#~=_ %3  Journal of Graph Algorithms and Applications
. http://jgaa.info/ vol. 27, no. 8, pp. 737-757 (2023)
DOI: 10.7155/jgaa.00641

1

Effective Computation of a
Feedback Arc Set Using PageRank

Vasileios Geladaris' ©® Panagiotis Lionakis' © loannis G. Tollis!

Computer Science Department
University of Crete, GREECE

Submitted: November 2022 Reviewed: April 2023 Revised: June 2023
Reviewed: August 2023 Revised: September 2023 Accepted: October 2023
Final: November 2023 Published: November 2023
Article type: Regular paper

Communicated by: P. Angelini and R. von Hanxleden

Abstract. Computing a minimum Feedback Arc Set (FAS) is important for visual-
izing directed graphs in hierarchical style. It is the first step of both known frameworks
for hierarchical graph drawing of directed graphs and it is NP-hard. We present a
new heuristic algorithm for computing a minimum FAS in directed graphs. The new
technique produces solutions that, for graph drawing datasets, are better than the ones
produced by the best previously known heuristics, often reducing the FAS size by more
than 50%. The heuristic is based on computing the PageRank score of the nodes of
the directed line graph of the input directed graph. Although the time required by our
heuristic is heavily influenced by the size of the produced line graph, our experimental
results show that it runs very fast even for very large graphs used in graph drawing. We
compare results produced by our heuristic to known exact results for specific graphs
used in a previous study and discuss the interesting trade-off. Finally, our experimen-
tal results on large web-graphs show that our technique found smaller FAS than it was
known before for some web-graphs from a data set used in a recent study.

Introduction

Hierarchical graphs are important for many applications in several areas of research and business
because they often represent hierarchical relationships between objects in a structure. They are
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typically directed (sometimes acyclic) graphs and their visualization has received significant atten-
tion [10, 15]. In a directed graph G, a Feedback Arc Set (FAS) is a set of edges whose removal
leaves G acyclic. Computing a minimum FAS is important for visualizing directed graphs in hi-
erarchical style [10, 15]. In fact, the first step of both known frameworks for hierarchical graph
drawing is to compute a minimum FAS [16, 21]. Unfortunately, computing a minimum FAS is NP-
hard and thus many heuristics have been presented in order to find a reasonably good solution, see
for example [10, 15]. In this paper we present a new heuristic that uses a different approach and
produces FAS, for graph drawing datasets, that contain about half the number of edges of the best
previously known heuristics. Finding a minimum FAS has many additional applications beyond
Graph Drawing, including misinformation removal, label propagation, and many application do-
mains motivated by Social Network Analysis [9, 12, 19]. The new technique requires super-linear
time, and hence it may not be suitable for computing FAS in very large social networks.

In hierarchical drawing algorithms the edges in a FAS are not removed, but instead their
direction is inverted. Following the terminology of [10], a set of edges whose reversal makes the
digraph acyclic is called a feedback set (F'S). Notice that a FAS is not always a F'S. For example, if
all the edges of a cycle are in a FAS, when their direction is reversed then a new cycle is introduced.
However, it is easy to see that every minimal cardinality FAS is also a FS. Hence it follows that
the minimum FS problem is as hard as the well studied minimum FAS problem which is known to
be NP-hard [13, 14]. Additionally, any heuristic for the minimum FAS problem based on finding
a minimal FAS can be applied for solving the minimum FS problem, as discussed in [10, 15].

There are many heuristic algorithms in the literature for solving the FAS problem due to the
multitude of its applications and its usefulness in many practical applications in different areas.
An example of such a heuristic is SimpleFAS which utilizes a straightforward 2-approximation
algorithm for solving the Maximum Acyclic Subgraph (MAS) problem. The time complexity of
SimpleFAS is O(n 4+ m). Berger & Shor [4] presented a better heuristic which is also based on
an approximation algorithm for the M AS problem that runs in in O(n + m) time. The intuition
behind this approach is that selecting either the incoming or the outgoing edges guarantees that
the resulting graph is acyclic. Additionally, by selecting, at each step, the set of edges of bigger
size, ensures that the resulting acyclic graph has a large number of edges, see also [20]. Clearly, a
simple Depth-first search (DFS) traversal, can be used to compute a feedback arc set. The removal
of all the back edges computed by any DFS removes all cycles, thus the resulting graph is acyclic.
The time complexity of dfsFAS is clearly O(n + m). Eades, Lin & Smyth [11] presented another
O(n+m) heuristic algorithm that calculates in a greedy manner a feedback arc set of a graph G, by
first calculating a Linear Arrangement of the nodes of G, this is called GreedyFAS. KwikSortFAS,
is a sorting-based heuristic originally introduced by Ailon et al. [1], as a 3-approximation algorithm
for the FAS problem on tournaments. It is based on the classical sorting algorithm QuickSort and
was later extended by Brandenburg and Hanauer [7] as a heuristic for general directed graphs,
see also [20]. This new variant, which is called SortFAS, is based on insertion sort and its time
complexity is O(n?). Based on the aforementioned heuristics, Simpson, Srinivasan & Thomo
published an extensive experimental study for the FAS problem on large and very large graphs at
web-scale (also called web-graphs) [20]. According to their study, the most efficient heuristics in
terms of quality of solution and execution time are GreedyFAS and SortFAS, but due to its time
complexity, only GreedyFAS is suitable to run on their extra large web-graphs. Our technique
computes solutions that are superior to both, but since it requires slightly super-linear time, its
execution time is higher than GreedyFAS but lower than SortFAS.

A novel exact method for solving the minimum FAS problem was recently proposed by Baharev
et. al. in [2]. In their paper the authors describe extensively the problem, its complexity, and its
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applications to chemical engineering. Their proposed method uses Integer Linear Programming
and enumerates simple cycles in a lazy fashion by extending an incomplete cycle matrix iteratively.
Their method succeeds in finding a minimum FAS for several small and medium-sparse graphs, as
shown by their extensive experiments. However, as it is expected, it fails to produce results for
medium-dense graphs, and even for sparse larger graphs [2].

In this paper we present a new heuristic algorithm for computing a minimum FAS in directed
graphs. The new technique produces solutions that are better than the ones produced by the
best previous heuristics, sometimes even reducing the FAS size by more than 50%, for graph
drawing datasets. It is based on computing the PageRank score of the nodes of a graph related
to the input graph, and runs rather fast for graphs up to 4,000 nodes. However, it is slower
than GreedyFAS for web-graphs. We also performed experiments using the graphs that required
the highest execution time in [2] and compare the results produced by our heuristic to the exact
results reported there. There is an interesting trade-off between computing the minimum FAS in
excessive time or obtaining a slightly suboptimal solution in a few tenths of a second. Furthermore,
our experimental results on the web-graphs of [20] show that our technique found smaller FAS than
it was known before for three of them. For their larger web-graphs our technique did not finish in
a reasonable amount of time (timeout).

2 Existing Algorithms

In this section we summarize and give a brief description of the two important heuristics that
currently give the best results for the FAS problem, according to the new experimental study of
Simpson, Srinivasan & Thomo [20]. They implemented and compared many heuristics for FAS,
and performed experiments on several large and very large web-graphs.

Their experimental results show that two of the most important and practical heuristics/techniques
are due to Eades, Lin & Smyth [11] and Brandenburg & Hanauer [7]. The first of the two heuristic
algorithms that currently produce the best FAS size is called GreedyFAS. In [20] two different
optimized implementations of GreedyFAS that run in O(n + m) are presented and tested. These
are the most efficient implementations in their study and are able to run even for their extra large
web-graphs. The second algorithm is SortFAS of Brandenburg & Hanauer [7]. According to [20],
SortFAS, as proposed runs in O(n?) time but Simpson et al. present an optimized implementation
that runs in O(n?) time.

We will present experimental results that show that our new heuristic algorithm performs better
than both of them in terms of the size of the produced FAS. On the other hand, it takes more time
than GreedyFAS for large web-graphs. However, for graphs that are typically used in visualization
applications (in terms of size), the running time is about the same whereas the produced FAS size
is about half.

2.1 GreedyFAS

As discussed above, the GreedyFAS algorithm was introduced by Eades, Lin & Smyth in 1993 [11].
It efficiently calculates an approximation to the FAS problem on a graph G. In order to understand
the algorithm, we first discuss the Linear Arrangement Problem (LA), which is an equivalent
formulation to the FAS problem. The LA problem produces an ordering of the nodes of a graph
G for which the number of arcs pointing backwards is minimum. The set of backwards arcs is a
FAS since removing them from G leaves the graph acyclic.
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GreedyFAS calculates a feedback arc set of a graph G by first calculating a Linear Arrangement
of G. More specifically, in each iteration, the algorithm removes all nodes of G that are sinks
followed by all the nodes that are sources. It then removes a node u for which §(u) = d™(u)—d ™ (u)
is a maximum, where d (u) denotes the out-degree of u and d~(u) denotes the in-degree of u. The
algorithm also makes use of two sequences of nodes s; and s3. When any node u is removed from
G then it is either prepended to s if it is a sink, or appended to s; if it is not. The above steps
are repeated until G is left with no nodes, then the sequence s = s1s9 is returned as a linear
arrangement for which the backward arcs make up a feedback arc set. For more details see [10, 15].
Using the implementations of [20], GreedyFAS runs very fast, in O(n + m) time, and is suitable
for their extra large web-graphs. The pseudocode for GreedyFAS, as described in [10] and [20], is
presented in Algorithm 1.

Algorithm 1 GreedyFAS

Input: Directed graph G = (V, E)
Output: Linear Arrangement A
510, 500
while G # () do
while G contains a sink do
Choose a sink u
So < US9y
G+ G\u
while G contains a source do
Choose a source u
51 < S1U
G+ G\u
Choose a node u for which é(u) is a maximum
S1 < S1U
G+ G\u

return s = s{S»

2.2 SortFAS

The SortFAS algorithm was introduced in 2011 by Brandenburg & Hanauer [7]. The algorithm is
an extension of the KwikSortFAS heuristic by Ailon et al. [1], which is an approximation algorithm
for the FAS problem on tournaments. With SortFAS, Brandenburg & Hanauer extended the above
heuristic to work for general directed graphs. It uses the underlying idea that the nodes of a graph
can be sorted into a desirable Linear Arrangement based on the number of back arcs induced.

In the case of SortFAS, the nodes are processed in order of their ordering (v;...v,). The
algorithm goes through n iterations. In the the i-th iteration, node v; is inserted into the linear
arrangement in the best position based on the first ¢ — 1 nodes which are already placed. The best
position is the one with the least number of back arcs induced by v;. In case of a tie the leftmost
position is taken. Using the implementation of [20], SortFAS runs in O(n?) time. The pseudocode
for SortFAS, as described in [20], is presented in Algorithm 2.
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Algorithm 2 SortFAS

Input: Linear arrangement A
for each node v in A do
val < 0, min < 0, loc < position of v
for each position j from loc — 1 down to 0 do
w < node at position j
if arc (v, w) exists then
val < val — 1
else if arc (w,v) exists then
val < val + 1
if val < min then
min < val,loc < j

Insert v at position loc

3 Owur Approach

Our approach is based on running the well known PageRank algorithm [8, 17] on the directed line
graph of the original directed graph. The line graph of an undirected graph G is another graph
L(G) that is constructed as follows: each edge in G corresponds to a node in L(G) and for every
two edges in G that are incident to a node v an edge is placed in L(G) between the corresponding
nodes. Clearly, the number of nodes of a line graph is m and the number of edges is proportional
to the sum of squares of the degrees of the nodes in G, see [18]. If G is a directed graph, its directed
line graph (or line digraph) L(G) has one node for each edge of G. Two nodes representing directed
edges incident upon v in G (one incoming into v, and one outgoing from v), called L(u,v), and
L(v,w), are connected by a directed edge from L(u,v) to L(v,w) in L(G). In other words, every
edge in L(G) represents a directed path in G of length two. Similarly, the number of nodes of a
line digraph is m and the number of edges is proportional to >, . [d*(u) x d~(u)]. Hence, the
size of L(G) is O(m + Y, oy [dT (u) x d~(u)]). Figure 1 depicts a simple directed graph and its
resulting line digraph.

Given a digraph G = (V, E) our approach is to compute its line digraph, L(G), run a number
of iterations of PageRank on L(G) and remove the node of highest PageRank in L(G). Our
experimental results indicate that PageRank values converge reasonably well within five iterations.

A digraph G is strongly connected if for every pair of vertices of G there is a cycle that contains
them. If G is not strongly connected, it can be decomposed into its strongly connected components
(SCC) in linear time [22]. A strongly connected component of a directed graph G is a maximal
subgraph in which there is a path from every vertex to every other vertex. The term maximal
means that no additional vertices or edges of G can be included in the subgraph and keep the
subgraph strongly connected. If each SCC is contracted to a single vertex, the resulting graph is
a directed acyclic graph (DAG). It follows that feedback arcs can exist only inside the SCCs of G.
Hence we can apply this approach inside each SCC, using their corresponding line digraph, and
remove the appropriate edges from each SCC. This approach will avoid performing several useless
computations and thus reduce the running time of the algorithm.
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Figure 1: A simple directed graph (left) and its resulting line digraph (right).

3.1 Line Graph

In order to obtain the line digraph of G, we use a DFS-based approach. First, for each edge (u,v)
of G, we create a node (u,v) in L(G) and then run the following recursive procedure. For a node v,
we mark it as visited and iterate through each of its outgoing edges. For each outgoing edge (v, u)
of v, we add an edge in L(G) from the prev L(G) node that was processed before the procedure’s
call to the node (v,u). Afterwards we call the same procedure for w if it is not visited with (v, u)
as prev. If u is visited we add an edge from (v, u) to each one of L(G)’s nodes corresponding from
u. Since this technique is based on DFS, the running time is O(n + m + |L(G)|). The pseudocode
for computing a line digraph is presented in Algorithm 3.

Algorithm 3 LineDigraph

Input: Digraph G = (V, E)

Output: Line Digraph L(G) of G

Create a line digraph L(G) with every edge of G as a node
v < random node of G

GetLineGraph(G, L(G), v, null)

return L(G)

procedure GETLINEGRAPH(G, L(G), v, prev)
Mark v as visited
for each edge e = (v,u) outgoing of v do
z < node of L(G) representing e
Create an edge in L(G) from prev to z > Given that prev is not nill
if w is not visited then
GetLineGraph(G, L(G), u, z)
else
for each node k in L(G) that originates from u do
Create an edge in L(G) from z to k
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3.2 PageRank

PageRank was first introduced by Brin & Page in 1998 [8, 17]. It was developed in order to deter-
mine a measure of importance of web pages in a hyperlinked network of web pages. The basic idea
is that PageRank will assign a score of importance to every node (web page) in the network. The
underlying assumption is that important nodes are those that receive many “recommendations”
(in-links) from other important nodes (web pages). In other words, it is a link analysis algorithm
that assigns numerical scores to the nodes of a graph in order to measure the importance of each
node in the graph. PageRank works by counting the number and quality /importance of edges
pointing to a node and then estimate the importance of that node. We use a similar approach in
order to determine the importance of edges in a directed graph. Our technique shows that the
number of cycles that contain a specific edge e will be reflected in the PageRank score of e, see
Section 3.3. Thus the removal of edges with high PageRank score is likely to break the most cycles
in the graph.

Given a graph with n nodes and m edges, PageRank starts by assigning an initial score of
1/n to all the nodes of a graph. Then for a predefined number of iterations each node divides
its current score equally amongst its outgoing edges and then passes these values to the nodes
it is pointing to. If a node has no outgoing links then it keeps its score to itself. Afterwards,
each node updates its new score to be the sum of the incoming values. It is obvious that after
enough iterations all PageRank values will inevitably gather in the sinks of the graph. In use cases
where that is a problem (e.g., when sinks exist) a damping factor is used, where each node gets
a percentage of its designated score and the rest gets passed to all other nodes of the graph. For
our use case we have no need for this damping factor because we apply PageRank on the Strongly
Connected Components of the graph. Hence, the scores of the nodes truly reflect their importance.
The number of iterations depends on the size and structure of a graph. We found that for small
and medium graphs, which is the case in the scenario for graph visualization, about five iterations
were enough for the scores of the nodes to converge. Depending on the implementation, PageRank
can run in O(k(n +m)) time, where k is the number of iterations. The pseudocode for PageRank
is presented in Algorithm 4.

Algorithm 4 PageRank

Input: Digraph G = (V, E), number of iterations k
Output: PageRank scores of G
for each node v in G do

PR(v) +

1
VI
for k iterations do

for each node v in G do
PR(v) « Il

u€in(v) Jout(u)]
return PR

3.3 PageRank and Number of Cycles

Our approach is based on the observation that the number of cycles that involve an edge is propor-
tional to the edge’s PageRank score. In Figure 2 we show a small example in which as we increase
the number of cycles the PageRank score of the edges changes. We observe that the change of
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score in an edge reflects the number of cycles that contain this edge. In other words, the number
of cycles that would be broken if the edge of highest PageRank score is removed.

We start with a simple graph that contains one 2-cycle between nodes ¢ and d. At this point
the score of both edges is equal to 0.5 (Figure 2a). Then we manually add back edges in order
to increase the number of cycles and observe the PageRank score of the edges (i.e., the PageRank
score of the nodes of the line graph of the graph). We show the PageRank scores of the nodes of
the line graph on the figure. As we add edge (d, b) the score of the edges has changed as shown in
Figure 2b. Notice that edge (c, d) has the highest score now, as it participates in two cycles, i.e., it
is clear that its removal will break both cycles. The addition of another back edge (d, a) increases
the number of cycles, and the score of edge (c, d) is still the highest (although it is a bit lower than
before) as it participates in three cycles (Figure 2¢). The minimum feedback arc set size is still
one, edge (c, d). Finally, the addition of another back edge (c, b) changes the PageRank scores of
the edges significantly. We observe that the minimum feedback arc set size is two now. Edges (b,
c) and (c, d) now participate in three cycles (Figure 2d). Taking a look at the PageRank scores,
we see that edge (b, ¢) now has the highest score, while edges (¢, d) and (¢, b) have the same score,
0.190. This shows that the edge with most involvements in cycles does have the highest PageRank
score and we can remove it, but we cannot do the same with the second highest score, as it is not
clear how the removal of edge (b, c¢) will affect the rest of the scores.

3.4 PageRankFAS

Our proposed algorithm is based on the concepts of PageRank and Line Digraphs. The idea behind
PageRankFAS is that we can score the edges of GG based on their involvement in cycles: For each
strongly connected component (sq,s2,...,s;) of G, it computes the line digraph L(s;) of the i-th
strongly connected component, to transform edges to nodes; next it runs the PageRank algorithm
on L(s;) to obtain a score for each edge of s; in G.

We observed that the nodes of the line digraphs with the highest PageRank score correspond
to edges that are involved in the most cycles of G. We also observed that the nodes of the line
digraphs with lower score correspond to edges of G with low involvement in cycles. Using this
knowledge, we run PageRankFAS for a number of iterations. In each iteration, we use PageRank
to calculate the node scores of each L(s;) and remove the node(s) with the highest PageRank score,
also removing the corresponding edge(s) from G. Please notice that PageRankFAS removes one
edge at a time and another iteration of our algorithm is needed only if a cycle still exists. Once
we remove one last edge and the last cycle breaks, the algorithm finishes. The time complexity
for each iteration of PageRankFAS is linear with respect to the size of the line digraph of each
component. In other words it is O(m + Y, oy [d* (u) x d™ (u)]), where m is the number of nodes
and Y, oy [d1(u) x d” (u)] the number of edges of each line digraph L(s;). We repeat this process
until G becomes acyclic. The pseudocode is presented in Algorithm 5.

4 Experiments and Discussion
Here we report our experimental results and describe some details of our setup. All the experi-
mented algorithms are implemented in Java 17 using the web-graph framework [5, 6] and tested

on a single machine with Apple’s M1 processor, 8GB of RAM and running macOS Monterey 12.

Datasets: In order to evaluate our heuristic algorithm we used five different datasets:



0.5

(a) PageRank scores of a simple graph with
one back edge.

0.098
0.098 0.351

0.240 0.098

0.111

(c) PageRank scores of a simple graph with
three back edges.
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0.218
0.375

0.187 0.218

(b) PageRank scores of a simple graph with
two back edges.

0.068

0.349

0.063

(d) PageRank scores of a simple graph with
four back edges.

Figure 2: Example illustrating how the involvement in cycles affects the PageRank score of each

edge.
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Algorithm 5 PageRankFAS

Input: Digraph G = (V, E)
Output: Feedback Arc Set of G
fas <0

while G has cycles do

Let (s1,82,...,s;) be the strongly connected components of G
for each strongly connected component s; do

Create a line digraph L(s;) with every edge of s; as a node

v < random node of s;

GetLineGraph(s;, L(s;), v, null)

PageRank(L(s;), 5)

u < node of L(s;) with highest PageRank value

e < edge of G corresponding to u

Add e to fas

Remove e from G

return fas

5.

. Randomly generated graphs with 100, 200, 400, 1000, 2000, 4000 nodes and an average out-

degree of 1.5, 3 and 5 each. This is done in order to see how our technique performs with
respect to the size of graphs.

Three directed graphs from the datasets in graphdrawing.org, suitably modified in order to
contain cycles (since the originals are DAGs). This is done in order to observe the performance
of our technique with respect to graphs commonly used in graph drawing.

Randomly generated graphs with 50, 100 and 150 nodes and average out-degrees of 1.5, 3,
5, 8, 10 and 15 each. This is done in order to see how our technique performs with respect
to the density of graphs.

In [2] the authors conducted extensive experiments on 4,468 test graphs of varying size and
density. We use their graphs since the minimum FAS is produced by the proposed method
of [2]. We run our PageRank heuristic on the graphs that required the highest time to
compute the optimum FAS in order to compare the results in terms of FAS size and execution
time.

Three web-graphs from the Laboratory of Web Algorithmics®, that are used in [20].

We generated a set of randomly constructed graphs, comprising a total of 36 graphs used as a
baseline. The baseline graphs were created using predetermined values for the number of nodes,
average out-degree, and back edge percentage. One advantage of this constructed model is that
we have prior knowledge of an upper limit for the size of a minimum feedback arc set (FAS). This
upper limit is determined by dividing the number of randomly generated back edges by the total
number of edges in the graph. To avoid the impact of randomness and ensure consistent results,
we executed the three algorithms on 10 randomly generated graphs for each of the baseline graph.
Subsequently, we calculated the average values from these multiple runs. This helps to smooth out
any abrupt variations in our curves and provides more reliable results.

Ihttps://law.di.unimi.it/datasets.php
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4.1 FAS with Respect to the Number of Nodes

18 e — S
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(a) Graphs with average out- (b) Graphs with average out- (c¢) Graphs with average out-
degree 1.5 degree 3 degree 5

Figure 3: FAS percentage for graphs with increasing number of nodes and three different average
out-degrees.

The first set of experiments gives us an idea of how PageRankFAS performs on graphs, with
varying number of nodes in comparison to the other two algorithms. It is noteworthy that in
most cases the FAS found by PageRankFAS is less than 50% of the FAS found by GreedyFAS and
SortFAS. As a matter of fact, for large visualization graphs with 4,000 nodes and 12,000 edges the
reduction in the FAS size is almost 55% with respect to the FAS produced by GreedyFAS. The
execution time taken by PageRankFAS is less than one second for graphs up to 1,000 nodes, which
is similar to the time of the other two heuristics. For the larger graphs, even up to 4,000 nodes the
time required is less than 8 seconds, whereas, the other heuristics run in about 1-2 seconds. The
results of this experiment are shown in Figure 3. It is interesting to note that the performance
of SortFAS is better than the performance of GreedyFAS as the graphs become denser, and in
fact, SortFAS actually out-performs GreedyFAS when the graphs have an average out-degree 5
and above, see Figure 3c.

4.2 FAS with Respect to The Number of Back Edges

16
SortFAS 14 S rS
14 \/// 9’0(& 144 sot
12
12 12
10
o o o FRS
h10 e ia b 5 10 oree
2 28 2 )
8 6 GreedyFAS "
6! pageRankF
_— FAS RS
6 w 4 e .l
2
5 10 15 20 25 5 10 15 20 25 5 10 15 20 25
BackEdge% BackEdge% BackEdge%
(a) Graph with 50 nodes and 75 (b) Graph with 75 nodes and 86 (c) Graph with 99 nodes and 154
edges before modification edges before modification edges before modification

Figure 4: FAS percentage for 3 types of graphs from graphdrawing.org and for various numbers of
back edges.
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The second type of experiments make use of three graphs from graphdrawing.org. Since these
graphs are directed acyclic, we randomly added back edges in different percentages of the total
number of edges. We did this in a controlled manner in order to know in advance an upper bound
of FAS. PageRankFAS gave by far the best FAS results and GreedyFAS also produced FAS with
sizes mostly below 10%. SortFAS was not competitive in this dataset. The results are shown in
Figure 4. The execution time taken by PageRankFAS is well below 0.15 of a second for all graphs,
which is similar to the other two heuristics.

4.3 FAS with Respect to the Average Out-Degree

G(eed‘lFA S

25 50 75 100 125 15.0 25 50 75 100 125 150 25 50 75 100 125 150
Avg. Out-Degree Avg. Out-Degree Avg. Out-Degree
(a) Graphs with 50 nodes (b) Graphs with 100 nodes (c) Graphs with 150 nodes

Figure 5: FAS percentage depending on the average out-degree of three different types of graphs.

Motivated by the results shown in Figure 3¢ we decided to investigate the correlation between
the density of a graph and its potential FAS percentage. In this experiment, we created 18 different
graphs, six of them with 50 nodes, six with 100 nodes and six with 150 nodes as follows: For each
node size (i.e., 50, 100, 150) six graphs with average out-degrees 1.5, 3, 5, 8, 10 and 15. Again,
as with our previous experiments, the results reported here are the averages of 10 runs in order
to compensate for the randomness of each graph and to get smoother curves. The results of this
experiment are shown in Figure 5.

The results of PageRankFAS are consistently better than the results of GreedyFAS and SortFAS
for all graphs. The results of GreedyFAS and SortFAS are very close to each other, for the graphs
with 50 nodes. Notice however that, SortFAS outperforms GreedyFAS when the number of nodes
exceeds 100 and the average out-degree exceeds five. This is aligned with the results shown in
Figure 3c. Furthermore, as expected, when the average out-degree increases the FAS size clearly
increases. Consequently, all techniques seem to converge at higher percentages of FAS size. Again,
PageRankFAS runs in a small fraction of a second for all graphs, which is similar to the running
times of the other two heuristics.

4.4 Comparing the Results of PageRankFAS to the Optimum

In this section we present the results obtained by PageRankFAS, GreedyFAS and SortFAS and
compare them to the optimum as produced by the proposed method of [2]. The authors presented
extensive experiments on 4,468 test graphs of varying size and density. Their aim was to test the
scalability of their exact algorithms over a wide range. From the point of view of our heuristics,
the size of these graphs is small to medium. Hence, the heuristics found solutions in a few tenths of
a second, and therefore it is not worth comparing the various heuristics in terms of time. However,
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it is important to compare the solutions in terms of the size of a FAS produced by them. For
the first set of comparisons, we test the three heuristics on the Erdés—Rényi graphs of [2]. While
the authors used a total of 3,738 of these graphs, we decided to focus on the twenty graphs that
took the longest time to compute the optimum solution. For these twenty graphs, the optimum
solution took anywhere from 5,600 seconds to 85,000 seconds, depending on their size and density,
to compute using the approach of [2] but as mentioned, all three heuristics took only a few tenths
of a second to execute. We can see from the results that PageRankFAS gives the better results
consistently on all of the graphs, often splitting the difference between the optimal result and the
results of the other heuristics. The results are presented in Figure 6 and Table 1.

The second set of comparisons makes use of the Tournament graphs used in [2]. Again, the
authors used a total of 708 of these graphs but we focus on the twenty that took the longest time to
compute the optimum solution. Surprisingly, we observe that GreedyFAS gives the worse results
on all graphs while PageRankFAS and SortFAS give the best. It is known that tournament graphs
are Hamiltonian and the Hamiltonian paths are in a one-to-one correspondence with the minimal
FAS of the tournament [3]. That may be an explanation for the improved performance of SortFAS,
as that property may make the placement of nodes in the linear arrangement easier. The results
are presented in Figure 7 and Table 2.

There is an interesting question with respect to the tradeoff of computing an exact FAS solution
in several hours or days versus a solution that is between 10% and 20% of the optimum in a few
tenths of a second. Clearly, there may be some applications that absolutely require the optimum
solution and every effort will be made to compute it. But in many applications a good-enough
solution is acceptable. Furthermore, in cases where the graphs are larger than an exact algorithm
can handle, say above the maximum number of nodes (120) used in the experiments of [2] a
given application has no other option but to use a heuristic solution that according to previous
experiments is between 10% and 20% of the optimum solution.

Baharev et. al. report experimental results on some other types of graphs in [2]. In order not
to disturb the flow of our paper, we present these additional comparisons in the Appendix. There
we show the experimental results obtained by the three heuristics comparing them with the exact
solutions on twelve De Bruijn graphs and twelve Imase-Ttoh graphs provided by the authors of [2].

4.5 PageRankFAS on web-graphs

The experiments reported in [20] use large and extra large benchmark web-graphs. Their smaller
benchmarks are wordassociation-2011 (with 10,617 nodes, 72,172 edges, which implies an average
degree 6.80) and enron (with 69,244 nodes, 276,143 edges, which implies an average degree 3.86).

The authors report that the size of FAS found by GreedyFAS and SortFAS for wordassociation-
2011 are 18.89% and 20.17%, respectively [20]. We ran PageRankFAS for wordassociation-2011
and obtained a FAS of size 14.85%. Similarly, for web-graph enron they report a FAS of 12.54% and
14.16% respectively. We ran PageRankFAS on web-graph enron and obtained a FAS of size 11.05%.
The results are shown in Figures 8a and 8b. As expected, and consistent with our experimental
observations of the previous subsections, the FAS size of the denser web-graph (wordassociation-
2011) is larger than the FAS size of the sparser graph (enron), as computed by all heuristics.

In addition, we also ran PageRankFAS on a medium benchmark from [20], uk-2007-05@100000
(with 100,000 nodes, 3,050,615 edges, which implies an average degree 30.5) and obtained a FAS
size of 9.17%, while the result of GreedyFAS is 10.23%. The authors of [20] did not report the
result obtained by SortFAS on this dataset because of its high execution time. The result is shown
in Figure 8c.
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Figure 6: Results of twenty Erdés—Rényi graphs where the exact solution took the longest time to
compute.

Graph

Exact Time (1000s)
Exact
PageRankFAS
GreedyFAS
SortFAS

n_100_c_7_seed 94 85.08 145 167 186 182
n95.c.7seed 68 3524 151 180 200 192
n_100_c_7seed.3 29.21 161 189 216 204

n_100_c_7_seed 57 27.19 167 201 224 220
n_95.c_7seed 87 1826 163 189 215 217
n. 95 c_7seed 82 17.62 158 188 207 214

n_100_c_7_seed 96 16.45 172 204 238 230

n_100_c_7seed_17 16.18 163 185 213 212
n.95.c.7seed 98 13.60 148 182 193 205

n_100_c_7_seed 87 12.43 173 199 229 238

n_100_c_7_seed_32 10.31 159 184 208 204
n_75.c9seed 53  9.11 180 208 219 226

n_75_c9seed 3 877 195 217 239 242

n_100_.c_7seed 44 834 162 191 218 209
n.90_c_7seed 73 7.68 149 181 196 198

n_100_c_7_seed 98 7.67 156 186 212 220

n_100_c_7seed_43 6.50 167 201 219 215
n.75.c9seed 63 594 184 211 230 236
n95.c7seed 40 5.71 157 188 218 213
n_75.c9seed 57 561 195 221 243 233

Table 1: Results of twenty Erdés—Rényi graphs where the exact solution took the longest time to
compute.
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Figure 7: Results of twenty Tournament graphs where the exact solution took the longest time to
compute.

Exact Time (1000s)

Graph

Exact
PageRankFAS

GreedyFAS
SortFAS

n34.seed 78 82.76 188 211 217 211
n34.seed 75 7216 179 198 207 186
n34.seed 48 41.21 181 204 217 197
n34.seed 94 15.74 180 201 209 191
n33seed 86 14.93 173 189 196 195
n33seed-39 13.29 171 187 196 191
n-34.seed 67 12.63 183 200 209 203
n32seed-18 11.22 163 175 190 178
n_34.seed 58 10.41 175 194 202 191
n34seed31 1020 179 196 208 200
n34seed 69 8.03 179 197 206 200
n3dseed24 7.08 177 197 206 194
n34seed 43 539 174 194 201 193
n34.seed 87 4.88 179 206 211 203
n34seed 83 3.60 180 192 207 201
n34.seed-11 3.55 178 201 221 208
n-33seed 95 3.28 165 182 189 176
n33seed 64 3.23 168 178 198 184
n33seed_73 3.18 167 184 187 186
n34.seed 68 295 181 201 211 194

Table 2: Results of twenty Tournament graphs where the exact solution took the longest time to
compute.
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Figure 8: FAS percentage on three web-graphs.

Unfortunately, the required execution time of our heuristic algorithm does not allow us to test
it on the larger web-graphs used in [20]. However, it is interesting that there exist FAS of smaller
size for these large graphs, which, to the best of our knowledge, was not known before.

5 Conclusions

We presented a heuristic algorithm for computing a FAS of minimum size based on PageRank.
Our experimental results show that the size of a FAS computed by our heuristic algorithm is
typically about 50% smaller than the sizes obtained by the best previous heuristics, for typical
graph drawing datasets. Our algorithm is more time consuming than the best previous heuristics,
but it’s running time is reasonable for graphs up to 4,000 nodes. For smaller graphs, up to 1,000
nodes, the execution time is well below one second, which is similar to the running times of the other
two heuristics. Therefore, this is acceptable for graph drawing applications. We also performed
experiments using the graphs that required the highest execution time to compute the minimum
FAS and compared the results produced by our heuristic to the exact results reported in [2]. There
is an interesting trade-off between computing the minimum FAS in excessive time or obtaining
a slightly suboptimal solution in a few tenths of a second. Finally, an interesting side result is
that we found out that the FAS-size of three large web-graphs is significantly less than it was
known before. Since it is NP-hard to compute the minimum FAS, the optimum solution for these
web-graphs is unknown. Hence, we do not know how close our solutions are to the optimum. It
would be interesting to investigate techniques to speedup PageRankFAS in order to make it more
applicable to larger web-graphs.
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A. Additional Comparisons of PageRankFAS to the Optimum

For completeness we present here comparisons of the experimental results obtained by the three
heuristics and compare them to the optimum results obtained by the method of [2].
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n_100.d.3 37.95 58 63 88 73
n_100.d4 2.07 91 102 140 98
n_100.d5 1.79 116 121 152 120
n_100.d6 31.03 158 181 211 172
n_110.d3 1.90 63 72 99 77
n_110.d4 332.61 97 108 141 111
n_110.d.5 39.95 134 142 214 142
n_110.d6 10,606.27 172 189 230 187
n_120.d.3 1.98 66 75 120 85
n_120.d4 6.53 108 117 174 118
n_120.d5 1.95 150 165 213 156
n_120.d6 6,699.13 180 204 256 187

Table 3: Results of the three algorithms compared to the exact solution for De Bruijn graphs.
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n_100.d_.3 0.78 66 67 93 &4
n_100.d4 1.38 90 100 148 111
n_100.d5 1.42 126 139 177 141
n_100.d6 32.60 156 187 211 172
n_100.d_7 25.89 192 222 261 218
n_110.d_.3 3.08 62 72 97 90
n_110.d4 5.93 100 112 148 121
n_110.d5 7.14 135 147 218 154

n-110.d-6  59.04 172 201 241 189
n_110.d_7 6,821.63 210 247 282 229
n_120.d.3 11.98 7278 121 99

n_120.d-4 Timeout 114 123 175 133

Table 4: Results of the three algorithms compared to the exact solution for Imase—Itoh graphs.

In the first set of comparisons, we use the eight De Bruijn graphs from [2]. For this dataset
PageRankFAS and SortFAS proved to be most effective with both heuristics coming close to the
exact solution, while GreedyFAS was not competitive. We observe that PageRankFAS performs
better on the graphs with lower density while SortFAS performs better on the graphs with higher
density. De Bruijn graphs are known to be Eulerian and Hamiltonian. It is possible that this
fact makes SortFAS find better solutions by computing a better placement of nodes into a linear
arrangement easier. The results are presented in Figure 9 and Table 3. In any case, as shown in
Table 3 the exact method runs rather fast with the exception of only two graphs.
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We also compare the results of the three heuristics on the twelve Imase-Itoh graphs from [2].
As with the previous set of comparisons, we observe that PageRankFAS and SortFAS perform best
depending on the density of the graphs, while GreedyFAS remains noncompetitive. The results
are presented in Figure 10 and Table 4. In any case, as shown in Table 4 the exact method runs
rather fast with the exception of only two graphs.
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