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Abstract. A graph is rectilinear planar if it admits a planar orthogonal drawing
without bends. While testing rectilinear planarity is NP-hard in general (Garg and
Tamassia, 2001), it is a long-standing open problem to establish a tight upper bound on
its complexity for partial 2-trees, i.e., graphs whose biconnected components are series-
parallel. We describe a new O(n2)-time algorithm to test rectilinear planarity of partial
2-trees, which improves over the current best bound of O(n3 log n) (Di Giacomo et al.,
2022). Moreover, for partial 2-trees where no two parallel-components in a biconnected
component share a pole, we are able to achieve optimal O(n)-time complexity. Our
algorithms are based on an extensive study and a deeper understanding of the notion of
orthogonal spirality, introduced several years ago (Di Battista et al., 1998) to describe
how much an orthogonal drawing of a subgraph is rolled-up in an orthogonal drawing
of the graph.

1 Introduction

In an orthogonal drawing of a graph each vertex is a distinct point of the plane and each edge is
a chain of horizontal and vertical segments. Rectilinear planarity testing asks whether a planar
4-graph (i.e., with vertex-degree at most four) admits a planar orthogonal drawing without edge
bends. It is a classical subject of study in graph drawing, partly for its theoretical beauty and partly
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because it is at the heart of the algorithms that compute bend-minimum orthogonal drawings,
which find applications in several domains (see, e.g., [4, 12, 14, 22, 23, 24]). Rectilinear planarity
testing is NP-hard [18], it belongs to the XP-class when parameterized by treewidth [6], and it
is FPT when parameterized by the number of degree-4 vertices [11]. Polynomial-time solutions
exist for restricted versions of the problem. Namely, if the algorithm must preserve a given planar
embedding, rectilinear planarity testing can be solved in subquadratic time for general graphs [2,
17], and in linear time for planar 3-graphs [26] and for biconnected series-parallel graphs (SP-graphs
for short) [8]. When the planar embedding is not fixed, linear-time solutions exist for (families
of) planar 3-graphs [13, 20, 25, 28] and for outerplanar graphs [16]. A polynomial-time solution
for SP-graphs has been known for a long time [5], but establishing a tight complexity bound for
rectilinear planarity testing of SP-graphs remains a long-standing open problem.

In this paper we provide significant advances on this problem. Our main contribution is twofold:

� We present an O(n2)-time algorithm to test rectilinear planarity of partial 2-trees, i.e., graphs
whose biconnected components are SP-graphs. This result improves the current best known
bound of O(n3 log n) [6].

� We give an O(n)-time algorithm for those partial 2-trees where no two parallel-components
in a block (i.e., a biconnected component) share a pole. We also show a logarithmic lower
bound on the possible values of spirality for an orthogonal component of a graph.

Our algorithms are based on an extensive study and a deeper understanding of the notion of
orthogonal spirality, introduced in 1998 to describe how much an orthogonal drawing of a subgraph
is rolled-up in an orthogonal drawing of the graph [5]. In the concluding remarks we also mention
some of the pitfalls behind an O(n)-time algorithm for partial 2-trees.

2 Preliminaries

A planar orthogonal drawing Γ of a planar graph is a crossing-free drawing that maps each vertex
to a distinct point of the plane and each edge to a sequence of horizontal and vertical segments
between its end-points [4, 14, 24]. A graph is rectilinear planar if it admits a planar orthogonal
drawing without bends. A planar orthogonal representation H describes the shape of a class of
orthogonal drawings in terms of sequences of bends along the edges and angles at the vertices.
A drawing Γ of H can be computed in linear time [27]. If H has no bend, it is a planar recti-
linear representation. Since we only deal with planar drawings, we just use the term “rectilinear
representation” in place of “planar rectilinear representation”.

SP-graphs and SPQ∗-trees. A two-terminal SP-graph is a graph inductively defined as follows:

� Base case. A single edge (s, t) is a two-terminal SP-graph with terminals s and t.

� Inductive case. Let G1, G2, . . . , Gp, with p ≥ 2, be a set of two-terminal SP-graphs, where
each Gi has terminals si and ti; two inductive operations are possible:

– Series-composition. The graph G obtained by the union of all Gi in which ti is
identified with si+1, for i = 1, . . . , p − 1 is a two-terminal SP-graph with terminals
s = s1 and t = tp, called a series-component.
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– Parallel-composition. The graphG obtained by the union of allGi where all terminals
si are identified in a unique vertex s, and all terminals ti are identified in a unique vertex
t, is a two-terminal SP-graph with terminals s = s1 = · · · = sp and t = t1 = · · · = tp,
called a parallel-component.

An SP-graph is any biconnected two-terminal SP-graph. Such a graph can be described by a
decomposition-tree called SPQ-tree, which contains three types of nodes: S-, P-, and Q-nodes.
The degree-1 nodes of T are Q-nodes, each corresponding to a distinct edge of G. If ν is an S-node
(resp. a P-node) it represents a series-component (resp. a parallel-component), denoted as skel(ν)
and called the skeleton of ν. If ν is an S-node, skel(ν) is a simple cycle of length at least three;
if ν is a P-node, skel(ν) is a bundle of at least three multiple edges. A property of T is that any
two S-nodes, as well as any two P-nodes, are never adjacent in the tree. A real edge (resp. virtual
edge) in skel(ν) corresponds to a Q-node (resp. an S- or a P-node) adjacent to ν in T .

Testing whether a simple cycle is rectilinear planar is trivial (if and only if it has at least four
vertices). Hence, we shall assume that G is a biconnected SP-graph different from a simple cycle
and we use a variant of the SPQ-tree called SPQ∗-tree (refer to Fig. 1). In an SPQ∗-tree, each
degree-1 node of T is a Q∗-node, and represents a maximal chain of edges of G (possibly a single
edge) starting and ending at vertices of degree larger than two and passing through a sequence of
degree-2 vertices only (possibly none). If ν is an S- or a P-node, an edge of skel(ν) corresponding
to a Q∗-node µ is virtual if µ is a chain of at least two edges, else it is a real edge.

For any given Q∗-node ρ of T , denote by Tρ the tree T rooted at ρ. Also, for any node ν of
Tρ, denote by Tρ(ν) the subtree of Tρ rooted at ν. The chain of edges represented by ρ is the
reference chain of G with respect to Tρ. If ν is an S- or a P-node distinct from the root child
of Tρ, then skel(ν) contains a virtual edge that has a counterpart in the skeleton of its parent;
this edge is the reference edge of skel(ν). If ν is the root child, the reference edge of skel(ν) is the
edge corresponding to ρ. For any S- or P-node ν of Tρ, the end-vertices of the reference edge of
skel(ν) are the poles of ν and of skel(ν). We remark that skel(ν) does not change if we change ρ.
However, if ν is an S-node, its poles depend on ρ; namely, if ρ′ is a Q∗-node in the subtree Tρ(ν),
the poles of ν in Tρ′ are different from those in Tρ. Conversely, the poles of a P-node stay the
same independent of the root of T . For a Q∗-node ν of Tρ (including ρ), the poles of ν are the
end-vertices of the corresponding chain, and do not change when the root of T changes. For any
S- or P-node ν of Tρ, the pertinent graph Gν,ρ of ν is the subgraph of G formed by the union of
the chains represented by the leaves in the subtree Tρ(ν). The poles of Gν,ρ are the poles of ν.
The pertinent graph of a Q∗-node ν (including the root) is the chain represented by ν, and its
poles are the poles of ν. Any graph Gν,ρ is also called a component of G (with respect to ρ). If µ
is a child of ν, we call Gµ,ρ a child component of ν. If H is a rectilinear representation of G, for
any node ν of Tρ, the restriction Hν,ρ of H to Gν,ρ is a component of H (with respect to ρ). Tree
Tρ is used to describe all planar embeddings of G having the reference chain on the external face.
These embeddings are obtained by permuting in all possible ways the edges of the skeletons of the
P-nodes distinct from the reference edges, around the poles. For each P-node ν, each permutation
of the edges in skel(ν) corresponds to a different left-to-right order of the children of ν in Tρ and
of their associated components. Namely, assume given an st-numbering of G such that s and t
coincide with the poles of ρ. We recall that an st-numbering is a labeling of the n vertices of G,
with numbers in the set {1, . . . , n}, such that each vertex gets a different number, s gets number
1, t gets number n, and each other vertex v /∈ {s, t} is adjacent to both a vertex with smaller
number and a vertex with larger number. It is well-known that an n-vertex graph G admits an
st-numbering if and only if G ∪ (s, t) is biconnected, and such a numbering can be computed in
O(n) time [15].
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Figure 1: (a) An SP-graph G. (b) A rectilinear representation H of G. (c) The SPQ∗-tree Tρ of
G, where ρ represents the thick chain; Q∗-nodes are small squares; the left-to-right order of the
children of each P-node reflects the embedding of H. The components and the skeletons of the
nodes ν, µ, ϕ are shown: virtual edges are dashed and the reference edge is thicker.

For each P-node ν of Tρ, let u and v be its poles where u precedes v in the st-numbering.
Denote by eν the reference edge of skel(ν), by e1, . . . , eh the edges of skel(ν) distinct from eν ,
and by µ1, . . . , µh the children of ν corresponding to e1, . . . , eh. Each permutation of e1, . . . , eh
defines a class of planar embeddings of Gν,ρ with u and v on the external face, where the compo-
nents Gµ1,ρ, . . . , Gµh,ρ are incident to u and v in the order of the permutation. More precisely, if
ei1 , . . . , eih is one of these permutations (ij ∈ {1, . . . , h}), the clockwise (resp. counterclockwise)
sequence of edges incident to u (resp. v) in skel(ν) is eν , ei1 , . . . , eih ; we say that, according to this
permutation, µi1 , . . . , µih and their corresponding components appear in this left-to-right order.

We finally recall that the SPQ∗-tree T of an n-vertex graph G can be computed in O(n)
time [4, 19, 21].

Partial 2-trees and BC-trees. A 1-connected graph G is a partial 2-tree if every biconnected
component of G is an SP-graph. A biconnected component of G is also called a block. A block
is trivial if it consists of a single edge. The block-cutvertex tree T of G, also called BC-tree of
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G, describes the decomposition of G in terms of its blocks (see, e.g., [4]). Each node of T either
represents a block of G or it represents a cutvertex of G. A block-node (resp. a cutvertex-node) of
T is a node that represents a block (resp. a cutvertex) of G. There is an edge between two nodes
of T if and only if one node represents a cutvertex of G and the other node represents a block that
contains the cutvertex.

3 Rectilinear Planarity Testing of Partial 2-Trees

Let G be a partial 2-tree. We describe a rectilinear planarity testing algorithm that visits the
block-cutvertex tree (BC-tree) of G and the SPQ∗-tree of each block of G, for each possible choice
of the roots of both decomposition trees. Our algorithm revisits the notion of “spirality values”
for the blocks of G, and introduces new concepts to efficiently compute these values (Section 3.1).
It is based on a combination of dynamic programming techniques (Section 3.2).

3.1 Spirality of SP-graphs

Let G be a degree-4 SP-graph and let H be an orthogonal representation of G. Let Tρ be a rooted
SPQ∗-tree of G, let Hν,ρ be a component of H (i.e., the restriction of H to Gν,ρ), and let {u, v}
be the poles of ν, conventionally ordered according to an st-numbering of G, where s and t are the
poles of ρ. For each pole w ∈ {u, v}, let indegν(w) and outdegν(w) be the degree of w inside and
outside Hν,ρ, respectively. Define two (possibly coincident) alias vertices of w, denoted by w′ and
w′′, as follows: (i) if indegν(w) = 1, then w′ = w′′ = w; (ii) if indegν(w) = outdegν(w) = 2, then
w′ and w′′ are dummy vertices, each splitting one of the two distinct edge segments incident to w
outside Hν,ρ; (iii) if indegν(w) > 1 and outdegν(w) = 1, then w′ = w′′ is a dummy vertex that
splits the edge segment incident to w outside Hν,ρ.

Let Aw be the set of distinct alias vertices of a pole w. Let Puv be any simple path from u
to v inside Hν,ρ and let u′ and v′ be the alias vertices of u and of v, respectively. The path Su′v′

obtained concatenating (u′, u), Puv, and (v, v′) is called a spine of Hν,ρ. Denote by n(Su′v′
) the

number of right turns minus the number of left turns encountered along Su′v′
while moving from u′

to v′. The spirality σ(Hν,ρ) of Hν,ρ, introduced in [5], is either an integer or a semi-integer number,
defined based on the following cases (see Fig. 2 for an example): (i) If Au = {u′} and Av = {v′}
then σ(Hν) = n(Su′v′

). (ii) If Au = {u′} and Av = {v′, v′′} then σ(Hν) = n(Su′v′
)+n(Su′v′′

)
2 .

(iii) If Au = {u′, u′′} and Av = {v′} then σ(Hν) = n(Su′v′
)+n(Su′′v′

)
2 . (iv) If Au = {u′, u′′} and

Av = {v′, v′′} assume, without loss of generality, that (u, u′) precedes (u, u′′) counterclockwise

around u and that (v, v′) precedes (v, v′′) clockwise around v; then σ(Hν) =
n(Su′v′

)+n(Su′′v′′
)

2 .
It is proved that the spirality of Hν,ρ does not depend on the choice of Puv [5]. Also, a

component Hν,ρ of H can always be substituted by any other component H ′
ν,ρ with the same

spirality, getting a new valid orthogonal representation with the same set of bends on the edges of
H that are not in Hν,ρ (see [5] and also Theorem 1 in [10]). For brevity, we shall denote by σν the
spirality of an orthogonal representation of Gν,ρ. Lemmas 1 to 3 relate, for any S- or P-node ν, the
values of spirality for a rectilinear representation of Gν,ρ to the values of spirality of the rectilinear
representations of the child components of Gν,ρ (i.e., the components corresponding to the children
of ν). They rephrase known results proved in [5], specialized to rectilinear representations. See
Fig. 3 for a schematic illustration.

Lemma 1 ([5], Lemma 4.2) Let ν be an S-node of Tρ with children µ1, . . . , µh (h ≥ 2). Gν,ρ has
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µ1 µ2 µ3

σ(Hµ2)=1 σ(Hµ2)=0 σ(Hµ3)=− 1
2

H

s

t

Figure 2: An orthogonal representation H and three of its components with respect to the reference
chain with poles s and t. For each component, its alias vertices (white squares) and its spirality
are reported.

a rectilinear representation with spirality σν if and only each Gµi
(1 ≤ i ≤ h) has a rectilinear

representation with spirality σµi , such that σν =
∑h

i=1 σµi .

Lemma 2 ([5], Lemma 4.3) Let ν be a P-node of Tρ with three children µl, µc, and µr. Gν,ρ has a
rectilinear representation with spirality σν , where Gµl,ρ, Gµc,ρ, Gµr,ρ are in this left-to-right order,
if and only if there exist values σµl

, σµc , σµr such that: (i) Gµl,ρ, Gµc,ρ, Gµr,ρ have rectilinear
representations with spirality σµl

, σµc
, σµr

, respectively; and (ii) σν = σµl
− 2 = σµc

= σµr
+ 2.

For a P-node ν of Tρ with two children we need some more notation. Let H be an orthogonal
representation of G with ρ on the external face and let Hν,ρ be the restriction of H to Gν,ρ. For
each pole w ∈ {u, v} of ν, the leftmost angle (resp. rightmost angle) at w in Hν,ρ is the angle
formed by the leftmost (resp. rightmost) external edge and the leftmost (resp. rightmost) internal
edge of Hν,ρ incident to w. Define two binary variables αl

w and αr
w as follows: αl

w = 0 (αr
w = 0) if

the leftmost (rightmost) angle at w in H is 180◦, while αl
w = 1 (αr

w = 1) if this angle is 90◦. Also
define two variables klw and krw as follows: kdw = 1 if indegµd

(w) = outdegν(w) = 1, while kdw = 1/2
otherwise, for d ∈ {l, r}.

Lemma 3 ([5], Lemma 4.4) Let ν be a P-node of Tρ with two children µl and µr, and poles u
and v. Gν,ρ has a rectilinear representation with spirality σν , where Gµl,ρ and Gµr,ρ are in this
left-to-right order, if and only if there exist values σµl

, σµr
, αl

u, α
r
u, α

l
v, α

r
v such that: (i) Gµl,ρ and

Gµr,ρ have rectilinear representations with spirality σµl
and σµr

, respectively; (ii) αl
w, α

r
w ∈ {0, 1},

1 ≤ αl
w + αr

w ≤ 2 with w ∈ {u, v}; and (iii) σν = σµl
− kluα

l
u − klvα

l
v = σµr

+ kruα
r
u + krvα

r
v.

Spirality sets. Let G be an n-vertex SP-graph (distinct from a simple cycle), Tρ be a rooted
SPQ∗-tree of G, and ν be a node of Tρ. We say that Gν,ρ, or directly ν, admits spirality σν in Tρ if
there exists a rectilinear representation Hν,ρ with spirality σν in some orthogonal representation H
of G. The rectilinear spirality set Σν,ρ of ν in Tρ (and of Gν,ρ) is the set of spirality values for
which Gν,ρ admits a rectilinear representation. Σν,ρ is representative of all “shapes” that Gν,ρ can
take in a rectilinear representation of G with the reference chain on the external face, if one exists.
If Gν,ρ is not rectilinear planar, Σν,ρ is empty. Let nν be the number of vertices of Gν,ρ. The
following holds.

Property 1 |Σν,ρ| ≤ 2nν . Also, for each σν ∈ Σν,ρ we have |σν | ≤ nν .
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Figure 3: Illustrations for Lemmas 1 to 3 (alias vertices are small squares).

Proof: The spirality value of any rectilinear representation of Gν,ρ is either an integer or a semi-
integer value that cannot exceed the length of the shortest path between the poles of Gν,ρ. Since
any simple path in Gν,ρ has at most nν vertices and since for each spirality value σν admitted by
ν, the spirality value −σν is also admitted by ν, the statement follows. □

3.2 Testing Algorithm

We first consider SP-graphs (which are biconnected according to our definition) and then partial
2-trees that are not biconnected.

3.2.1 SP-Graphs.

Let G be an SP-graph. Our rectilinear planarity testing algorithm for G elaborates and refines
ideas of [5]. It is based on a dynamic programming technique that visits the SPQ∗-tree of G for each
possible choice of the root; for each tree, either the root is reached and a rectilinear representation
is found (in which case the test stops and returns the solution), or a node with empty rectilinear
spirality set is encountered (in which case the visit is interrupted and the tree is discarded). With
respect to [5], our algorithm exploits two fundamental ingredients: (a) a more careful analysis
that leads to an O(n2)-time procedure to compute the spirality sets of all nodes for a given rooted
SPQ∗-tree; (b) a re-usability principle that makes it possible to process all rooted SPQ∗-trees in
the same asymptotic time needed to process a single SPQ∗-tree.

Similar to [5] and [7], in the reminder of this section we shall assume to work with a variant of
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the SPQ∗-tree having the property that each S-node has exactly two children. We call this tree a
normalized SPQ∗-tree. Observe that every SPQ∗-tree can be easily transformed into a normalized
SPQ∗-tree by recursively splitting a series with more than two children into multiple series with
two children.1 In contrast to the original definition of SPQ∗-tree, in a normalized tree two S-nodes
can be adjacent. We remark that a normalized tree still has O(n) nodes and that it can be easily
computed in O(n) time from the original SPQ∗-tree.

In the following we first describe our rectilinear planarity testing algorithm and then we prove,
through a sequence of technical lemmas, that it can be executed in quadratic time.

Description and correctness of the testing algorithm. Assume that G is not a simple
cycle, otherwise the test is trivial. Let T be a normalized SPQ∗-tree of G and let {ρ1, . . . , ρh} be
a sequence of all Q∗-nodes of T . Denote by ℓi the length of the chain corresponding to ρi; the
spirality set of ρi consists of all integer values in the interval [−(ℓi − 1), (ℓi − 1)]. Namely, the
spirality value −(ℓi − 1) (resp. (ℓi − 1)) is taken when there is a left (resp. right) turn at every
vertex of the chain. For each i = 1, . . . , h, the testing algorithm performs a post-order visit of Tρi .
During this visit of Tρi , for every non-root node ν of Tρi the algorithm computes the set Σν,ρi by
combining the spirality sets of the children of ν, according to the relations given in Lemmas 1–3.
If Σν,ρi

= ∅, the algorithm stops the visit, discards Tρi
, and starts visiting Tρi+1

(if i < h). If the
algorithm reaches the root child ν and if Σν,ρi

̸= ∅, it checks whether G is rectilinear planar by
verifying if there exists a value σν ∈ Σν,ρi

and a value σρi
∈ Σρi,ρi

= [−(ℓi − 1), (ℓi − 1)] such
that σν − σρi = 4. We call this property the root condition. If the root condition holds, the test is
positive and the algorithm does not visit the remaining trees; otherwise it discards Tρi and starts
visiting Tρi+1

(if i < h).
The correctness of the dynamic programming approach followed by the algorithm is an imme-

diate consequence of the spirality properties described in the previous section. Also, denoted by s
and t the poles of ν (which coincide with those of ρi), the final condition σν − σρi

= 4 is necessary
and sufficient for the existence of a rectilinear representation due to the following observations: (i)
In any orthogonal representation of G, the difference k between the number of right and left turns
encountered walking clockwise along the boundary of any simple cycle that contains the reference
chain is k = 4; (ii) since the alias vertices of the poles of ν are vertices that subdivide the two
edges of the reference chain incident to s and t, the value k equals the spirality of σν plus the
difference σρi

between the number of right and the number of left turns along the reference chain,
going from t to s; (iii) σρi

= −σρi
, where σρi

∈ [−(ℓi − 1), (ℓi − 1)] is the spirality of the chain
corresponding to ρi.

From now on we refer to the algorithm described above as RectPlanTest-SP(G), where G
is the input graph.

Complexity of the testing algorithm. We prove that, for each type of node (i.e., Q∗, P, or S),
computing the spirality sets of all nodes of that type, over all Tρi

(i ∈ {1, . . . , h}), takes O(n2)
time. Thanks to Property 1, every time the algorithm visits a node ν of Tρi , it stores at ν a list
of integers or semi-integers values of length at most 2nν that represents Σν,ρi . Also, it stores at
ν a Boolean array of size 2nν that reports which of the 2nν candidate spirality values is actually
in Σν,ρi

. This array allows us to know in O(1) time whether a specific value of spirality belongs
to Σν,ρi

or not.

1Note that [5] and [7] adopt the term “canonical” instead of “normalized”. However, since there are in general
several ways of splitting a series into multiple series (i.e., the normalized tree is not uniquely defined), we prefer to
avoid the term “canonical”.
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Lemma 4 RectPlanTest-SP(G) computes the spirality sets of all Q∗-nodes over all Tρi
(i ∈

{1, . . . , h}) in O(n) time.

Proof: For each Tρi
, a Q∗-node ν admits all integer spirality values in the interval [−(ℓ−1), (ℓ−1)],

where ℓ is the length of the chain corresponding to ν. The value ℓ can be stored at ν when T is
computed. Since T is computed in O(n) time and the sum of the lengths of all chains represented
by Q∗-nodes is O(n), the statement follows. □

Lemma 5 RectPlanTest-SP(G) computes the spirality sets of all P-nodes over all Tρi (i ∈
{1, . . . , h}) in O(n2) time.

Proof: Let Tρi be the currently visited tree in the algorithm RectPlanTest-SP(G), and let ν
be a P-node of Tρi

. Denote by δν the degree of ν. Notice that δν ≤ 4, as ν has either two or three
children. If the parent of ν in Tρi

coincides with the parent of Tρj
for some j ∈ {1, . . . , i − 1},

and if Σν,ρj
was previously computed, then the algorithm does not need to compute Σν,ρi

, because
Σν,ρi = Σν,ρj . Hence, for each P-node ν, the number of computations of its rectilinear spirality
sets that are performed over all possible trees Tρi is at most δν = 4 (one for each different way of
choosing the parent of ν).

Consider a P-node ν whose spirality set needs to be computed for the first time in Tρi
. If ν

has three children, Σν,ρi
is computed in O(n) time. Namely, it is sufficient to check, for each of

the six permutations of the children of ν and for each value in the rectilinear spirality set of one
of the three children, whether the sets of the other two children contain the values that satisfy
condition (ii) of Lemma 2. If ν has two children, Σν,ρi is computed in O(n) with a similar approach:
For each of the two permutations of the children of ν, for each value in the rectilinear spirality
set of one of the two children, and for each combination of the values αd

w (w ∈ {u, v}, d ∈ {l, r})
defined in Lemma 3, check whether the set of the other children contains the value that satisfies
condition (iii) of Lemma 3. Note that, by Property 1, there are O(n) possible spirality values that
must be checked for each P-node ν; also, checking whether a specific value of spirality exists in the
set of a child of ν takes O(1) time, thanks to the Boolean array stored at each child of ν, which
informs about the spirality values admitted by that child.

Therefore, since the SPQ∗-tree contains O(n) P-nodes in total, since the spirality set of each
P-node in a rooted tree is computed in O(n) time, and since the spirality set of each P-node needs
to be computed at most four times over all Tρi (i ∈ {1, . . . , h}), the time needed to compute the
spirality sets of all P-nodes over all sequence of rooted SPQ∗-trees is O(n2). □

For the S-nodes we need a more careful analysis. Our ingredients are similar to those used
by Chaplick et al. [1] to efficiently test upward planarity testing of digraphs whose underlying
undirected graphs are series-parallel. Recall that, since Tρi is a normalized SPQ∗-tree, each S-
node ν has exactly two children, which we denote by µ1(ν) and µ2(ν). Also, we denote by nν

1 and
nν
2 the number of vertices of the pertinent graphs Gµ1(ν),ρi

and Gµ2(ν),ρi
, respectively.

We start by proving an upper bound to the sum of the products of the sizes of the pertinent
graphs for the children of the S-nodes in a tree Tρi

. For our purposes, it is enough to restrict the
attention to Tρ1 , although the result holds for any Tρi .

Lemma 6 Let S be the set of all S-nodes in Tρ1 . We have
∑

ν∈S nν
1 · nν

2 = O(n2).

Proof: Let ξ be any node of Tρ1 distinct from ρ1. Let Tρ1(ξ) be the subtree of Tρ1 rooted at ξ,
and let S(ξ) ⊆ S be the set of S-nodes in Tρ1(ξ). Denote by s(ξ) =

∑
ν∈S(ξ) n

ν
1 · nν

2 . Also, let nξ

and mξ be the number of vertices and the number of edges of Gξ,ρ1
, respectively. We will prove
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that s(ξ) ≤ 4m2
ξ . When ξ is the child of ρ1, the statement follows by observing that mξ = O(nξ)

and that nξ = n− ℓ1 + 1, where ℓ1 is the length of the reference chain. To prove that s(ξ) ≤ 4m2
ξ

we proceed by induction on the depth d of Tρ1(ξ). In the base case d = 0 and ξ is a Q∗-node (i.e.,
it is a leaf); we have s(ξ) = 0 < mξ. In the inductive case, d ≥ 1 and we assume (by the inductive
hypothesis) that the property holds for every node in the subtree Tρ1

(ξ). There are two cases:

Case 1: ξ is an S-node. Let µ1 and µ2 be the children of ξ. We have s(ξ) = nµ1nµ2 + s(µ1)+ s(µ2).
By using the inductive hypothesis and since nµi ≤ mµi + 1 (i ∈ {1, 2}), we get s(ξ) ≤ mµ1mµ2 +
mµ1

+mµ2
+ 1 + 4m2

µ1
+ 4m2

µ2
≤ 4(mµ1

+mµ2
)2. Since mµ1

+mµ2
= mξ, we have s(ξ) ≤ 4m2

ξ .

Case 2: ξ is a P-node. Let µ1, . . . , µk be the children of ξ, with k ∈ {2, 3}. We have s(ξ) =
s(µ1) + · · · + s(µk). By inductive hypothesis and since mµ1 + · · · + mµk

= mξ, we get s(ξ) ≤
4m2

µ1
+ · · ·+ 4m2

µk
≤ 4(mµ1

+ · · ·+mµk
)2 = 4m2

ξ . □

The next lemma provides an upper bound to the time required to compute the spirality set of
an S-node, looking at the size of the pertinent graphs of its two children and at the size of the
remaining part of the graph. For an S-node ν of a normalized tree Tρi

, denote by nν
0 the number

of vertices of the graph (G \Gν,ρi
) ∪ {u, v}, where u and v are the poles of ν. In other words, nν

0

is the number of vertices incident to the edges of G that are not in the pertinent graph of ν. Also,
as in the previous lemma, let µ1(ν) and µ2(ν) be the two children of ν in Tρi and let nν

1 and nν
2

denote the number of vertices of their pertinent graphs. We prove the following.

Lemma 7 Let ν be an S-node of Tρi for which the spirality sets Σµ1(ν),ρi
and Σµ2(ν),ρi

are given
and non-empty. The spirality set Σν,ρi

can be computed in O(min{nν
1 · nν

2 , n
ν
1 · nν

0 , n
ν
2 · nν

0}) time.

Proof: Suppose first that nν
0 = max{nν

0 , n
ν
1 , n

ν
2}. In this case the spirality set Σν,ρi

is computed
as in [5], by looking at all distinct values (all integers or all semi-integers) that result from the sum
of a value in Σµ1(ν),ρi

with a value in Σµ2(ν),ρi
. That is, Σν,ρi is the Cartesian sum of Σµ1(ν),ρi

and
Σµ2(ν),ρi

, which can be computed in O(nν
1 · nν

2) = O(min{nν
1 · nν

2 , n
ν
1 · nν

0 , n
ν
2 · nν

0}).
Suppose vice versa that max{nν

0 , n
ν
1 , n

ν
2} is one among nν

1 and nν
2 , say for example nν

2 =
max{nν

0 , n
ν
1 , n

ν
2} (if the maximum is nν

1 , the argument is analogous). The spirality values admitted
by ν must be in the interval [−(nν

0 + 4),+(nν
0 + 4)], because the number of right turns minus

the number of left turns walking counterclockwise on the boundary of any cycle of a rectilinear
representation of G equals 4, and because any rectilinear representation of G restricted to G\Gν,ρi

cannot have more than n0 turns in the same direction (either left or right). Also, recall that the
spirality values admitted by ν are either all integer or all semi-integer numbers, depending on the in-
degree and out-degree of the poles of ν. Hence, to construct the spirality set Σν,ρi

, we can consider
every pair {σν , σ1}, with σν being either an integer or a semi-integer in [−(nν

0 +4),+(nν
0 +4)] and

σ1 ∈ Σµ1(ν),ρi
, and for each such pair we check whether there exists a value σ2 ∈ Σµ2(ν),ρi

such
that σ1 + σ2 = σν . In the positive case, the value σν is inserted in Σν,ρi

, otherwise this value is
discarded. Since there are O(nν

0 · nν
1) distinct pairs {σν , σ1} and since for each pair we can check

in O(1) time whether there exists a value σ2 that satisfies σ1 + σ2 = σν (thanks to the Boolean
array stored at µ2(ν)), this procedure takes O(nν

0 · nν
1) = O(min{nν

1 · nν
2 , n

ν
1 · nν

0 , n
ν
2 · nν

0}) time. □

We finally establish the time complexity of RectPlanTest-SP(G) to compute the spirality
sets of all S-nodes over all sequence of normalized rooted SPQ∗-trees of G.

Lemma 8 RectPlanTest-SP(G) computes the spirality sets of all S-nodes over all Tρi
(i ∈

{1, . . . , h}) in O(n2) time.
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Proof: Let Tρi
be the currently visited tree in the algorithm RectPlanTest-SP(G). As for the

P-nodes, if the parent of ν in Tρi
coincides with the parent of Tρj

for some j ∈ {1, . . . , i − 1},
and if Σν,ρj

was previously computed, then the algorithm does not need to compute Σν,ρi
, because

Σν,ρi = Σν,ρj . Hence, for each S-node ν, the number of computations of its rectilinear spirality sets
that are performed over all possible trees Tρi is at most 3 (one for each different way of choosing
the parent of ν).

Suppose that, for an S-node ν, µ1(ν) and µ2(ν) are the children of ν in the first rooted tree
Tρ1 , and that nν

1 and nν
2 are the number of vertices of Gµ1(ν),ρ1

and Gµ2(ν),ρ1
, respectively. By

Lemma 7, every time RectPlanTest-SP(G) needs to compute the spirality set of an S-node ν
in a tree Tρi

, it spends O(nν
1 · nν

2) time. Denote by S the set of all S-nodes in Tρ1
. Since the

spirality set of each S-node has to be computed at most three times over all Tρi
(i = 1, . . . , h), the

time required to compute the spirality sets of all S-nodes over all Tρi
is O(

∑
ν∈S nν

1 · nν
2), which,

by Lemma 6, is O(n2). □

We are now ready to prove the main result of this subsection.

Lemma 9 Let G be an n-vertex SP-graph. There exists an O(n2)-time algorithm that tests whether
G is rectilinear planar and that computes a rectilinear representation of G in the positive case.

Proof: Consider the algorithm RectPlanTest-SP(G) described above. By Lemmas 4 and 5,
and 8, this algorithm spends O(n2) time to compute the spirality sets of all nodes, over all sequence
Tρ1

, . . . , Tρh
of normalized trees. Also, for each visited tree Tρi

(i ∈ {1, . . . , h}), if the spirality set
of the root child ν is not empty, the algorithm takes O(n) time to check the root condition, i.e.,
whether there exist two values σν ∈ Σν,ρi and σρi ∈ Σρi,ρi such that σν − σρi = 4. Therefore,
RectPlanTest-SP(G) can be executed in O(n2) time.

Construction algorithm. Suppose now that the test is positive for some rooted tree Tρi
, with

1 ≤ i ≤ h. This implies that the final condition σν − σρi = 4 holds when ν is the root child, for
some suitable values σν ∈ Σν,ρi and σρi ∈ [−(ℓi − 1), (ℓi − 1)]. In order to construct a rectilinear
planar representation of G with the reference edge corresponding to ρi on the external face, we
proceed as follows: First we assign spirality σν to the root child ν; then we visit Tρi

top-down and
assign a suitable value of spirality to each visited node, according to the spirality value already
assigned to its parent; for each P-node, we also determine the permutation of its children that
yields the desired value of spirality. Once the spirality values of all nodes have been assigned and
the permutation of the children of each P-node has been fixed, we apply the algorithm in [8] (which
works for plane SP-graphs) to construct a rectilinear representation of G in linear time. More in
detail, suppose that during the top-down visit we have assigned a spirality value σν to a node ν.
If ν is not a Q∗-node, we determine the spirality values that can be assigned to its children based
on whether ν is a P-node or an S-node, namely:

� ν is a P-node with three children. By Lemma 2, we check, for each of the six left-to-right
orders (permutations) µl, µc, µr of the three children of ν, whether Σµl,ρi ,Σµc,ρi , and Σµr,ρi

contain the values σµl
= σν +2, σµc = σν , and σµr = σν − 2, respectively. If so, assign these

values of spiralities to three children of ν and fix this order of the children for ν. This test
takes O(1) time.

� ν is a P-node with two children. Let u and v be the poles of ν in Tρi . By Lemma 3, we check,
for each left-to-right order (permutation) µl, µr of the two children of ν, whether there exists a
combination of values αl

u, α
r
u, α

l
v, α

r
v and two values σµl

∈ Σµl,ρi
and σµr

∈ Σµr,ρi
such that:
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σµl
= σν + kluα

l
u + klvα

l
v and σµr

= σν − kruα
r
u − krvα

r
v. Since each αd

w (w ∈ {u, v}, d ∈ {l, r})
is a binary variable, this test takes O(1) time.

� ν is an S-node. Let µ1 and µ2 be the two children of ν. By Lemma 1, we check the existence
of two values σµ1 ∈ Σµ1,ρi and σµ2 ∈ Σµ2,ρi , such that σµ1 +σµ2 = σν . This takes O(n) time.

By the analysis above, the time complexity of the construction is dominated by the assignment
of spirality values to the children of the S-nodes, which takes in total O(n2) time. □

3.2.2 1-connected partial 2-trees

We now extend the result of Lemma 9 to partial 2-trees that consist of multiple blocks. The main
difficulty in this case is to handle the angle constraints that may be required at the cutvertices of
the input graph G. Indeed, one cannot simply test the rectilinear planarity of each single block
independently, as it might be impossible to merge the rectilinear representations of the different
blocks into a rectilinear representation for G without additional angle constraints at the cutvertices.
For example, suppose that c is a cutvertex shared by two blocks B1 and B2, each having two edges
incident to c; we cannot accept any rectilinear representation of B1 in which the two edges incident
to c form angles of 180◦, as such a representation does not leave enough space to attach the two
edges of B2 incident to c.

We prove the following result.

Theorem 1 Let G be an n-vertex partial 2-tree. There exists an O(n2)-time algorithm that
tests whether G is rectilinear planar and that computes a rectilinear representation of G in the
positive case.

Proof: Let T be the BC-tree of G, and let B1, . . . , Bq be the blocks of G (q ≥ 2). We denote by
β(Bi) the block-node of T corresponding to Bi (1 ≤ i ≤ q) and by TBi the tree T rooted at β(Bi).
For a cutvertex c of G, we denote by χ(c) the node of T that corresponds to c. Each TBi

describes
a class of planar embeddings of G such that, for each non-root node β(Bj) (1 ≤ j ≤ q) with parent
node χ(c) and grandparent node β(Bk), the cutvertex c and Bk lie on the external face of Bj .
We say that G is rectilinear planar with respect to TBi if it is rectilinear planar for some planar
embedding in the class described by TBi . To check whether G is rectilinear planar with respect
to TBi

, we have to perform a constrained rectilinear planarity testing for every block B1, . . . , Bq to
guarantee that the rectilinear representations of the different blocks can be merged together at the
shared cutvertices. We first define the types of constraints that we need to impose on the angles
at the cutvertices of Bj in each TBi

. Then we explain how to perform the rectilinear planarity
testing algorithm with respect to TBi , over all i = 1, . . . , q, while considering these constraints.

Types of constraints for a block Bj in a rooted BC-tree TBi
. The constraints for each

block Bj in tree TBi
depend on whether j = i or not and on the angles that we may have to impose

on each cutvertex c of Bj . We denote by deg(c) the degree of c in G and by deg(c|Bj) the degree
of c in Bj .

Case j = i (β(Bj) is the root). Let c′ be a cutvertex of Bj and let Bk be one of the blocks
that share c′ with Bj . Note that a rectilinear representation of Bk (if any) must have c′ on
its external face, as χ(c′) is the parent of β(Bk) in TBj . We distinguish two subcases: (i) If
deg(c′|Bk) = deg(c′|Bj) = 2, there is not a third block that contains c′. We constraint c′ to have
a reflex angle (i.e., an angle of 270◦) in any rectilinear representation of Bj (if any). We call this



JGAA, 27(8) 679–719 (2023) 691

type of constraint a reflex-angle constraint on c′. This constraint is necessary and sufficient to
merge a rectilinear representation of Bk having a reflex angle at c′ on the external face (if any) to
the one of Bj . Indeed, if both the angles at c′ in the representation of Bj were smaller than 270◦,
then there would not be enough space to embed the representation of Bk on one of the two faces of
Bj incident to c′, because deg(c′|Bk) = 2; this proves the necessity of the constraint. On the other
hand, if a face f incident to c′ in the representation of Bj has an angle of 270◦ at c′, then we can
easily merge the representation of Bj with a representation of Bk having an external reflex angle
at c′ by embedding the representation of Bk on face f (there will be four angles of 90◦ at c′ in the
final representation); this proves the sufficiency of the constraint. Note that, the constraint that
forces a representation of Bk to have an external reflex angle at c′ is treated when we consider the
case j ̸= i. (ii) In all other cases, we do not need to impose any constraints on c′; indeed, either
deg(c′|Bj) = 1 or deg(c′|Bk) = 1, and any rectilinear representation of Bk with c′ on the external
face is embeddable in one of the faces incident to c′ in a rectilinear representation of Bj .

Case j ̸= i (β(Bj) is not the root). Let χ(c) be the parent node of β(Bj); we must restrict to those
rectilinear representations of Bj with c on the external face. If deg(c|Bj) = 1 then Bj is a trivial
block and we do not need to impose any constraint for Bj . Hence, assume that deg(c|Bj) ≥ 2 and
let β(Bk) be the parent node of χ(c) in TBi . We distinguish different types of external constraints
on c, based on the following subcases: (i) If deg(c) = 4 and deg(c|Bk) = deg(c|Bj) = 2, then we
impose an external reflex-angle constraint on c, which forces c to have a reflex angle on the external
face f of any rectilinear representation of Bj . A rectilinear representation of Bk (if any) will be
embedded in f . (ii) If deg(c) = 4 with deg(c|Bk) = 1 (i.e., Bk is a trivial block) and deg(c|Bj) = 2,
then Bj has a sibling Bh, which is a trivial block. In this case, we impose an external non-right-
angle constraint on c, which forces c to have an angle larger than 90◦ (i.e., either a flat or a reflex
angle) on the external face f ; a rectilinear representation of Bk (if any) will be embedded in f ,
while a rectilinear representation of Bh (if any) will be embedded either in f (if c has a reflex angle
in f) or in the other face of Bj incident to c (if c has a flat angle in f). (iii) If deg(c) = 4 with
deg(c|Bk) = 1 and deg(c|Bj) = 3, we impose an external flat-angle constraint on c, which forces
c to have its unique flat angle on the external face f ; again, a rectilinear representation of Bk (if
any) will be embedded in f . (iv) If deg(c) = 3 and deg(c|Bj) = 2 (which implies deg(c|Bk) = 1),
we impose an external non-right-angle constraint on c, as in case (ii). Observe that, by definition,
there is at most one external constraint on c in Bj . Additionally, for any cutvertex c′ ̸= c of Bj ,
we impose a reflex-angle constraint on c′ when there is exactly one block Bh that shares c′ with
Bj and deg(c′|Bj) = deg(c′|Bh) = 2.

Testing algorithm. We describe how to test in O(n2) time whether G admits a rectilinear
representation with respect to TBi

, over all i = 1, . . . , q. The test consists of two main phases.

Phase 1 (pre-processing). In this phase, for each block Bj , we consider all possible configurations
of the cutvertex-nodes incident to β(Bj) in which either all these cutvertex-nodes are children
of β(Bj) in a rooted BC-tree of G (i.e., β(Bj) is the root) or one of them is chosen as the parent
of β(Bj) and the remaining ones are the children of β(Bj). For each configuration, we store at β(Bj)
a Boolean local label that is true if and only if Bj is rectilinear planar with respect to a rooted
BC-tree that has the given configuration for the cutvertex nodes incident to β(Bj) (see the initial
part of the proof for the definition of rectilinear planarity with respect to a given rooted BC-tree).
Note that, in this way, for each block-node we store a number of local labels equal to its degree
plus one. Thus, in total we store O(n) local labels at the nodes of the BC-tree. These local labels
allow us to (quickly) check the realizability of a block in the second phase of the algorithm (see
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Figure 4: (a) A degree-2 cutvertex c′; (b) the reflex-angle gadget; (c) a rectilinear representation
of the reflex-angle gadget, which forces c′ to form a reflex angle.

later), over all possible choices of the root of the BC-tree. To compute the local label associated
with each configuration of the cutvertex-nodes incident to β(Bj), we execute the following steps:

� Step 1. For each cutvertex c′ of Bj such that we need to impose on c′ either a reflex-angle
constraint or an external reflex-angle constraint in some configuration, we enhance Bj with
a gadget, called a reflex-angle gadget for c′, depicted in Figures 4(a) and 4(b). It consists
of two vertices u and v, each subdividing one of the two edges incident to c′ in Bj , and
of two edge-disjoint paths connecting u and v, one having length two and the other having
length four. Call B′

j the block resulting from Bj after the addition of all these reflex-angle
gadgets. B′

j is still an SP-graph and each cutvertex c′ with a reflex-angle constraint gadget
will be forced to have a reflex angle in any rectilinear representation of the block. Indeed,
since a rectilinear representation has no edge bends and since u and v have degree four, the
shape of the reflex-angle gadget is necessarily a rectangle whose corners are its four degree-2
vertices, and c′ is necessarily inside this rectangle and has an angle of 270◦ (see Figure 4(c)).
Also, since each reflex-angle gadget consists of a constant number of nodes and edges, the
size of B′

j is linear in the size of Bj . From a rectilinear representation of B′
j we will obtain a

constrained rectilinear representation of Bj by simply ignoring the reflex-angle gadgets (once
we have possibly exchanged the identity of c′ with the degree-2 vertex of the path of the
gadget having length two).

� Step 2. Execute on B′
j the non-constrained planarity testing algorithm of Lemma 9, over all

possible roots of the SPQ∗-tree of B′
j . However, during the test on each rooted SPQ∗-tree,

and similarly to what is done in [5], for each node ν and for each value σν in the spirality set
of ν, we also store at ν a different 4-tuple for each possible combination of the leftmost and
rightmost external angles at the poles u and v of ν that are compatible with σν . We recall
that the leftmost (resp. rightmost) external angle at a pole w ∈ {u, v} is the angle formed by
the leftmost (resp. rightmost) external edge and the leftmost (resp. rightmost) internal edge
incident to w. Note that, there are at most four tuples for each spirality value admitted by
ν, because each pole of ν has either degree three or degree four in the block, and its leftmost
and rightmost external angles are either of 90◦ or of 180◦.

� Step 3. For each distinct configuration of the cutvertex-nodes incident to β(Bj) we decide its
corresponding Boolean local label, based on the output of the previous step and on whether
the configuration requires an external angle constraint at a cutvertex of Bj or not. Namely,
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if the configuration is such that all cutvertex-nodes incident to β(Bj) are children of β(Bj)
(which models the case when β(Bj) is the root of the BC-tree), there is no external angle
constraints on the cutvertices of Bj , hence the local label is true if and only if B′

j was
rectilinear planar in Step 2. Consider vice versa a configuration such that χ(c) is the parent
of β(Bj), for a cutvertex c in Bj . Clearly, if B

′
j was not rectilinear planar in Step 2, the local

label for the configuration is false. However, if B′
j was rectilinear planar in Step 2, we must

check whether it remains rectilinear planar with the additional external angle-constraint on c.
We distinguish the following cases:

(i) If there is an external reflex-angle-constraint on c, consider the output of the testing
algorithm of Step 2 restricted to the SPQ∗-tree of B′

j whose reference chain is the path of
length four of the reflex-angle gadget for c. The local label is set to true if and only if the
test for this rooted tree was positive, as it equals to saying that Bj is rectilinear planar with
c on the external face and with a reflex angle on the external face.

(ii) If there is an external non-right-angle constraint on c, we know that deg(c|Bj) = 2. We
restrict the output of the testing algorithm of Step 2 to the only root ρ of the SPQ∗-tree
whose reference chain π contains c. Denote by ℓ the length of π and let s and t be the two
poles of π. Since c is not allowed to have a 90◦ angle on the external face, the spirality
σρ is restricted to take values in the range [−(ℓ − 1), (ℓ − 2)], instead of [−(ℓ − 1), (ℓ − 1)]
(σρ = (ℓ− 1) corresponds to having a 90◦ angle on the external face at all degree-2 vertices
of π). Hence, we just repeat the checking of the root condition under this restriction, and we
set the local label for the configuration to true if and only if the checking remains positive.

(iii) Finally, if there is an external flat-angle constraint on c, we know that deg(c|Bj) = 3.
Denote by π1, π2, and π3 the three chains incident to c in Bj . We restrict the output of the
testing algorithm of Step 2 to the roots of SPQ∗-tree of Bj corresponding to π1, π2, and π3.
For each of these roots, we remove from the spirality set of the root child those values whose
associated 4-tuples require a 90◦ angle at c on the external face. After this removal, the local
label for the configuration is set to true if and only if we can still satisfy the root condition,
as described in the proof of Lemma 9.

Concerning the time complexity of Phase 1, for each block Bj , denote by nBj
the number of

vertices of Bj . We have the following: Step 1 is easily executed in O(nBj
) time; Step 2 is executed

in O(n2
Bj

) time by Lemma 9; Step 3 is executed in O(nBj ) time for each distinct configuration,

and hence in O(n2
Bj

) over all O(nBj
) configurations. Summing up over all Bj (i = 1, . . . , q), we

have that Phase 1 takes O(n2) time.

Phase 2. After the pre-processing phase, we first consider the rooted BC-tree TB1
. We visit TB1

bottom-up and for each node γ of TB1
(either a block-node or a cutvertex-node) we compute a

Boolean cumulative label that is either true or false depending on whether all blocks in the subtree
of TB1 rooted at γ (included γ) have a cumulative label true or not. Namely, for a leaf γ = β(Bj), its
cumulative label coincides with the local label of β(Bj) for its current configuration of cutvertices.
For each cutvertex-node, its cumulative label is the Boolean logic AND of the cumulative labels
of its children. For each internal block-node, its cumulative label is the Boolean logic AND of its
children and of its local label. Computing the cumulative labels of each node of TB1

takes O(n)
time. At this point, one of the following three cases holds (each case leads to an answer of the
testing algorithm, and we explain why this answer is correct):
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Case 1. The cumulative label of the root is true. In this case the test is positive, because G is
rectilinear planar with respect to TB1

.

Case 2. There are two block-nodes γ1 and γ2 in TB1 with cumulative label false and that are along
two distinct paths from a leaf to the root (which implies that there is a node with two children
whose cumulative labels are false). In this case the test is negative, because for any other TBi

(i = 2, . . . , q), at least one of the subtrees rooted at γ1 and γ2 remains unchanged.

Case 3. All block-nodes with cumulative label false (possibly one block-node) are on the same path
from a leaf to the root. In this case, let β(Bj) be the deepest node along this path (note that β(Bj)
could also be the root). The rest of the test can be restricted to considering all rooted BC-trees
whose root β(Bi) is a leaf of the subtree rooted at β(Bj). For each of these roots we repeat the
procedure above, by visiting TBi

bottom-up and by computing the cumulative label of each node
γ of TBi

only if the subtree of γ has changed with respect to any previous visit (otherwise we just
reuse the cumulative label of γ computed in a previous tree without visiting its subtree again).
Also, for a node γ whose parent has changed, the cumulative label of γ can be easily computed in
O(1) time by looking at the cumulative label of γ in TB1

, at the cumulative label of the child of
γ in TB1

that becomes its parent in TBi
, and at the cumulative label of the parent of γ in TB1

(if
γ ̸= β(B1)) that becomes its child in TBi

(γ has at most one child whose cumulative label is false).

Concerning the time complexity of Phase 2, for each node γ of T of degree δγ , the cumulative
label of γ is computed in O(δγ) time for TB1

and in O(1) in each subsequent rooted BC-tree in
which γ changes the parent. Since each node γ changes its parent O(δγ) times, summing up over
all γ, we have that Phase 2 takes in total O(n) time.

Thanks to the analysis discussed above, Phase 1 and Phase 2 together allow us to verify whether
G is rectilinear planar over all possible planar embeddings of G. Also, since Phase 1 takes O(n2)
time and Phase 2 takes O(n) time, the overall test is executed in O(n2) time. Also, if the test
is positive, with the same strategy as in Lemma 9, we construct a rectilinear representation of
each block and, thanks to the given angle constraints at the cutvertices, we just merge all the
representations together in order to compute a rectilinear representation of G. Since constructing
a representation for each block Bj takes O(n2

Bj
) (see Lemma 9), the overall time of the construction

algorithm is O(n2). □

4 Independent-Parallel Partial 2-Trees

In this section we show that the rectilinear planarity testing problem can be solved in linear-time
for a meaningful subclass of partial 2-trees, which we call “independent-parallel”. In the final
remark we also discuss the difficulties of extending this result to a larger subclass of partial 2-trees.

An independent-parallel SP-graph is a (biconnected) SP-graph in which no two P-components
share a pole (the graph in Fig. 1(a) is an independent-parallel SP-graph). An independent-parallel
partial 2-tree is a partial 2-tree such that every block is an independent-parallel SP-graph.

The first step towards a linear-time testing algorithm for independent-parallel partial 2-trees is
to design a linear-time testing algorithm for independent-parallel SP-graphs, i.e., to improve the
complexity stated in Lemma 9 when we restrict to this subclass of SP-graphs. To this aim, we ask
whether the components of an independent-parallel SP-graph have spirality sets of constant size,
as for the case of planar 3-graphs [13, 28]. Unfortunately, this is not the case for SP-graphs with
degree-4 vertices, even when they are independent-parallel. Namely, in Section 4.1 we describe
an infinite family of independent-parallel SP-graphs whose rectilinear representations require that
some components have spirality Ω(log n).
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Figure 5: Two components that are: (a) rectilinear planar for spiralities 0 and 2, but not 1 (which
requires a bend, shown as a cross); (b) rectilinear planar only for spiralities 0 and 4. In bold, an
arbitrary path from the pole u to the pole v.

Moreover, it is not obvious how to describe the spirality sets for independent-parallel SP-graphs
with degree-4 vertices in O(1) space. See for example the irregular behavior of the spirality sets of
the components in Fig. 5(a) and Fig. 5(b). In particular, the component in Fig. 5(a) corresponds
to a parallel-node with three children; by Lemma 2 this component cannot have a rectilinear
representation with spirality 1, as it would imply that the spirality values of the representations
of the three children are all different from 0, which is however the only value of spirality admitted
by the child corresponding to a single edge. A similar analysis can be done for the component
in Fig. 5(b). The absence of regularity is an obstacle to the design of a succinct description based on
whether a component is rectilinear planar for consecutive spirality values. By carefully analyzing
the spirality properties of independent-parallel SP-graphs, in Sections 4.2 and 4.3 we show how to
overcome these difficulties and design a linear-time rectilinear planarity testing algorithm for this
graph family.

In the remainder of the paper we assume to work with the basic definition of SPQ∗-tree given in
Section 2, i.e., unlike Section 3, we will no longer work with normalized SPQ∗-trees. This implies in
particular that an S-node can have many children and that there cannot be two adjacent S-nodes
in an SPQ∗-tree.

4.1 Spirality Lower Bound

Theorem 2 For infinitely many integer values of n, there exists an n-vertex independent-parallel
SP-graph for which every rectilinear representation has a component with spirality Ω(log n).

Proof: For any arbitrarily large even integer N ≥ 2, we construct an independent-parallel SP-
graph G with n = O(3N ) vertices such that every rectilinear representation of G has a component
with spirality larger than N . Let L = N

2 + 1. For any k ∈ {0, . . . , L}, let Gk be the SP-graph
inductively defined as follows: (i) G0 is a chain of N +4 vertices; (ii) G1 is a parallel composition
of three copies of G0, with coincident poles (Fig. 6(a)); (iii) for k ≥ 2, Gk is a parallel composition
of three series, each starting and ending with an edge, and having Gk−1 in the middle (Fig. 6(b)).
The graph G is obtained by composing in a cycle two chains p1 and p2, of three edges each, with
two copies of GL (Fig. 6(c)). The graph GL for N = 4 is in Fig. 6(d). About the number n of
vertices of G, let nk be the number of vertices of Gk. We have n0 = N + 4 and nk = O(3kN) for

k ≤ N . Hence, nL = O(3
N
2 N) and, since N ≤ 3

N
2 , nL = O(3N ). It follows that n = O(3N ).
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Gk
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Figure 6: (a)–(c) The graph family of Theorem 2, with L = N
2 +1. (d)–(e) Graph GL for N = 4 and

a rectilinear representation of GL (computed by the GDToolkit library [3]); the two components
G0 with blue vertices have spirality N + 2 = 6 (left) and −(N + 2) = −6 (right), respectively.

Consider first the rooted SPQ∗-tree Tρ of G, where ρ represents p1. All the planar embeddings
of G encoded by Tρ have p1 (and p2) on the external face of G, and by symmetry of the construction
they are all equivalent. Any rectilinear representation H of G with an embedding encoded by Tρ

requires that the restriction of H to each copy of GL has spirality zero and, at the same time, the
restriction of H to one of the copies of G0 in GL has spirality N +2. Indeed, due to Lemma 2, for
each rectilinear representation Hk of Gk, the leftmost (resp. rightmost) child component of Hk has
spirality that is two units larger (resp. smaller) than the spirality of Hk. Hence, if there existed a
rectilinear representation of GL with spirality greater (resp. smaller) than zero, it would contain a
representation of a copy of G0 with spirality greater than N +2 (resp. less than −(N +2)), which
is impossible, as the absolute value of spirality of any copy of G0 is at most N + 2. See Fig. 6(e),
where N = 4.

On the other hand, if we consider the planar embeddings encoded by T when rooted at a
Q∗-node whose chain p belongs to a copy of GL, the same argument as above applies to the copy
of GL that does not contain p; namely, any rectilinear representation of this copy must contain a
component with spirality N + 2. □

4.2 Rectilinear Spirality Sets

Let G be an independent-parallel SP-graph, T be the SPQ∗-tree of G, and ρ be a Q∗-node of T .
Each pole w of a P-node ν of Tρ is such that outdegν(w) = 1; if ν is an S-node, either indegν(w) = 1
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or outdegν(w) = 1. In all cases, outdegν(w) = 1 when indegν(w) > 1. For any node ν of Tρ,
denote by Σ+

ν,ρ (resp. Σ−
ν,ρ) the subset of non-negative (resp. non-positive) values of Σν,ρ. Clearly,

Σν,ρ = Σ+
ν,ρ ∪ Σ−

ν,ρ. Note that, for any value σν ∈ Σν,ρ, we also have that −σν ∈ Σν,ρ. Indeed,
if Gν,ρ admits a rectilinear representation with spirality σν for some embedding, by flipping this
embedding around the poles of Gν,ρ, we can obtain a rectilinear representation of Gν,ρ with spirality
−σν . Hence, σν ∈ Σ+

ν,ρ if and only if −σν ∈ Σ−
ν,ρ, and we can restrict the study of the properties

of Σν,ρ to Σ+
ν,ρ, which we call the non-negative rectilinear spirality set of ν in Tρ (or of Gν,ρ).

The main result of this subsection is Theorem 3, which proves that there is a limited number
of possible structures for the sets Σ+

ν,ρ of independent-parallel SP-graphs, which can be succinctly
described (see also Fig. 7). Let m and M be two non-negative integers with m < M : [M ] is a
trivial interval and denotes the singleton {M}; [m,M ]1 is a jump-1 interval and denotes the set
of all integers in the interval [m,M ], i.e., {m,m + 1, . . . ,M − 1,M}; If m and M have the same
parity, [m,M ]2 is a jump-2 interval and denotes the set of values {m,m+ 2, . . . ,M − 2,M}.

Theorem 3 Let G be a rectilinear planar independent-parallel SP-graph and let Gν,ρ be a com-
ponent of G. The non-negative rectilinear spirality set Σ+

ν,ρ of Gν,ρ has one the following six
structures: [0], [1], [1, 2]1, [0,M ]1, [0,M ]2, [1,M ]2.

To prove Theorem 3 we give a series of key lemmas that state important properties of the
spirality values admitted by the components of an independent-parallel SP-graph. For brevity, if
the non-negative spirality set of ν is trivial, jump-1, or jump-2, we also say that ν is trivial, jump-1,
or jump-2, respectively.

Lemma 10 Let Gν,ρ be a component that admits spirality σν ≥ 2. The following properties hold:
(a) if σν = 2, Gν,ρ admits spirality σ′

ν = 0 or σ′
ν = 1; (b) if σν > 2, Gν,ρ admits spirality

σ′
ν = σν − 2; (c) if σν = 4, Gν,ρ admits spirality σ′

ν = 0.

Proof: The proof is by induction on the depth of the subtree Tρ(ν). In the base case ν is a Q∗-node
and the three properties trivially hold for Gν,ρ. In the inductive case, ν is either an S-node, or a
P-node with three children, or a P-node with two children. We analyze the three cases separately.
The most involved case is when ν is a P-node with two children.

� ν is an S-node. We inductively prove the three properties.

Proof of Property (a). If ν admits spirality σν = 2, by Lemma 1, ν has a child µ that admits
spirality σµ > 0. If σµ = 1, µ also admits spirality -1, and ν admits spirality 0. If σµ = 2, by
inductively using Property (a), µ also admits 0 or 1, and so does ν. If σµ > 2, by inductively
using Property (b), µ admits spirality σµ − 2, and ν admits spirality 0.

Proof of Property (b). If ν admits spirality σν > 2, by Lemma 1 one of the following subcases
holds: (i) ν has child µ that admits spirality σµ > 2; by inductively using Property (b), µ
admits spirality σµ − 2 and, by Lemma 1, ν admits spirality σν − 2. (ii) ν has child µ that
admits spirality 1; in this case µ admits spirality -1, and ν admits spirality σν − 2. (iii) ν
has two children µ1 and µ2 such that µ1 and µ2 both admit spirality 2; by inductively using
Property (a), either one of them also admits spirality 0 or they both admit spirality 1. In
any case, ν admits spirality σν − 2.

Proof of Property (c). If ν admits spirality σν = 4, by Lemma 1, one of the following cases
holds: (i) ν has a child µ that admits spirality 4; if so, by inductively using Property (c),
ν admits spirality 0. (ii) ν has a child µ that admits spirality σµ > 4; if so, by inductively
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Figure 7: Examples of non-negative spirality sets for each of the six structures in Theorem 3: (a)
[0]; (b) [1]; (c) [1, 2]1; (d) [0, 2]1; (e) [1, 3]2; (f) [0, 2]2.

applying Property (b) twice, µ admits spirality σµ−4, and hence ν admits spirality 0. (iii) ν
has two children µ1 and µ2, each admitting spirality either 1 or 3; note that if µi (i ∈ {1, 2})
admits spirality 1, it also admits spirality -1 and if µi admits spirality 3, it also admits
spirality 1 by inductively using Property (b); this implies that ν admits spirality σν − 4.

� ν is a P-node with three children. Let Hν,ρ be a rectilinear representation of Gν,ρ with spirality
σν . Let µl, µc, and µr be the children of ν such that Gµl,ρ, Gµc,ρ, and Gµr,ρ appear in this
left-to-right order in Hν,ρ. By Lemma 2 we have σµl

= σν + 2, σµc = σν , and σµr = σν − 2.

Proof of Property (a). If σν = 2, we have σµl
= 4, σµc

= 2, and σµr
= 0; see Fig. 8(a). By

inductively applying Property (b), µl admits spirality 2. Also µc admits spirality −2. Hence,
exchanging Gµc,ρ with Gµr,ρ in the left-to-right order, by Lemma 2 we have that ν admits
spirality 0; see Fig. 8(b).

Proof of Property (b). If σν > 2, we distinguish three cases: (i) σν = 3, which implies σµl
= 5,
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Figure 8: Illustration of Lemma 10 for a P-node with three children.

σµc
= 3, and σµr

= 1. By inductively applying Property (b), µl and µc admit spirality 3
and 1, respectively. Also, µr admits spirality -1. By Lemma 2, ν admits spirality σν − 2. (ii)
σν = 4, which implies σµl

= 6, σµc = 4, and σµr = 2. By inductively applying Property (b),
µl admits spirality 4; also, by inductively applying Property (c), µc admits spirality 0. Hence,
exchanging Gµc,ρ with Gµr,ρ in the left-to-right order, by Lemma 2 we have that ν admits
spirality σν − 2 = 2. (iii) σν > 4, which implies σµl

> 2, σµc
> 2, and σµr

> 2. By
inductively applying Property (b), µl, µc, and µr admit spirality σµl

−2, σµc
−2, and σµr

−2,
respectively. Hence ν admits spirality σν − 2.

Proof of Property (c). If σν = 4, we have σµl
= 6, σµc

= 4, and σµr
= 2. By inductively

applying Property (b) twice, we have that µl admits spirality 2. By inductively applying
Property (c), we have that µc admits spirality 0. Finally, µr admits spirality -2. Hence, by
Lemma 2, ν admits spirality σν − 4 = 0.

� ν is a P-node with two children. Let Hν,ρ be a rectilinear representation of Gν,ρ with spirality
σν . Let Gµl,ρ and Gµr,ρ be the left child and the right child of Gν,ρ in Hν,ρ, respectively. By
Lemma 3, we have σν = σµl

−αl
u −αl

v = σµr +αr
u +αr

v. Lemma 3 implies σµl
− σµr ∈ [2, 4].

Without loss of generality, we assume that αl
v ≥ αl

u.

Proof of Property (a). If σν = 2, we analyze separately the cases when σµl
− σµr

equals 2, 3
or 4 (see Lemma 3).

Case σµl
− σµr

= 2. There are three subcases: (i) σµl
= 2, σµr

= 0, and αl
u = αl

v = 0;
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Figure 9: Illustration for the proof of Property (a) of Lemma 10 for a P-component with two
children for the case σµl

− σµr
= 2.

see Fig. 9(a). For αl
u = αl

v = 1 and αr
u = αr

v = 0, by Lemma 3, Gν,ρ admits spirality
σν − 2 = 0; see Fig. 9(b). (ii) σµl

= 3, σµr = 1, αr
v = 0, and αl

u = 0; see Fig. 9(c). By
inductively using Property (b), Gµl,ρ admits spirality 1. Also, Gµr,ρ admit spirality σµr = −1.
For αl

u = αr
v = 0 (which implies αr

u = αl
v = 1), by Lemma 3, Gν,ρ admits spirality 0;

see Fig. 9(d). (iii) σµl
= 4, σµr

= 2, and αr
u = αr

v = 1; see Fig. 9(e). By inductively using
Property (c), Gµl,ρ admits spirality 0. Hence, exchanging Gµl,ρ and Gµr,ρ in the left-to-right
order, and for αr

u = αr
v = 0, by Lemma 3, Gν,ρ admits spirality 0; see Fig. 9(f).

Case σµl
− σµr

= 3. In this case, for one of the two poles {u, v} of ν, say v, we have
αl
v = αr

v = 1. There are two subcases: (iv) σµl
= 3 and σµr = 0; see Fig. 10(a). In this case

αr
u = 1. For αr

u = 0, by Lemma 3, Gν,ρ admits spirality 1; see Fig. 10(b). (v) σµl
= 4 and

σµr
= 1; see Fig. 10(c). By inductively using Property (b), Gµl,ρ admits spirality 2. Also,

Gµr,ρ admits spirality -1. For αr
u = 0, by Lemma 3, Gν,ρ admits spirality 0; see Fig. 10(d).

Case σµl
− σµr

= 4; see Fig. 10(e). We have σµl
= 4 and σµr

= 0. By inductively using
Property (b), Gµl,ρ admits spirality 2. For αl

u = αl
v = 0, by Lemma 3, Gν,ρ admits spirality 0;

see Fig. 10(f).

Proof of Property (b). If σν > 2, we have three cases: σν = 3; σν = 4; σν > 4.

– If σν = 3, we perform a subcase analysis based on the value of σµl
− σµr

.

Case σµl
− σµr = 2. There are three subcases: (i) If σµl

= 3 and σµr = 1, we have
αr
u = αr

v = 0. For αr
u = αr

v = 1 and αl
u = αl

v = 0, by Lemma 3, Gν,ρ admits
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Figure 10: Illustration for the proof of Property (a) of Lemma 10 for a P-component with two
children for the cases σµl

− σµr
= 3 and σµl

− σµr
= 4.

spirality σν − 2 = 1. (ii) If σµl
= 4 and σµr

= 2, by inductively using Property (c),
Gµl,ρ admits spirality 0. Exchanging Gµl,ρ and Gµr,ρ in the left-to-right order and for
αl
u = αr

v = 0, by Lemma 3, Gν,ρ admits spirality σν−2 = 1. (iii) If σµl
= 5 and σµr = 3,

by inductively using Property (b), Gµl,ρ and Gµr,ρ admit spirality values σµl
− 2 and

σµr
− 2, respectively. Hence Gν,ρ admits spirality σν − 2 = 1.

Case σµl
− σµr

= 3. As in proof for Property (a), assume, without loss of generality,
that αl

v = αr
v = 1. The following subcases hold: (iv) If σµl

= 4 and σµr = 1, by
inductively using Property (b), Gµl,ρ admits spirality 2. Also, Gµr admits spirality -1.
For αl

u = 0, by Lemma 3, Gν,ρ admits spirality σν − 2 = 1. (v) If σµl
= 5 and σµr

= 2,
by inductively using Property (a), Gµr

admits spirality either 1 or 0. Suppose first that
Gµr

admits spirality 1. By inductively using Property (b), Gµl,ρ admits spirality 3. For
αr
v = αr

u = 0, by Lemma 3, Gν,ρ admits spirality σν − 2 = 1. Suppose now that Gµr,ρ

admits spirality 0. As before, Gµl,ρ admits spirality 3. For αr
u = 0, we have again that

Gν,ρ admits spirality σν − 2 = 1; see Fig. 10(b).

Case σµl
− σµr

= 4. We have σµl
= 5 and σµr

= 1. By inductively using Property (b),
Gµl,ρ admits spirality 3, and then for αr

v = 0 and αr
u = 0, we have that Gν,ρ admits

spirality σν − 2 = 1.

– If σν = 4, as before, the subcase analysis is based on the value of σµl
− σµr .



702 W. Didimo, M. Kaufmann, G. Liotta, G. Ortali Rectilinear Planarity of Partial 2-Trees

Case σµl
−σµr

= 2. (vi) If σµl
= 4 and σµr

= 2, we have αl
u = αl

v = 0. For αl
u = αl

v = 1
and αr

u = αr
v = 0, by Lemma 3, Gν,ρ admits spirality σν − 2 = 2. (vii) If σµl

= 5 and
σµr

= 3 or σµl
= 6 and σµr

= 4, by inductively using Property (b), Gµl,ρ and Gµr,ρ

admit spirality values σµl
− 2 and σµr − 2, respectively. Hence, Gν,ρ admits spirality

σν − 2 = 2.

Case σµl
− σµr

= 3. (viii) If σµl
= 5 and σµr

= 2, by inductively using Property (b),
Gµl

admits spirality 3. Also, by inductively using Property (a), Gµr admits spirality
either 0 or 1. In the first case, for αl

u = 0, we have that Gν,ρ admits spirality σν −2 = 2;
see Fig. 10(a) the property holds for αr

u = 0; see Fig. 10(c).

(ix) If σµl
= 6 and σµr = 3, by inductively using Property (b), Gµl,ρ and Gµr,ρ admit

spirality values σµl
−2 and σµr

−2, respectively. Hence, Gν,ρ admits spirality σν−2 = 2.

Case σµl
− σµr

= 4. We have σµl
= 6 and σµr

= 2. By Property (b), Gµl
admits

spirality 4, and by for αl
u = αl

v = 1, Gν,ρ admits spirality σν − 2 = 2; see Fig. 9(e).

– If σν > 4, we always have σµr
> 2 (and σµl

> 2). By inductively using Property (b),
Gµl,ρ and Gµr,ρ admit spirality values σµl

− 2 and σµr
− 2, respectively. Hence, Gν,ρ

admits spirality σν − 2 = 2.

Proof of Property (c). If σν = 4, we still perform a case analysis based on σµl
− σµr

.

Case σµl
− σµr

= 2. There are three subcases. (i) Suppose σµl
= 4 and σµr

= 2. By
inductively using Property (c), Gµl

admits spirality 0. Exchanging Gµl,ρ and Gµr,ρ, and for
αl
u = αl

v = 0, we have that Gν,ρ admits spirality 0. (ii) Suppose σµl
= 5 and σµr = 3.

By inductively using Property (b) (applied twice), Gµl,ρ and Gµr,ρ admit spirality 1; hence,
Gµr

also admits -1. For αr
v = αl

u = 0, we have that Gν,ρ admits spirality 0; see Fig. 9(d).
(iii) Suppose σµl

= 6 and σµr
= 4. By inductively using Property (b) (applied twice), Gµl,ρ

admits spirality 2, and hence, by inductively using Property (c), it also admits spirality 0.
For αl

u = αl
v = 0, Gν,ρ admits spirality 0; see Fig. 9(b).

Case σµl
− σµr = 3. We have the following subcases. (iv) Suppose σµl

= 5 and σµr = 2. By
inductively using Property (b) (applied twice), Gµl,ρ admits spirality 1. Also, Gµl,ρ admits
spirality -2. For αl

v = 0, Gν,ρ admits spirality 0. (v) Suppose σµl
= 6 and σµr

= 3. By
inductively using Property (b) (applied twice), Gµl,ρ admits spirality 2 and Gµr,ρ admits
spirality 1, and hence also spirality -1. For αl

u = 0, we have that Gν,ρ admits spirality 0.

Case σµl
− σµr

= 4. We have σµl
= 6 and σµr

= 4. By inductively using Property (b)
(applied twice), Gµl,ρ admits spirality 2, and by inductively using Property (c), Gµr,ρ admits
spirality 0. For αl

u = αl
v = 0, Gν,ρ admits spirality 0; see Fig. 9(b).

This concludes the analysis for the different types of nodes in the SPQ∗-tree of G. □

Lemma 10 immediately implies the following.

Corollary 1 If Gν,ρ admits spirality σν > 2, then Gν,ρ admits spirality for every value in [1, σν ]
2

when σν is odd, or for every value in [0, σν ]
2 when σν is even.

The next lemma states an interesting property that is used to prove Lemma 12.
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Lemma 11 Let ν be a P-node with two children and suppose that Gν,ρ admits spirality σν ≥ 0.
There exists a rectilinear representation of Gν,ρ with spirality σν such that the difference of spirality
between the left child component and the right child component of Gν,ρ is either 2 or 3.

Proof: Let Hν,ρ be any rectilinear representation of Gν,ρ with spirality σν . Also, let σµl
and

σµr
be the spiralities of the left child component Hµl,ρ and of the right child component Hµr,ρ

of Hν,ρ, respectively. Let Gµl,ρ and Gµr,ρ be the underlying graphs of Hµl,ρ and Hµr,ρ. By
Lemma 3, we have 2 ≤ σµl

− σµr
≤ 4. We show that if σµl

− σµr
= 4, one can construct a

representation H ′
ν,ρ of Gν,ρ with spirality σ′

ν = σν such σ′
µl

− σ′
µr

∈ [2, 3]. Since σµl
− σµr

= 4, we

have αl
u = αl

v = αr
u = αr

v = 1, where u and v are the poles of ν. We distinguish between two cases:

� Case σν = 0. We have σµl
= 2 and σµr

= −2; see Fig. 11(a). By Property (a) of Lemma 10,
both Gµl,ρ and Gµr,ρ admit spirality 0 or 1. Assume first that Gµl,ρ admits spirality 1.
We can construct H ′

ν,ρ by merging in parallel two representations H ′
µl,ρ

of Gµl,ρ and H ′
µr,ρ

of Gµr,ρ (in the same left-to-right order they have in Hν,ρ) in such a way that: H ′
µl,ρ

has

spirality σ′
µl

= 1, σ′
µr

= σµr
= −2, α′l

u = 0, and α′l
v = α′r

u = α′r
v = 1; see Fig. 11(b).

Assume now that Gµl,ρ does not admit spirality 1 but admits spirality 0. We can construct
H ′

ν,ρ by merging in parallel two representations H ′
µl,ρ

of Gµl,ρ and H ′
µr,ρ of Gµr,ρ (in the

same left-to-right order they have in Hν,ρ) in such a way that: H ′
µl,ρ

has spirality σ′
µl

= 0,

σ′
µr

= σµr
= −2, α′l

u = α′l
v = 0, and α′r

u = α′r
v = 1; see Fig. 11(c). In both cases H ′

ν,ρ has
spirality σ′

ν = σν and σ′
µl

− σ′
µr

∈ [2, 3].

� Case σν > 0. We have σµl
≥ 3 (because σν = σµl

−αl
u−αl

v by Lemma 3, and αl
u+αl

v = 2 by
hypothesis); see Fig. 11(d), where σν = 2. Hence, by Property (b) of Lemma 10, Gµl,ρ admits
spirality σ′

µl
= σµl

− 2. We can construct H ′
ν,ρ by merging in parallel two representations

H ′
µl,ρ

of Gµl,ρ and H ′
µr,ρ of Gµr,ρ (in the same left-to-right order they have in Hν,ρ) in such

a way that: H ′
µl,ρ

has spirality σ′
µl

= σµl
− 2, σ′

µr
= σµr , α

′l
u = α′l

v = 0, and α′r
u = α′r

v = 1.
This way, Hν,ρ has spirality σ′

ν = σν and σ′
µl

− σ′
µr

= 2; see Fig. 11(e), where σν = 2.

This concludes the analysis for different values of σν . □

Lemma 12 Let Σ+
ν,ρ be a non-trivial interval with maximum value M > 2. If Σ+

ν,ρ contains an
integer with parity different from that of M , then Σ+

ν,ρ = [0,M ]1.

Proof: Assume that M is odd (if M is even the proof is similar). By hypothesis M ≥ 3. We prove
that, if Σ+

ν contains a value σν whose parity is different from the one of M , then Σ+
ν,ρ = [0,M ]1.

The proof is by induction on the depth of the subtree Tρ(ν). If ν is a Q∗-node, then Σ+
ν,ρ = [0,M ]1

and the statement trivially holds. In the inductive case, ν is either an S-node or a P-node. By
Corollary 1, Gν,ρ admits spirality σ′

ν for every σ′
ν ∈ [1,M ]2. We analyze separately the case when

ν is an S-node, a P-node with three children, or a P-node with two children.

� ν is an S-node. We prove that for any value σ′
ν ∈ [1,M ]2, Gν,ρ also admits spirality σ′

ν − 1.
This immediately implies that Σ+

ν,ρ = [0,M ]1. We first prove the following claim:

Claim 1 There exists a child µ of ν in Tρ that is jump-1.

Proof of the claim: Let Hν,ρ be a representation of Gν,ρ with spirality σν and let H ′
ν,ρ be

a representation of Gν,ρ with spirality σ′
ν = σν +1. Note that σ′

ν ∈ [1,M ]2, thus H ′
ν,ρ exists.
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Figure 11: Illustration for the proof of Lemma 11.

By Lemma 1, since the spiralities of Hν,ρ and of H ′
ν,ρ have different parities, ν must have a

child µ such that Hµ,ρ has odd spirality in Hν,ρ and even spirality in H ′
ν,ρ, or vice versa. Let

Mµ be the maximum spirality admitted by µ. Since µ admits both an even and an odd value
of spirality, we have: If Mµ = 1, µ admits 0 and Σ+

µ,ρ = [0, 1]1; if Mµ = 2, by Property (a) of
Lemma 10 and since µ admits spirality 1, either Σ+

µ,ρ = [0, 2]1 or Σ+
µ,ρ = [1, 2]1; if Mµ > 2,

by inductive hypotesis Σ+
µ,ρ = [0,Mµ]

1. Hence, µ is always jump-1. ■

Let µ be a child of ν having a jump-1 interval, which always exists by the previous claim.
For any value σ′

ν ∈ [1,M ]2, let H ′
ν,ρ be a rectilinear representation of Gν,ρ with spirality σ′

ν .
Let σµ be the spirality of the restriction of H ′

ν,ρ to Gµ,ρ. Suppose first that σµ > −Mµ.
Since by inductive hypothesis µ admits spirality σµ − 1 then, by Lemma 1, ν admits σ′

ν − 1.
Suppose now that σµ = −Mµ. Since σ′

ν > 0, by Lemma 1, there exists a child ϕ ̸= µ of ν
such that the restriction of H ′

ν,ρ to Gϕ,ρ has spirality σϕ > 0. Observe that ϕ also admits
either spirality σϕ − 1 or spirality σϕ − 2. Indeed, if σϕ > 2, then ϕ admits spirality σϕ − 2
by Property (b) of Lemma 10; if σϕ = 2 it also admits spirality 0 or 1 by Property (a) of
Lemma 10; if σϕ = 1 then it also admits spirality -1. In the case that ϕ admits spirality
σϕ − 1, by Lemma 1, ν admits spirality σ′

ν − 1. In the case that ϕ admits spirality σϕ − 2,
then µ admits spirality σµ +1 (because µ is jump-1 and we are assuming σµ = −Mµ < Mµ),
and hence ν admits spirality σϕ − 2 + 1 = σ′

ν − 1.

� ν is a P-node with three children. In this case every child µ of ν is jump-1. Indeed, since ν
admits an even and an odd value of spirality, by Lemma 2, the same holds for µ. As for
the case of an S-node, if Mµ is the maximum value of spirality admitted by ν, we have the
following: If Mµ = 1, Σ+

µ = [0, 1]1; if Mµ = 2, either Σ+
µ,ρ = [0, 2]1 or Σ+

µ,ρ = [1, 2]1; if
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Mµ > 2, by inductive hypotesis Σ+
µ,ρ = [0,Mµ]

1. Hence, µ is jump-1.

Assume first thatM > 3. LetHν,ρ be a representation ofGν,ρ with spiralityM . By Lemma 2,
every child µ of ν, is such that the restriction of Hν,ρ to Gµ,ρ has spirality σµ ≥ 2. Since µ
is jump-1, then µ also admits spirality σµ − 1. This implies that, ν admits a representation
with spirality M − 1. Since M − 1 > 2, by Corollary 1, ν admits all values of spirality in the
set [0,M − 1]2, and hence Σ+

ν,ρ = [0,M − 1]2 ∪ [1,M ]2 = [0,M ]1.

Assume now that M = 3. Let Hν,ρ be a representation of Gν,ρ with spirality M . The
restrictions of Hν,ρ to the three child components Gµl,ρ, Gµc,ρ, and Gµr,ρ of Gν,ρ, have
spiraly values 5, 3, and 1, respectively. Since µl is jump-1, by the inductive hypothesis it
admits spirality for all values in the set [0, 5]1. Similarly, since µc is jump-1, by the inductive
hypothesis it admits spirality for all values in the set [0, 3]1. Also, since µr is jump-1, it
admits spirality 0 or 2. If µr admits spirality 0, then ν admits spirality M − 1 = 2 for a
representation in which Gµl,ρ, Gµc,ρ, and Gµr,ρ appear in this left-to-right order (and have
spirality values 4, 2, and 0, respectively). If µr admits spirality 2 but not spirality 0, then
ν admits spirality M − 1 = 2 for a representation in which Gµl,ρ, Gµr,ρ, and Gµc,ρ appear
in this order (and again have spirality values 4, 2, and 0, respectively). Hence, so far we
have proved that ν admits spirality for all values in the set [1, 3]1. Finally, as showed in the
proof of Property (a) of Lemma 10 for a P-node with three children, the fact that ν admits
spirality 2 implies that it also admits spirality 0 (see Figs. 8(a) and 8(d)).

� ν is a P-node with two children. Let Hν,ρ be a rectilinear representation of Gν,ρ with spirality
M . Let σµl

and σµr
be the spirality values of the restrictions of Hν,ρ to the left and right

child components Gµl,ρ and Gµr,ρ of Gν,ρ, respectively. Also, let {u, v} be the poles of ν. By
Lemma 11, we can assume σµl

− σµr ∈ [2, 3], which implies that there exists w ∈ {u, v} such
that αl

w = 0, as Hν,ρ has the maximum value of spirality admitted by ν. By Lemma 3, for
αl
w = 1 and αr

w = 0 we can obtain a rectilinear representation of Gν,ρ with spirality M − 1.
If M > 3 then M − 1 > 2 and, by Corollary 1, ν admits spirality for all values in the set
[0,M − 1]2, and hence Σ+

µ,ρ = [0,M − 1]2 ∪ [1,M ]2 = [0,M ]1. If M = 3, by Property (a) of
Lemma 10, we have either [0, 3]1 ∈ Σ+

µ,ρ or [1, 3]1 ∈ Σ+
µ,ρ. In the former case, Σ+

µ = [0,M ]1.
In the latter case, using a case analysis similar to the proof of Property (a) of Lemma 10
for the P-nodes with two children, it can be proved that 0 is also admitted by ν, and again
Σ+

µ = [0,M ]1.

This concludes the analysis for different types of nodes in the SPQ∗-tree of G. □

We are now ready to prove the main result of this subsection.

Proof of Theorem 3. Let M be the maximum value in Σ+
ν,ρ. If M = 0 then Σ+

ν,ρ = [0]. If
M = 1 then either Σ+

ν,ρ = [1] or Σ+
ν,ρ = [0, 1]1 = [0,M ]1. Suppose M = 2; by Property (a) of

Lemma 10, Gν,ρ admits spirality 0, or 1, or both, i.e., Σ+
ν,ρ = [0, 2]2 = [0,M ]2, or Σ+

ν,ρ = [1, 2]1, or
Σ+

ν,ρ = [0, 2]1 = [0,M ]1. Finally, suppose that M > 2. If Gν,ρ admits a value of spirality whose
parity is different from M , by Lemma 12 Σ+

ν,ρ = [0,M ]1; else, by Corollary 1, either Σ+
ν,ρ = [1,M ]2

(if M is odd) or Σ+
ν,ρ = [0,M ]2 (if M is even).

4.3 Rectilinear Planarity Testing

Let G be an independent-parallel SP-graph that is not a simple cycle, T be its SPQ∗-tree, and
{ρ1, . . . , ρh} be the Q∗-nodes of T . The rectilinear planarity testing for G follows a strategy similar
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to the one described in Section 3 for testing general SP-graphs. For each possible choice of the
root ρ ∈ {ρ1, . . . , ρh}, the algorithm visits Tρ bottom-up in post-order and computes, for each
visited node ν, the non-negative spirality set Σ+

ν,ρ, based on the sets of the children of ν. Σ+
ν,ρ

is representative of all “shapes” that Gν,ρ can take in a rectilinear representation of G with the
reference chain on the external face. The key lemmas used to show that we can efficiently execute
this procedure over all SPQ∗-tree Tρ of G are Lemmas 13, 15, 16, 17, and 18. From now on, we
say that a node ν in Tρ is trivial, or jump-1, or jump-2, if Σ+

ν,ρ is a trivial interval, or a jump-1
interval, or a jump-2 interval, respectively.

Q∗-nodes. Each chain of length ℓ can turn at most ℓ − 1 times (one turn for each vertex).
Therefore, for a Q∗-node ν of Tρ, we have Σ+

ν,ρ = [0, ℓ − 1]1, and the following lemma holds,
assuming that each Q∗-node is equipped with the length of its corresponding chain when we
compute the SPQ∗-tree T of G.

Lemma 13 Let G be an independent-parallel SP-graph, Tρ be a rooted SPQ∗-tree of G, and ν be
a Q∗-node of Tρ. The set Σ+

ν,ρ can be computed in O(1) time.

S-nodes. Lemma 15 establishes the complexity of computing the spirality sets of the S-nodes.
To prove it, we first state the following key property.

Lemma 14 Let ν be an S-node of Tρ. Node ν is jump-1 if and only if at least one of its children
is jump-1. Also, Σ+

ν,ρ = [1, 2]1 if and only if ν has exactly one child with non-negative rectilinear
spirality set [1, 2]1 and all the other children with non-negative rectilinear spirality set [0].

Proof: We prove that ν is jump-1 if and only if at least one of its children is jump-1. Suppose
first that ν is jump-1 and suppose by contradiction that all its children are trivial or jump-2. This
implies that for each child µ of ν, Σ+

µ,ρ contains only even values or only odd values. Denote by j
the number of children of ν whose non-negative rectilinear spirality set contain only odd values. By
Lemma 1, the spirality of any rectilinear representation of Gν,ρ is the sum of the spirality values of
all child components. It follows that Gν,ρ admits only even values of spirality values if j is even and
only odd values of spirality values if j is odd, which contradicts the hypothesis that ν is jump-1.
Suppose vice versa that ν has at least a child µ that is jump-1. Denote by M the maximum value
in Σ+

ν,ρ and by Mµ the maximum value in Σ+
µ,ρ. Let Hν,ρ be any rectilinear representation of Gν,ρ

having spirality M , and let Hµ,ρ be its restriction to Gµ,ρ. By Lemma 1, Hµ,ρ has spirality Mµ.
Also, since µ is jump-1, by Lemma 1 we can obtain a rectilinear representation H ′

ν,ρ of Gν,ρ with
spirality M − 1 by simply replacing Hµ,ρ in Hν,ρ with a rectilinear representation of Gµ,ρ having
spirality Mµ − 1. Therefore, by Theorem 3, ν is jump-1.

We now show the second part of the lemma. Suppose first that ν has exactly one child µ with
non-negative rectilinear spirality set [1, 2]1 and all the other children with non-negative rectilinear
spirality set [0]. Clearly, by Lemma 1, Σ+

ν,ρ = Σ+
µ,ρ, i.e., Σ

+
ν,ρ = [1, 2]1. Suppose vice versa that

Σ+
ν,ρ = [1, 2]1. By Lemma 1, the sum of the spiralities admitted by the child components of ν

cannot be larger than two. If exactly one child of ν has non-negative rectilinear spirality set [1, 2]1

and all the other children have non-negative rectilinear spirality set [0], we are done. Otherwise,
one of the following two cases must be considered: (i) There are two children µ and µ′ of ν such
that the maximum value of spirality admitted by Gµ,ρ and Gµ′,ρ is 1 and any other child ν has
non-negative rectilinear spirality set [0]; this case is ruled out by observing that Gµ,ρ (and Gµ′,ρ)
would also admit spirality −1 and thus, by Lemma 1, Gν,ρ would also admit spirality 0. (ii) ν has
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a child µ for which either Σ+
µ,ρ = [0, 2]1 or Σ+

µ,ρ = [0, 2]2 and any other child of ν has non-negative
rectilinear spirality set [0]; again, this case is ruled out because it would imply that also Gν,ρ admits
spirality 0. □

Lemma 15 Let G be an independent-parallel SP-graph, T be the SPQ∗-tree of G, ν be an S-node
of T with δν children, and ρ1, ρ2, . . . , ρh be a sequence of Q∗-nodes of T such that, for each child
µ of ν in Tρi

, the set Σ+
µ,ρi

is given. Σ+
ν,ρi

can be computed in O(δν) time for i = 1 and in O(1)
time for 2 ≤ i ≤ h.

Proof: For any i = 1, . . . , h, let xν,ρi
and yν,ρi

be the number of children of ν in Tρi
with non-

negative spirality set [0] and [1, 2]1, respectively. Also, let zν,ρi be the number of children that
are jump-1 (clearly, zν,ρi ≥ yν,ρi). Let Mν,ρi be the maximum value in Σ+

ν,ρi
. First, we show

how to compute Σ+
ν,ρi

in O(1) time given xν,ρi
, yν,ρi

, zν,ρi
, and Mν,ρi

. By Lemma 14, Σ+
ν,ρi

is
jump-1 if and only if zν,ρi

> 0. Suppose that Σ+
ν,ρi

is jump-1. If Mν,ρi
̸= 2, by Theorem 3,

Σ+
ν,ρi

= [0,Mν,ρi
]1. If Mν,ρi

= 2, Lemma 14 implies Σ+
ν,ρi

= [1, 2]1 if xν,ρi
+ yν,ρi

= δν and
yν,ρi = 1; otherwise Σ+

ν,ρi
= [0, 2]1. Suppose now that Σ+

ν,ρi
is not jump-1. By Theorem 3, we have:

Σ+
ν,ρi

= [0] if Mν,ρi = 0 and Σ+
ν,ρi

= [1] if Mν,ρi = 1; Σ+
ν,ρi

= [1,Mν,ρi ]
2 if Mν,ρi > 1 and Mν,ρi is

odd; Σ+
ν,ρi

= [0,Mν,ρi
]2 if Mν,ρi

> 1 and Mν,ρi
is even.

We now show how to compute xν,ρi
, yν,ρi

, zν,ρi
, and Mν,ρi

for i = 1, . . . , h. If i = 1, given
Σ+

µ,ρ1
for every child µ of ν in Tρ1

, then xν,ρ1
, yν,ρ1

, and zν,ρ1
are computed in O(δν) time by just

visiting each child of ν. Also, since by Lemma 1 the maximum spirality admitted by Gν,ρ is the
sum of the maximum spirality values admitted by the children of ν in Tρ1 , we also compute Mν,ρ1

and Σ+
ν,ρ1

in O(δν) time. We store at ν the values xν,ρ1 , yν,ρ1 , zν,ρ1 , and Mν,ρ1 .
Let i ∈ {2, . . . , h}. Let µ1 be the parent of ν in Tρ1 and let µi be the parent of ν in Tρi . Note

that, µ1 is a child of ν in Tρi
and µi is a child of ν in Tρ1

. Any other child of ν in Tρ1
is also a child

of ν in Tρi
and vice versa. To compute Σ+

ν,ρi
in O(1) time, we compute xν,ρi

, yν,ρi
, zν,ρi

, Mν,ρi

as follows:

(i) Let gµi
= 1 if Σ+

µi,ρ1
= [0] and gµi

= 0 otherwise. Also, let gµ1
= 1 if Σµ1,ρi

= [0] and gµ1
= 0

otherwise. We have xν,ρi
= xν,ρ1

− gµi
+ gµ1

.

(ii) Let g′µi
= 1 if Σ+

µi,ρ1
= [1, 2]1 and g′µi

= 0 otherwise. Also, let g′µ1
= 1 if Σµ1,ρi = [1, 2]1 and

gµ1
= 0 otherwise. We have yν,ρi

= yν,ρ1
− g′µi

+ g′µ1
.

(iii) Let g′′µi
= 1 if Σµi,ρ1 is jump-1 and g′′µi

= 0 otherwise. Also, let g′′µ1
= 1 if Σ+

µ1,ρi
is jump-1

and g′′µ1
= 0 otherwise. We have zν,ρi = zν,ρ1 − g′′µi

+ g′′µ1
.

(iv) Mν,ρi
= Mν,ρ1

−Mµi,ρ1
+Mµ1,ρi

. □

P-nodes. For a P-node ν, Σ+
ν,ρ can be computed in O(1) time, independent of ρ. We treat

separately the case of a P-node with three children (Lemma 16) and the case of a P-node with two
children (Lemma 17).

Lemma 16 Let G be an independent-parallel SP-graph, Tρ be a rooted SPQ∗-tree of G, and ν be
a P-node of Tρ with three children. If for each child µ of ν in Tρ the set Σ+

µ,ρ is given then Σ+
ν,ρ

can be computed in O(1) time.

Proof: Observe that, by Lemma 2, for any given integer value σν ≥ 0, one can test in O(1) time
whether Gν,ρ admits spirality σν . It suffices to test if there exists a child of ν that admits spirality
σν , another child that admits spirality σν +2, and the remaining child that admits spirality σν −2.
Testing this condition requires a constant number of checks.
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By Theorem 3, Gν,ρ is rectilinear planar if and only if it admits spirality either 0 or 1. Based
on the previous observation, we can check this property in O(1) time; if it does not hold, then
Σ+

ν,ρ = ∅. Otherwise, we determine the maximum value M in Σ+
ν,ρ. By Theorem 3, it suffices to

find a value σν such that ν admits spirality σν but not spirality values σν +1 and σν +2; if we find
such a value, then M = σν . Using this observation, we prove that we can find M in O(1) time.

For each i = 0, ..., 4, we can first check in O(1) time whether M = i. If this is not the case, then
M > 4. To find M in this case, we first give an interesting property. Consider the maximum values
in the non-negative rectilinear spirality sets of the children of ν. Denote by µmax (resp. µmin) any
child of ν whose maximum value is not smaller than (resp. larger than) any other maximum values.
Also denote by µmid the remaining child. We prove the following claim.

Claim 2 Let M be the maximum value in Σ+
ν,ρ. If M > 4 then Gν,ρ admits spirality M for an

embedding where Gµmax,ρ, Gµmid,ρ, and Gµmin,ρ appear in this left-to-right order.

Proof of the claim: Let Hν,ρ be a rectilinear representation of Gν,ρ with spirality M > 4. If
Gµmax,ρ, Gµmid,ρ, and Gµmin,ρ appear in this order in Hν,ρ we are done. Hence, suppose this is not
the case; we prove that there exists another rectilinear representation H ′

ν,ρ of Gν,ρ with spirality
M and such that Gµmax,ρ, Gµmid,ρ, and Gµmin,ρ appear in this left-to-right order in the planar
embedding of H ′

ν,ρ.
Let µl, µc, and µr be the children of ν that correspond to the left, the central, and the right

component of Hν,ρ, respectively. Denote by σµd
the spirality of the restriction of Hν,ρ to Gµd,ρ,

with d ∈ {l, c, r}. By Lemma 2, it suffices to show that Gµmax,ρ, Gµmid,ρ, and Gµmin,ρ admit spirality
values σµl

, σµc
, and σµr

, respectively. Observe that, since M > 4, by Lemma 2 we have σµd
> 0.

Let d, d′ ∈ {l, c, r} with d ̸= d′ and let Mµd
be the maximum value of spirality in Σ+

µd,ρ
. The

following property holds.

Property 2 If σµd′ ≤ Mµd
then Gµd,ρ admits spirality σµd′ .

Indeed, since M > 4, by Lemma 2 we have Mµd
≥ 3: If µd is jump-1, Gµd,ρ admits spirality σµd′

by Theorem 3; if µd is not jump-1, M , Mµd
, and σµd′ have the same parity by Lemma 2, and Gµd,ρ

admits spirality σµd′ by Theorem 3.
We now show separately that: (a) Gµmax,ρ admits spirality σµl

, (b) Gµmid,ρ admits spirality
σµc

, and (c) Gµmin,ρ admits spirality σµr
.

Proof of (a): Since by definition Mµmax
≥ Mµl

≥ σµl
, by Property 2 we have that Gµmax,ρ admits

spirality σµl
.

Proof of (b): If µmid = µc we are done. Else, suppose that µmid = µl. Since σµl
≥ σµc , we

have Mmid = Ml ≥ σµl
> σµc and, consequently, by Property 2 Gµmid,ρ admits spirality σµc .

Finally, suppose that µmid = µr. If µmin = µc then Mµmid
≥ Mµmin

≥ σµc
; if µmin = µl then

Mµmid
≥ Mµmin

≥ σµl
> σµc

. Hence, by by Property 2, Gµmid,ρ admits spirality σµc
.

Proof of (c): Since σµr < σµc < σµl
, for any µ ∈ {µmin, µmid, µmax}, σµr ≤ Mµ. Hence, by the

claim, Gµmin,ρ admits spirality σµr
. ■

By Claim 2, to compute M when M > 4, we can restrict to consider only rectilinear rep-
resentations of Gν,ρ where Gµmax,ρ, Gµmid,ρ, and Gµmin,ρ occur in this left-to-right order. Let
M = min{Mµmax

− 2,Mµmid
,Mµmin

+ 2}. By Lemma 2, we have M ≤ M . We test in O(1) time
whether ν is jump-1; by Theorem 3, it is sufficient to check whether Gν,ρ either admits both
spirality values 0 and 1 or both spirality values 1 and 2. If ν is jump-1, by Lemma 2, all the
children of ν are jump-1. Hence, µmax, µmid, and µmin admit spiralities M − 2, M , and M + 2,



JGAA, 27(8) 679–719 (2023) 709

respectively, which implies that M = M . Suppose vice versa that ν is not jump-1. In this case,
we check in O(1) if Gν,ρ admits spirality M . If so, M = M . Otherwise, M and M have op-
posite parity, which implies that M and M − 1 have the same parity, and M ≤ M − 1. Since
M −1 = min{Mµmax −2,Mµmid

,Mµmin +2}−1, we have that µmax, µmid, and µmin admit spirality
values (M − 2)− 1, M − 1, and (M + 2)− 1, respectively, i.e., M = M − 1.

Based on M , we finally determine the structure of Σ+
ν,ρ in O(1) time. Namely, we check in O(1)

time if ν is jump-1; thanks to Theorem 3 it suffices to check whether Gν,ρ admits spirality values
0 and 1 or spirality values 1 and 2. Suppose that ν is jump-1; if it contains 0, then Σ+

ν,ρ = [0,M ]1;
else Σ+

ν,ρ = [1, 2]1. Suppose vice versa that ν is not jump-1. If M ≤ 1 then Σ+
ν,ρ = [M ]. Otherwise,

if M is odd Σ+
ν,ρ = [1,M ]2 and if M is even Σ+

ν,ρ = [0,M ]2. □

Lemma 17 Let G be an independent-parallel SP-graph, Tρ be a rooted SPQ∗-tree of G, and ν be
a P-node of Tρ with two children. If for each child µ of ν in Tρi , the set Σ+

µ,ρi
is given, then Σ+

ν,ρ

can be computed in O(1) time.

Proof: We follow the same proof strategy as for Lemma 16. By Lemma 3, for any given integer
σν , one can test in O(1) time whether Gν,ρ admits spirality σν . Indeed, it suffices to test whether
there are four binary numbers αl

u, α
l
v, α

r
u, and αr

v such that 1 ≤ αl
u + αr

u ≤ 2, 1 ≤ αl
v + αr

v ≤ 2,
and for which one child of ν admits spirality σν +αl

u+αl
v and the other child of ν admits spirality

σν − αr
u + αr

v. Testing this condition requires a constant number of checks.
By Theorem 3, Gν,ρ is rectilinear planar if and only if it admits spirality either 0 or 1. Based

on the reasoning above, we can check this property in O(1) time; if it does not hold, then Σ+
ν,ρ = ∅.

Otherwise, we determine the maximum value M in Σ+
ν,ρ. By Theorem 3, it suffices to find a value

σν such that ν admits spirality σν but it does not admit spirality σν +1 and σν +2; if we find such
a value, then M = σν . We prove how to find M in O(1) time.

For each i = 0, ..., 4, we first check in O(1) time whether M = i. If this is not the case, then
M > 4. To find M in this case, we claim a property similar to the case of a P-node with three
children. Denote by µmax a child of ν whose maximum value is not smaller than the other. Let
µmin be the remaining child.

Claim 3 Let M be the maximum value in Σ+
ν,ρ. If M > 4, there exists a rectilinear representation

of Gν,ρ with spirality M where Gµmax,ρ and Gµmin,ρ appear in this left-to-right order.

Proof of the claim: LetHν,ρ be a rectilinear representation of Gν,ρ with spiralityM . If Gµmax,ρ is
the left child in Hν,ρ, we are done. Otherwise we show that there exists a rectilinear representation
H ′

ν,ρ of Gν,ρ with spirality M such that Gµmax,ρ is the left child. Since Hν,ρ has the maximum
possible value of spirality, we have αr

u = αr
v = 1. Since µmin is the left child in Hν,ρ and M > 4,

by Lemma 3, σµmin > 2. By Property (b) of Lemma 10, there exists a rectilinear representation
H ′

µmin,ρ of Gµmin,ρ with spirality σ′
µmin,ρ = σµmin − 2. Also, by Lemma 11 we can assume that

σµmin
− σµmax

= g, with 2 ≤ g ≤ 3. We have Mµmax
≥ Mµmin

≥ σµmin
= g + σµmax

. Hence,
by Theorem 3, if σµmax

and Mµmax
have different parities, then µmax is jump-1, otherwise it is

jump-2. In both cases, µmax admits spirality σ′
µmax

= σµmax
+ 2. We have σ′

µmax
− σ′

µmin
=

σµmax + 2 − σµmax − 2 = σµmax − σµmax = g. Hence, by Lemma 3, there exists a rectilinear
representation H ′

ν,ρ that contains H ′
µmin,ρ and H ′

µmax,ρ in this left-to-right order and such that the
spirality σ′

ν of H ′
ν,ρ is σ′

ν = σ′
µmin

+ 2 = σµmin
≥ σµmax

+ 2 = M . ■

When M > 4, by Lemma 3, we have Mµmin > 2 and Mµmax > 2. By the claim above we
can restrict to consider only rectilinear representations of Gν,ρ where Gµmax,ρ and Gµmin,ρ are the
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left and right child, respectively. Also, we can restrict to consider αr
u = αr

v = 1. By Lemma 3,
M ≤ min{Mµmax

,Mµmin
+ 2}.

Suppose first that Mµmax ≥ Mµmin + 2, which implies M ≤ Mµmin + 2. We show that in
fact M = Mµmin + 2, i.e., ν admits spirality Mµmin + 2. Since Mµmax ≥ Mµmin + 2, we have
that µmax admits spirality Mµmin

+ 2 or Mµmin
+ 3; this implies that we can realize a rectilinear

representation of Gν,ρ whose restrictions to Gµmin,ρ and to Gµmax,ρ have spiralities σµmin
= Mµmin

and σµmax
∈ [Mµmin

+ 2,Mµmin
+ 3], respectively. By Lemma 3, if σµmax

= Mµmin
+ 2 then Gν,ρ

admits spirality Mµmin + 2 for αl
u = αl

v = 0. If σµmax = Mµmin + 3 then Gν,ρ admits spirality
Mµmin + 2 for αl

u = 1 and αl
v = 0.

Suppose vice versa that Mµmax
< Mµmin

+ 2, which implies M ≤ Mµmax
. In this case we show

that either M = Mµmax
or M = Mµmax

− 1. Since Mµmin
> Mµmax

− 2, we have that µmin admits
spiralityMµmax−2 orMµmax−3. If µmin admits spiralityMµmax−2, then we can realize a rectilinear
representation of Gν,ρ whose restrictions to Gµmin,ρ and to Gµmax,ρ have spiralities σµmax = Mµmax

and σµmin
= Mµmax

− 2, respectively. By Lemma 3, this representation has spirality Mµmax
, which

implies M = Mµmax
. If µmin does not admit spirality Mµmax

− 2, it admits spirality Mµmax
− 3 and

M ≤ Mµmax
− 1. In this case we realize a rectilinear representation of Gν,ρ whose restrictions to

Gµmin,ρ and to Gµmax,ρ have spiralities σµmax = Mµmax and σµmin = Mµmax − 3. By Lemma 3, this
representation has spirality Mµmax − 1, which implies that M = Mµmax − 1.

Based on M , we finally determine the structure of Σ+
µ,ρ in O(1) time. We have that Gν

admits a rectilinear representation with spirality M and M − 1. Indeed, if ν has spirality M , then
αr
u = αr

v = 1 and, by Lemma 11, at least one of αl
u and αl

v equals 0, say for example αl
u = 0. For

αl
u = 1 we get spirality M − 1. Hence, by Theorem 3, ν is jump-1: If M = 2 and Gν does not

admit a representation with spirality 0, Σ+
µ,ρ = [1, 2]1. Otherwise, Σ+

µ,ρ = [0,M ]1. □

Let ν be the root child of Tρ and suppose that Σ+
ν,ρ has been computed. We prove the following.

Lemma 18 Let G be an independent-parallel SP-graph, Tρ be a rooted SPQ∗-tree of G, and ν be
the child of ρ in Tρ. If Gν,ρ is rectilinear planar, one can test whether G is rectilinear planar in
O(1) time.

Proof: As we already observed in the proof of Lemma 9, G is rectilinear planar if and only if
there exist two values σν ∈ Σν,ρ and σρ ∈ Σρ,ρ, such that σν − σρ = 4. We show that, since G
is independent-parallel, this condition is true if and only if there exist two values σ′

ν ∈ Σ+
ν,ρ and

σ′
ρ ∈ Σ+

ρ,ρ such that σ′
ν + σ′

ρ = 4.
Suppose first that there exist two values σ′

ν ∈ Σ+
ν,ρ and σ′

ρ ∈ Σ+
ρ,ρ such that σ′

ν + σ′
ρ = 4. In

this case we know that −σ′
ρ ∈ Σρ,ρ. Hence, for σν = σ′

ν and σρ = −σ′
ρ we have σν − σρ = 4.

Suppose now that σν − σρ = 4 with σν ∈ Σν,ρ and σρ ∈ Σρ,ρ. Three cases are possible:

Case 1: σν ≥ 0 and σρ < 0. In this case σ′
ρ = −σρ ∈ Σ+

ρ,ρ and setting σ′
ν = σν , we have σ

′
ν+σ′

ρ = 4.

Case 2: σν < 0 and σρ < 0. We have −σν + σρ + 8 = 4. Also, we have σρ < −4 ⇒ −2σρ > 8
⇒ −σρ > σρ + 8. This implies that σρ + 8 ∈ Σρ,ρ. Therefore, for σ′′

ν = −σν ∈ Σ+
ν,ρ and

σ′′
ρ = σρ+8 ∈ Σρ,ρ, we have σ

′′
ν +σ′′

ρ = 4. If σ′′
ν ≤ 4 then σ′′

ρ ∈ [0, 4], and we are done. Assume vice
versa that σ′′

ν > 4. Observe that σ′′
ν and σ′′

ρ have the same parity. If they are both even numbers,
by Theorem 3, we have σ′

ν = 4 ∈ Σ+
ν,ρ, and for σ′

ρ = 0 ∈ Σ+
ρ,ρ we have σ′

ν +σ′
ρ = 4. If they are both

odd numbers, by Theorem 3, we have σ′
ν = 3 ∈ Σ+

ν,ρ, and for σ′
ρ = 1 ∈ Σ+

ρ,ρ we have σ′
ν + σ′

ρ = 4.

Case 3: σν ≥ 0 and σρ ≥ 0. In this case we have σν ≥ 4. If σν = 4 then σρ = 0 and we are
done. Assume vice versa that σν > 4 and σρ ≥ 1. Observe that σν and σρ have the same parity.
If they are both even numbers, by Theorem 3 we have σ′

ν = 4 ∈ Σ+
ν,ρ, and for σ′

ρ = 0 ∈ Σ+
ρ,ρ we
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have σ′
ν + σ′

ρ = 4. If they are both odd numbers, by Theorem 3, we have σ′
ν = 3 ∈ Σ+

ν,ρ, and for
σ′
ρ = 1 ∈ Σ+

ρ,ρ we have σ′
ν + σ′

ρ = 4.

Based on the characterization above, if ℓ is the length of the chain corresponding to ρ, for any
pair σ′

ν ∈ {0, 1, 2, 3, 4} and σ′
ρ ∈ {0, 1, 2, 3, 4} such that σ′

ν + σ′
ρ = 4 we just test whether σ′

ν ∈ Σ+
ν,ρ

and σ′
ρ ∈ {0, . . . , ℓ − 1}. This requires a constant number of checks. If the test is positive, then

there exists a rectilinear representation of G such that its restriction to ν has spirality σ′
ν and its

restriction to ρ has spirality −σ′
ρ. □

We now prove that rectilinear planarity testing of independent-parallel SP-graphs can be solved
in linear time.

Lemma 19 Let G be an n-vertex independent-parallel SP-graph. There exists an O(n)-time algo-
rithm that tests whether G is rectilinear planar and that computes a rectilinear representation of
G in the positive case.

Proof: If G is a simple cycle, the test is trivial, as G is rectilinear planar if and only if it contains
at least four vertices. Assume that G is not a simple cycle. Let T be the SPQ∗-tree of G, and let
ρ1, . . . , ρh be the Q∗-nodes of T . For each i = 1, . . . , h, the testing algorithm performs a post-order
visit of Tρi . During this visit, for every non-root node ν of Tρi the algorithm computes Σ+

ν,ρi
by

using Lemmas 13, 15, 16, and 17. If Σ+
ν,ρi

= ∅, the algorithm stops the visit, discards Tρi , and
starts visiting Tρi+1

(if i < h). If the algorithm achieves the root child ν and Σ+
ν,ρi

̸= ∅, it checks
whether G is rectilinear planar by using Lemma 18: if so, the test is positive and the algorithm
does not visit the remaining trees; otherwise it discards Tρi

and starts visiting Tρi+1
(if i < h).

We now analyze the time complexity of the testing algorithm. Suppose that one of the trees
Tρi

is considered, and let ν be a node of Tρi
. Denote by δν the number of children of ν. If the

parent of ν in Tρi
coincides with the parent of Tρj

for some j ∈ {1, . . . , i − 1}, and if Σ+
ν,ρj

was

previously computed, then the algorithm does not need to compute Σ+
ν,ρi

, because Σ+
ν,ρi

= Σ+
ν,ρj

.
Hence, for each node ν, the number of computations of its non-negative rectilinear spirality set
that must be performed over all possible trees Tρi

is δν + 1 = O(δν) (one for each different way of
choosing the parent of ν).

If ν is a Q∗-node or a P-node, by Lemmas 13, 16, and 17, computing Σ+
ν,ρi

(if not already
available) takes O(1) time. Hence, since the sum of the degrees of the nodes in the tree is O(n),
the computation of the non-negative rectilinear spirality sets of all Q∗-nodes and P-nodes takes
O(n) time, over all visits of Tρi (i = 1, . . . , h).

If ν is an S-node, by Lemma 15 the algorithm spends O(δν) time to compute the non-negative
rectilinear spirality set of ν the first time it visits a tree Tρi for which Σ+

ν,ρi
is non-empty (i.e., the

first time the pertinent graph of each child of ν is rectilinear planar), and O(1) to compute the
non-negative rectilinear spirality set of ν in the remaining trees for which this set is not already
available. Hence, also in this case, the computation of the non-negative rectilinear spirality sets of
all S-nodes takes O(n) time, over all visits of Tρi

(i = 1, . . . , h).
It follows that the testing algorithm takes O(n) time.

Construction algorithm. If the testing is positive, a rectilinear representation of G can be constructed
in linear time by the same top-down strategy described in Lemma 9. However, to achieve overall
linear-time complexity, we have to show how to efficiently assign target spirality values to the
children of an S-node for which it is known its target spirality value. Let ν be an S-node of Tρi

with children µ1, . . . , µs (j ∈ {1, . . . , s}) and suppose that σν ∈ Σν,ρi is the target value of spirality
of ν. We must find a value σµj

∈ Σµj ,ρi
for each j = 1, . . . , s such that

∑s
i=1 σµj

= σν . Let Mj
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be the maximum value of Σ+
µj ,ρi

for any j ∈ {1, . . . , s}. Without loss of generality, we assume that
σν ≥ 0. Indeed, if σν < 0 we can find spirality values for the children of ν such that their sum
equals −σν and then we can change the sign of each of them.

We initially set σµj
= Mj for each j = 1, . . . , s and we consider ∆ =

∑s
i=1 σµj

− σν . Clearly,
∆ ≥ 0. If ∆ = 0 we are done; note that, this is always the case when Σ+

ν,ρi
is a trivial interval.

Suppose ∆ > 0. If Σ+
ν,ρi

= [1, 2]1, ∆ = 1. By Lemma 14, we simply reduce by one unit the value of
spirality of the unique child whose non-negative rectilinear spirality set is [1, 2]1 (each other child
of ν has non-negative rectilinear spirality set [0]).

Suppose Σ+
ν,ρi

= [1,M ]2 or Σ+
ν,ρi

= [0,M ]2. We have that ∆ is even. By Lemma 14, each child
of ν is either jump-2 or trivial. Iterate over all j = 1, . . . , s and for each j decrease both σµj and
∆ by the value min{∆, 2Mi}, which is always even, until ∆ = 0.

Finally, suppose Σ+
ν,ρi

= [0,M ]1. By Lemma 14, ν has at least one jump-1 child. First, iterate
over all jump-1 children of ν. For any such child µj , decrease both σµj and ∆ by the value
min{∆, 2Mi} until either ∆ = 0 or all jump-1 children have been considered. Note that this
iterative step is not be applicable to a jump-1 child µj whose set is [1, 2]1 when ∆ = 2. In this
case, we apply the following strategy:

� If ν has at least one jump-2 child or a child whose set is [1], we decrement the spirality value
of this child by two units.

� If a jump-1 child µk of ν have been processed before µj , reduce by three units the spirality
of µj and increase by one unit the spirality of µk.

� Otherwise, there is at least another jump-1 µk that has not yet been processed. We reduce
by one unit both the spirality of µj and the spirality of µk.

If after the procedure above ∆ = 0, we are done. Otherwise, ∆ > 0. If ∆ is even, the desired
value of spirality for ν is obtained by decreasing the spirality of the jump-2 children or the trivial
children with non-negative spirality set [1] (if any), as done in the previous case. If ∆ is odd,
we increment by one unit the spirality of an arbitrarily chosen jump-1 child, and then we reach
the desired value of spirality for ν by decreasing the spirality of the jump-2 children or the trivial
children as before.

With the procedure above, we can process in O(1) time each child of an S-node and thus all
S-nodes are processed in O(n) time. □

The next theorem extends the result of Lemma 19 to independent-parallel partial 2-trees that
are not necessarily biconnected.

Theorem 4 Let G be an n-vertex independent-parallel partial 2-tree. There exists an O(n)-time
algorithm that tests whether G is rectilinear planar, and that computes a rectilinear representation
of G if the test is positive.

Proof: We can design a testing algorithm based on the same strategy as the one in Theorem 1.
Namely, Phase 2 of the testing algorithm in Theorem 1, which takes O(n) time, is performed in the
same way, without any change. As for Phase 1 (i.e., the pre-processing phase), we need to slightly
revise it in order to reduce the computation time from O(n2) to O(n). More precisely:

� Step 1 is performed exactly as described in Theorem 1. It takes O(n) time. We recall that this
step enhances each block Bj of G with a gadget for each cutvertex that requires a reflex-angle
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constraint or an external reflex-angle constraint. It can be seen that, for each block Bj , the
block B′

j obtained from Bj after the addition of the gadgets remains an independent-parallel
SP-graph.

� Step 2 is performed by applying on each block B′
j the testing algorithm of Lemma 19, which

takes in total O(n) time. Notice that, differently from Theorem 1, in this step each spirality
set is succinctly described in O(1) space (see Theorem 3), hence we do not explicitly store
the values of the leftmost and rightmost external angles that can be assigned to each pole of
a component for each admitted value of spirality.

� Step 3 has to be revised to lower its complexity from O(n2) to O(n). Namely, as in the proof
of Theorem 1, for each distinct configuration of the cutvertex-nodes incident to a block-node
β(Bj) of the BC-tree, we decide its corresponding Boolean local label, based on the output of
the previous step and on whether the configuration requires an external angle constraint at a
cutvertex of Bj or not. If the configuration is such that all cutvertex-nodes incident to β(Bj)
are children of β(Bj) (which models the case when β(Bj) is the root of the BC-tree), there
is no external angle constraints on the cutvertices of Bj , hence the local label is true if and
only if B′

j was rectilinear planar in Step 2. Consider vice versa a configuration such that χ(c)
is the parent of β(Bj), for a cutvertex c in Bj . If B

′
j was not rectilinear planar in Step 2, the

local label for the configuration is false. However, if B′
j was rectilinear planar in Step 2, we

must check whether it remains rectilinear planar with the additional external angle-constraint
on c. If there is an external reflex-angle-constraint or a non-right-angle constraint on c, we
use a strategy similar to the proof in Theorem 1, while we adopt a different argument for
handling an external flat-angle constraint on c. More precisely.

(i) If there is an external reflex-angle-constraint on c, similar to the proof of Theorem 1, we
just consider the output of the testing algorithm of Step 2 restricted to the SPQ∗-tree
of B′

j whose reference chain is the path of length four of the reflex-angle gadget for c.
The local label is set to true if and only if the test for this rooted tree was positive,
as it equals to say that Bj is rectilinear planar with c on the external face and with a
reflex angle on the external face. This takes O(1) time for the given configuration, and
therefore O(n) over all configurations of the cutvertex-nodes incident to Bj .

(ii) If there is an external non-right-angle constraint on c, we know that deg(c|Bj) = 2.
Similarly to Theorem 4, we restrict the output of the testing algorithm of Step 2 to
the only root ρ of the SPQ∗-tree whose reference chain π contains c. Denote by ℓ the
length of π and let s and t be the two poles of π. Since c is not allowed to have a
90◦ angle on the external face, the spirality σρ is restricted to take values in the range
[−(ℓ− 1), (ℓ− 2)], instead of [−(ℓ− 1), (ℓ− 1)] (σρ = (ℓ− 1) corresponds to having a 90◦

angle on the external face at all degree-2 vertices of π). Hence, for each candidate value
of spirality of ρ in the interval [−(ℓ−1), (ℓ−2)] we check in O(1) time whether there is a
value σν ∈ Σν,ρ such that σν −σρ = 4. In the positive case, we set the local label for the
configuration to true, otherwise we set this label to false. This test takes O(ℓ) time for
the given configuration. Since the sum of the length of all possible reference chains for
B′

j is O(nBj
), the procedure takes O(nBj

) over all configurations of the cutvertex-nodes
incident to Bj .

(iii) Finally, suppose that there is an external flat-angle constraint on c, which implies that
deg(c|B′

j) = 3. We have to check whether B′
j remains rectilinear planar when we choose

as reference chain of the SPQ∗-tree one of the tree chains incident to c, requiring that
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Hξ,ρ

c
Hρ,ρ

Hν,ρ u
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c
Hρ,ρ

Hν,ρ
u
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Figure 12: Transformation that guarantees a flat external angle (shaded) at c.

the external angle at c is larger than 90◦. Let π be any of the three reference chains
incident to c in B′

j and let ρ be the Q∗-node corresponding to π. Note that, vertex c is
necessarily a pole of a P-node ξ with two children. Also, denoted by ν the root child,
we have that either ξ coincide with ν or ξ is a child of ν. There are two cases.

Case 1: π is not a single edge, i.e., the length of π is at least two. In this case we claim
that B′

j is rectilinear planar without any additional constraint on c if and only if B′
j

is rectilinear planar with the external flat-angle constraint on c. Indeed, assume that
B′

j is rectilinear planar without constraints on c. As we proved in Lemma 18 there
exists an unconstrained rectilinear representation H of B′

j such that, denoted by σ′
ν the

spirality of Hν,ρ in H and by σ′
ρ the spirality of Hρ,ρ in H, we have σ′

ρ ∈ Σ+
ρ,ρ, σ

′
ν ∈ Σ+

ν,ρ,
and σ′

ν + σ′
ρ = 4. Also, by Lemma 11, we can assume that the internal angle at c in

the parallel-component Hξ,ρ is a 90◦ angle. Namely, let u and c be the two poles of
Hξ,ρ. By Lemma 11, we can exclude that both the internal angles at u and c in Hξ,ρ

are flat angles and, if the internal angle at c is a flat angle and the internal angle at u
is a right angle, we can transform the representation by exchanging the values of the
internal angles at u and c without changing the spirality of Hξ,ρ (recall that both u and
c have degree three, as ξ is a P-node with two children and B′

j is independent-parallel
SP). If the external angle at c in H is a flat angle then we are done. Otherwise, we can
easily transform H into another rectilinear representation of B′

j with a flat angle at c
on the external face by simply increasing the spirality of Hξ,ρ (and therefore of Hν,ρ) by
one unit and decreasing the spirality of Hρ,ρ by one unit (see Fig. 12). This is always
possible, as σ′

ρ ≥ 0 and π is not a single edge.

Case 2: π is a single edge. Since σρ = 0 is the only spirality value admitted by ρ, we have
to check whether ν admits spirality σν = 4 when we impose that the external angle at
c is flat. With the notation used in the statement of Lemma 3, we require that αl

c = 0.

− Suppose first that ν coincides with ξ (i.e., ξ is the root child). In this case, we can
perform the test in O(1) time by considering the O(1) possible configurations of ν that
satisfy the relationships of Lemma 3, and by checking whether there is at least one
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configuration such that σν = 4 and αl
c = 0.

− Suppose vice versa that ν and ξ do not coincide. In this case, ν is an S-node,
which represents the series composition of the pertinent graph of ξ with the union of all
pertinent graphs of the siblings of ξ. For the sake of simplicity, denote by ν̂ a dummy
S-node that represents the union of the pertinent graphs of the siblings of ξ. Also
denote by Σ+

ν̂,ρ the set of non-negative spirality values admitted by ν̂. With the same

approach as in the proof of Lemma 15, we can compute Σ+
ν̂,ρ in O(1) time by removing

the contribution of Σ+
ξ,ρ from Σ+

ν,ρ. Let M̂ be the maximum value of spirality in Σ+
ν̂,ρ.

Assume first that M̂ ≤ 4. For each candidate spirality value σν̂ ∈ [−4, 4], we can check
whether there exists a value σξ ∈ Σξ,ρ such that σ′

ξ + σ′
ν̂ = 4 and αl

c = 0. This can be
done in O(1) time through the relationships of Lemma 3.

Assume now that M̂ > 4. In this case we can restrict to test whether one of these three
following configurations of spirality values σξ for ξ and σν̂ for ν̂ holds: (a) σξ = 1 and
σν̂ = 3; (b) σξ = 0 and σν̂ = 4; (c) σξ = 2 and σν̂ = 2. Indeed, suppose that there exists
a rectilinear representation of G with αl

c = 0 and with spirality values σ′
ξ and σ′

ν̂ for ξ

and ν̂, respectively. If σ′
ξ and σ′

ν̂ are odd, then, by Lemma 10, and since M̂ > 4, then
ξ and ν̂ also admit two values σξ and σν̂ that satisfy configuration (a). If σ′

ξ and σ′
ν̂

are both even and if ν admits spirality 0, then ξ and ν̂ also admit two values σξ and σν̂

that satisfy configuration (b). Otherwise, σ′
ξ and σ′

ν̂ are both even and Σ+
ξ,ρ = [1, 2]1;

this means that we are already in configuration (c) with σξ = σ′
ξ = 2 and σν̂ = σ′

ν̂ = 2.
Since we can test in constant time whether one of the three possible configurations (a),
(b), and (c) holds, also the case M̂ > 4 is handled in O(1) time.

If the test is positive, the construction algorithm is exactly the same as in Theorem 1, which
takes O(n) time. □

5 Final Remarks

We proved that rectilinear planarity can be tested in O(n2) time for general partial 2-trees and
in O(n) time for independent-parallel SP-graphs. Establishing a tight bound on the complexity
of rectilinear planarity testing algorithm for partial 2-trees remains an open problem. A pitfall
to achieve O(n)-time complexity in the general case is that, in contrast with the independent-
parallel SP-graphs, the spirality set of a component may not exhibit a regular behavior. See
for example Figs. 13 and 14. In particular, the component in Fig. 13 is a series-composition of
two parallel-components, each having only one possible rectilinear representation, up to a rota-
tion/flipping. To construct the set of spirality values admitted by a rectilinear representation of
the whole component, one can use the relationship of Lemma 1, which establishes that the spirality
value of a series-composition is the sum of the spirality values of its children. A similar analysis
can be done for the component in Fig. 14.



716 W. Didimo, M. Kaufmann, G. Liotta, G. Ortali Rectilinear Planarity of Partial 2-Trees

u

u
u

u

u u

v v

v

v

v

σν = 0 σν = 1 σν = 2

σν = 3 σν = 4 σν = 5

bend

v

Figure 13: Component that admits non-negative spiralities 0, 1, 3, 4, 5. Spirality 2 needs a
bend (×).
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Figure 14: Component that admits non-negative spiralities 1, 2, 5; other values require a bend (×).
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