partitions of points
in a polygon efficiently. ACM Transactions on Algorithms (TALG), 6(4):1–19, 2010. doi:

10.1145/1824777.1824792.

[8] J. Dı́az, J. Petit, and M. Serna. A survey of graph layout problems. ACM Computing Surveys
(CSUR), 34(3):313–356, 2002. doi:10.1145/568522.568523.

[9] M. R. Garey. Computers and intractability: A guide to the theory of NP-completeness,
freeman. Fundamental, 1997.

[10] L. Harper. The edge-isoperimetric problem on Sierpinski graphs: Final resolution. arXiv
preprint arXiv:1802.08355, 2018.

[11] L. H. Harper. Optimal assignments of numbers to vertices. Journal of the Society for Industrial
and Applied Mathematics, 12(1):131–135, 1964. doi:10.1137/0112012.

[12] L. H. Harper. Can the Sierpinski graph be embedded in the Hamming graph? arXiv preprint
arXiv:1609.06777, 2016.
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Appendix

We now present a Sage code with its output to find the maximum number of edges induced by l
vertices in S(n,m), 1 ≤ l ≤ mn, n ≥ 2, m ≥ 3.

Program to find the maximal sizes for subgraphs on l vertices in S(n,m)

1. def m−ary(m, l) :

2. if l == 0 :

3. return []

4. x = m−ary(m, l//m)

5. x.append(l%m)

6. return x

7. def f(m, l) :

8. a = m−ary(m, l)

9. k=len(a)− 1

10. alpha=[0]

11. for i in range (1, k + 1) :

12. alpha.append (min(a[k− i], ceil ((m− 1)/(m∧i− 1)∗sum(a[k− j] ∗m∧j for j in range (i)))))

13. return 1/2∗sum(a[k − i] ∗ (m∧(i+ 1)−m+ a[k − i]− 1) for i in range (k + 1))+sum( alpha
[i] for i in range (1, k + 1)

14. print f(m, l) for l in range (1, k + 1)
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The maximal sizes on l vertices in S(n,m) and its corresponding diagram is given below.

Output 1 (f(3, l) when n = 5):

0, 1, 3, 4, 5, 7, 8, 10, 12, 13, 14, 16, 17, 18, 20, 21, 23, 25, 26, 27, 29, 30, 32, 34, 35, 37, 39,
40, 41, 43, 44, 45, 47, 48, 50, 52, 53, 54, 56, 57, 58, 60, 61, 63, 65, 66, 67, 69, 70, 72, 74, 75, 77,
79, 80, 81, 83, 84, 85, 87, 88, 90, 92, 93, 94, 96, 97, 99, 101, 102, 104, 106, 107, 108, 110, 111, 113,
115, 116, 118, 120, 121, 122, 124, 125, 126, 128, 129, 131, 133, 134, 135, 137, 138, 139, 141, 142,
144, 146, 147, 148, 150, 151, 153, 155, 156, 158, 160, 161, 162, 164, 165, 166, 168, 169, 171, 173,
174, 175, 177, 178, 179, 181, 182, 184, 186, 187, 188, 190, 191, 193, 195, 196, 198, 200, 201, 202,
204, 205, 206, 208, 209, 211, 213, 214, 215, 217, 218, 220, 222, 223, 225, 227, 228, 229, 231, 232,
234, 236, 237, 239, 241, 242, 243, 245, 246, 247, 249, 250, 252, 254, 255, 256, 258, 259, 260, 262,
263, 265, 267, 268, 269, 271, 272, 274, 276, 277, 279, 281, 282, 283, 285, 286, 287, 289, 290, 292,
294, 295, 296, 298, 299, 301, 303, 304, 306, 308, 309, 310, 312, 313, 315, 317, 318, 320, 322, 323,
324, 326, 327, 328, 330, 331, 333, 335, 336, 337, 339, 340, 342, 344, 345, 347, 349, 350, 351, 353,
354, 356, 358, 359, 361, 363.

Figure 5: The number of edges induced by l vertices in S(5, 3) using lexicographic labeling.
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Output 2 (f(6, l) when n = 3):

0, 1, 3, 6, 10, 15, 16, 17, 19, 22, 26, 31, 32, 34, 36, 39, 43, 48, 49, 51, 54, 57, 61, 66, 67, 69,
72, 76, 80, 85, 86, 88, 91, 95, 100, 105, 106, 107, 109, 112, 116, 121, 122, 123, 125, 128, 132, 137,
138, 140, 142, 145, 149, 154, 155, 157, 160, 163, 167, 172, 173, 175, 178, 182, 186, 191, 192, 194,
197, 201, 206, 211, 212, 213, 215, 218, 222, 227, 228, 230, 232, 235, 239, 244, 245, 247, 249, 252,
256, 261, 262, 264, 267, 270, 274, 279, 280, 282, 285, 289, 293, 298, 299, 301, 304, 308, 313, 318,
319, 320, 322, 325, 329, 334, 335, 337, 339, 342, 346, 351, 352, 354, 357, 360, 364, 369, 370, 372,
375, 378, 382, 387, 388, 390, 393, 397, 401, 406, 407, 409, 412, 416, 421, 426, 427, 428, 430, 433,
437, 442, 443, 445, 447, 450, 454, 459, 460, 462, 465, 468, 472, 477, 478, 480, 483, 487, 491, 496,
497, 499, 502, 506, 510, 515, 516, 518, 521, 525, 530, 535, 536, 537, 539, 542, 546, 551, 552, 554,
556, 559, 563, 568, 569, 571, 574, 577, 581, 586, 587, 589, 592, 596, 600, 605, 606, 608, 611, 615,
620, 625, 626, 628, 631, 635, 640, 645.

Figure 6: The number of edges induced by l vertices in S(3, 6) using lexicographic labeling.
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