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Abstract. In a graph story the vertices enter a graph one at a time and each vertex
persists in the graph for a fixed amount of time ω, called viewing window. At any time,
the user can see only the drawing of the graph induced by the vertices in the viewing
window and this determines a sequence of drawings. For readability, we require that
all the drawings of the sequence are planar. For preserving the user’s mental map we
require that when a vertex or an edge is drawn, it has the same drawing for its entire
life. We study the problem of computing the whole sequence of drawings by mapping
the vertices only to ω + k given points, where k is as small as possible. We show that:
(i) The problem does not depend on the specific set of points but only on the size of the
point set; (ii) the problem is NP-hard (even when k is a given constant) and it is FPT
when parameterized by ω+k; (iii) for k = 0 there are families of graph stories that can
be drawn independent of ω, but also families that cannot be drawn even when ω is small;
(iv) there are families of graph stories that cannot be drawn for any fixed k and families
of graph stories that can be realized only when k is larger than a certain threshold.
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1 Introduction

In this paper we address “graph stories”, a model introduced by Borrazzo et al. in [7] as a framework
for exploring temporal data. In a graph story the vertices enter a graph one at a time and persist
in the graph for a fixed amount of time ω, called the size of the viewing window. At any time,
the user can see only the drawing of the graph induced by the vertices in the viewing window and
this determines a sequence of drawings. This problem is inspired by applications where data are
produced in streaming and need to be visualized by time frames. For readability, all the drawings
of the sequence are required to be planar. For preserving the user’s mental map, we require that
when a vertex or an edge is drawn, it keeps the same drawing for its entire life. Also, in order to
limit the constraints, we allow the edges to be represented as Jordan arcs, rather than requiring
that they are drawn as polylines with a limited number of bends.

A different setting has been recently studied in [5], where there is no viewing window and each
vertex persists in the graph until all its neighbors have been seen.

Graph stories are related to a rich body of literature devoted to the visualization of dynamic
graphs (surveys can be found in [3, 21]). One of the main classification criteria of dynamic graph
problems is whether the story is fully known in advance (offline model) or if only one event, i.e.,
the introduction or the removal of a vertex, is known at a time (online model). In this respect, our
contribution falls in the offline model. A third intermediate category (look-ahead model) is when
a small chunk of the incoming events is known in advance to the drawing algorithms. The events
are also a classification criterion, as they may refer to vertices, edges, or both. Finally, further
constraints may regard the timings of the events, the more common being that they occur one at
a time at regular intervals and that the incoming objects have a fixed lifetime as in the case of
graph stories. In some cases, the order of the events is constrained to correspond to a specific kind
of visit of the graph.

Several results focus on dynamic trees. In [4], it is shown how to draw a tree in O(ω3) area
where the model is online, the incoming objects are edges that arrive in the order of an Eulerian
tour of the tree and whose straight-line drawing persists for a fixed lifetime ω. In [12], a small look
ahead on the sequence of vertices is used to add one vertex at a time to the drawing of an infinite
tree. This is a good trade-off between the readability of the layout and the stability of the part of
the graph shared by two consecutive drawings, in the sense that the drawing is perturbed as little
as possible during the story. In [27], a sequence of trees (their union, though, may be an arbitrary
graph) is completely known in advance; vertices and edges can change their position during the
animation and can have an arbitrary lifetime (i.e., they can be removed and introduced). The
purpose is to pursue aesthetic criteria commonly adopted for tree drawings which are described,
for example, in [24].

Only few papers deal with more complex families of graphs. For instance, in [18] a stream of
edges enters the drawing and never leaves it, forming an outerplanar graph that has to be drawn
according to an online model, moving the previously drawn vertices by a polylogarithmic distance.
In [10] the drawings of several families of graphs are updated as vertices and edges enter and leave
the current graph according to the online model.

Only feebly related to our setting is the literature about dynamic planarity [14, 15, 19, 23, 25],
where the model is online and the planar embedding of the graph is allowed to change. When the
embedding has to be preserved, instead, planarly adding a stream of edges with a fixed lifetime is
NP-complete even for the offline model [11]. Also, related to dynamic graph drawing is the use of
geometric simultaneous embedding [6, 8], which can be used to model temporal graphs.

Concerning graph stories, Borrazzo et al. [7] address the setting where all the drawings of the
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story are straight-line and planar, and where vertices do not change their position once drawn. It is
shown that graph stories of paths and trees can be drawn on a 2ω×2ω and on an (8ω+1)×(8ω+1)
grid, respectively. Further, there exist graph stories of planar graphs that cannot be drawn straight-
line within an area that is only a function of ω.

Contribution. We study the problem of drawing a graph story by mapping the vertices only to
ω+k given points, where k is as small as possible. We consider the offline model, in which the whole
graph is known in advance, and we assume that the edges are represented as Jordan arcs. We refer
to this problem as realizability testing of graph stories. The idea of using a limited set of predefined
points on which the vertices have to be mapped is inspired by the model in [4]. From a practical
point of view, this setting keeps the visual complexity of the drawing low throughout the whole
story (as it bounds the number of displayed elements in each time frame) and it limits the candidate
positions for a new vertex that enters the drawing, thus helping the user to follow the story with
respect to a setting in which many points (or even an infinite number of points) can be used. In
particular, when k = 0, the next vertex that enters the drawing will occupy the same position as
the vertex that leaves the drawing, thus the user can totally predict where the new vertex will
appear. Notice that, this scenario may also introduce a readability problem, since distinguishing
the vertex that enters from the one leaving the viewing window may be difficult. However, to
counteract this issue, one may introduce in the representation an intermediate step where the
position of the removed vertex is left empty or where other strategies are used to emphasize the
change. From a theoretical perspective, limiting the vertex placement to a predefined set of points
can be regarded as an extreme condition in terms of usable resources, and helps to investigate the
complexity of the problem before considering a more relaxed scenario. Nonetheless, as it will be
shown in the paper, the realizability of a story does not depend on the specific set of points that
are chosen, but rather on the number of usable points. Namely, our contribution is as follows:

� We show that the realizability of graph stories is a topological problem, which depends only
on the size of the set of points (not on their positions). We also give a characterization of
realizable graph stories based on the concept of “compatible embeddings” (Section 3).

� We prove that the realizability of graph stories is an NP-complete problem, even if k is a
given constant, and it belongs to FPT when parameterized by the size ω+ k of the point set
(Section 4).

� We study the realizability ofminimal graph stories, i.e., stories for which k = 0 (Section 5). In
particular, we show that: (i) Every minimal graph story of an outerplanar graph is realizable;
(ii) for every ω ≥ 5 there exist minimal graph stories of series-parallel graphs that are not
realizable; (iii) all minimal graph stories with ω ≤ 5 whose graph does not contain K5 are
realizable if we are allowed to redraw at most one edge at each vertex arrival; and (iv) minimal
graph stories with ω ≤ 5 are always realizable for planar triconnected cubic graphs.

� Finally, we show that there are families of graph stories that are not realizable for any fixed k
and families of graph stories that are realizable only when k is larger than a certain threshold
(Section 6).

2 Basic Definitions

A drawing Γ of a graph G = (V,E) maps each vertex of V to a distinct point of the plane and
each edge of E to a Jordan arc connecting its end-vertices; Γ is planar if no two edges intersect
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Figure 1: A realization of a graph story S = (G, 5, 1, τ) on a set P of 6 points. The points of P
are represented as yellow disks. For each Γi (5 ≤ i ≤ 8), vertex vi and its incident edges are red.

except at common endpoints. Given a planar drawing Γ of G, the set of circular orders of the edges
incident to each vertex is called a rotation system. Drawing Γ subdivides the plane into connected
regions called faces. The unbounded face of Γ is the external face. Walking on the (not necessarily
connected) border of a face f of Γ so to keep f to the left determines a set, called the boundary
of f , of circular lists of alternating vertices and edges. Each list describes a (not necessarily simple)
cycle, which can also consist of an isolated vertex: Each edge of G occurs either once in exactly
two circular lists of different face boundaries or twice in the circular list of one face boundary.

Two planar drawings of G are equivalent if they have the same rotation system, face boundaries,
and external face. An equivalence class of planar drawings of G is a planar embedding of G. Note
that, if G is connected then each face boundary consists of exactly one circular list; in this case an
embedding of G is fully specified by its rotation system and by its external face. If G is equipped
with a planar embedding ϕ, it is a plane graph; a planar drawing Γ of G is embedding-preserving if
Γ ∈ ϕ. If G′ is a subgraph of G and Γ′ is the restriction of Γ to G′, the planar embedding ϕ′ of Γ′

is the restriction of ϕ to G′.

Definition 1. A graph story is a tuple S = (G,ω, k, τ) where: (i) G = (V,E) is an n-vertex graph;
(ii) ω ≤ n is a positive integer, called the size of the viewing window ; (iii) k is a non-negative
integer, called the number of extra points; and (iv) τ = ⟨v1, v2, . . . , vn⟩ is a linear ordering of the
vertices of G (i.e., vi ∈ V is the vertex at position i according to τ).

Let Gi = (Vi, Ei) denote the subgraph of G induced by all vertices vj such that max{1, i−ω+
1} ≤ j ≤ i. Observe that, if i ≤ ω then Gi consists of the i vertices {v1, v2, . . . , vi}; otherwise Gi

consists of the ω vertices {vi−ω+1, vi−ω+2, . . . , vi}. In other words, Gi is the subgraph induced by
vi and by the (up to) ω − 1 vertices of G that precede vi in τ . For each i, we say that vi enters
the viewing window at time i, and for each i ∈ {ω+1, . . . , n}, we say that vi−ω leaves the viewing
window at time i.

Definition 2. A realization of a graph story S = (G,ω, k, τ) on a set P of ω + k points is a
sequence of drawings R = ⟨Γ1,Γ2, . . . ,Γn⟩ with the following two properties:

(R1) Γi (1 ≤ i ≤ n) is a planar drawing of Gi, where distinct vertices of Vi are mapped to distinct
points of P ;

(R2) the restrictions of Γi−1 and of Γi (2 ≤ i ≤ n) to their common subgraph Gi−1 ∩ Gi are
identical.
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Observe that the realization can be defined similarly also considering a final part of the story
where the vertices fade out, as in [7].

Figure 1 shows a realization of a graph story S = (G, 5, 1, τ) on a set of 6 points. A graph story
S is realizable if there exists a set P of ω + k points such that S admits a realization on P . Since
the planarity of all graphs Gi is necessary for realizability, from now on we consider graph stories
that satisfy this requirement.

Remark 1 (Edge Visibility). We assume that G only consists of visible edges, i.e., edges (vi, vj)
such that |i − j| < ω. Indeed, if |i − j| ≥ ω, (vi, vj) can be ignored, as it never appears in
a realization. Our assumption has two implications: (i) G has vertex-degree at most 2ω − 2
(every Gi has vertex-degree at most ω − 1); and (ii) G has bandwidth at most ω − 1 and hence
pathwidth at most ω − 1 [20] (the set of bags of this decomposition is {V1, V2, . . . , Vn}).

Remark 2 (Minimality). Clearly, if a graph story S = (G,ω, k, τ) is realizable, every other story
S ′ = (G,ω, k′, τ) with k′ > k is realizable too. Hence, a natural scenario is when the number of
extra points k is zero. We call such a story minimal and we denote it as S = (G,ω, τ). For a
minimal graph story, Property R2 of Definition 2 implies that each vertex vi with ω+1 ≤ i ≤ n is
mapped to the same point as vi−ω, thus the mapping of the whole realization is fully determined
by the mapping of Γω (i.e., of the first ω drawings of the realization).

3 Geometry and Topology of Graph Stories

The following lemma shows that the realizability of graph stories is in essence more a topological
problem than a geometric problem (recall that edges are represented as Jordan arcs).

Lemma 1. A graph story S = (G,ω, k, τ) is realizable on a set of points P , with |P | = ω + k, if
and only if it is realizable on any set of points P ′ with |P ′| = |P |.

Proof: Let R = ⟨Γ1,Γ2, . . . ,Γn⟩ be a realization of S on P = {p1, p2, . . . , pω+k}. We show how
to construct a realization R′ of S on a given arbitrary set of points P ′ starting from R. The
realization R implicitly defines a function ρ(·) that for each edge e of G gives the Jordan arc ρ(e)
used to represent e. Let J be the codomain of ρ, i.e., the set of Jordan arcs used by R. We remark
that J is a set and not a multiset, in the sense that if two edges e and e′ of G are mapped to the
same Jordan arc, then the curve ρ(e) = ρ(e′) is present in J only once. Without loss of generality,
we may assume that any two Jordan arcs c and c′ of J have a finite intersection, i.e., either they
do not cross, or they cross on a finite number of points. In fact, if two curves c and c′ shared a
portion of a curve, we could perturb one of them, say c′, so that c′ is drawn at an arbitrarily small
distance from c until it crosses c or diverges from it.

Starting from P and J , we construct a multigraph M: For each point pi ∈ P , with i =
1, 2, . . . , ω+ k, M has a vertex vi. For each Jordan arc c ∈ J with endpoints pi and pj , M has an
edge between vi and vj . Observe that the Jordan arcs in J also provide a (non-planar) drawing
Γ(M) of M, where each pair of edges crosses a finite number of times. We planarize M according
to Γ(M) by replacing crossings with dummy vertices. Further, we subdivide multiple edges of M
with degree-2 dummy vertices in order to obtain a plane graph G.

We draw G by preserving its planar embedding on the set of points P ′ plus an arbitrary set
of additional points to host the planarization and subdivision dummy vertices; to this purpose we
could use one of the algorithms described in [2, 22]. Let Γ(G) be the obtained planar drawing of G.

Now observe that a vertex v of G corresponds to a point of P , which in turn is associated with
a vertex of M and with a vertex of G, which is drawn on a point of P ′. Also, an edge e of G
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Figure 2: An illustration for Lemma 2, which states that there exists a realizable minimal graph
story of a planar graph not admitting a supporting embedding. Observe that ϕ8 is the restriction
of ϕ to G8, while ϕ9 and ϕ10 are not the restrictions of ϕ to G9 and G10, respectively.

corresponds to a Jordan arc ρ(e) in J , which in turn corresponds to an edge of M and to a simple
path π in G between the two points of P ′ corresponding to the endpoints of e. Hence, we can
define a function ρ′(e) which gives, for each edge e of G, a Jordan arc that is the concatenation of
the curves used in Γ(G) to draw the path π.

Finally, observe that the Jordan arcs ρ(e) and ρ(e′) of two edges e and e′ of G cross if and only
if the corresponding paths in G share an intermediate vertex and, hence, if and only if ρ′(e) and
ρ′(e′) cross.

Supporting embeddings. It is natural to ask whether for every realizable graph story where G
is planar, there exists a planar embedding of G such that each drawing of the realization preserves
this embedding. We formalize this concept and show that this is not always the case. Let S be
a story whose graph G is planar. A supporting embedding for S is a planar embedding ϕ of G
such that S admits a realization ⟨Γ1, . . . ,Γn⟩ where the embedding of Γi is the restriction of ϕ to
Gi (i = 1, . . . , n).

Lemma 2. There exists a minimal graph story S = (G,ω, τ) such that: (i) G is planar; (ii) S is
realizable; and (iii) S does not admit a supporting embedding.

Proof: We produce a minimal graph story S = (G,ω, τ) such that G admits a single planar
embedding ϕ (up to a flip and up to the choice of the external face) and such that in any realization
of S there is at least one embedding ϕi of Gi that is not the restriction of ϕ to Gi. Consider the
graph story S = (G, 8, τ) where G is the graph depicted in Figure 2(a) and τ is given by the indices
of the vertices of G. Observe that G is triconnected, and choose, without loss of generality, the
embedding depicted in Figure 2(a) for the realization of S. The restriction of such an embedding to
G8 provides the embedding ϕ8 of G8. A drawing according to ϕ8 of G8 is depicted in Figure 2(b).
The drawings of G9 and G10 are obtained by deleting v1 and v2, respectively, and adding v9 and
v10 in the positions where v1 and v2 are drawn in the drawing of G8. Figures 2(c) and 2(d) show
the obtained embeddings ϕ9 and ϕ10. It can be easily seen that both ϕ9 and ϕ10 are not the
restriction of ϕ to G9 and G10, respectively.

Characterizing realizable graph stories. We now give a characterization of a realizable graph
story S = (G,ω, k, τ) in terms of a sequence of “compatible embeddings”. To this aim, we give
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a generalization of the definition of planar embedding that associates with each face a weight
representing how many of k notable points are inside such a face.

A face-k-weighted planar embedding ϕ of a planar graph H is a planar embedding of H together
with a non-negative integer, called weight, for each face of ϕ such that the sum of all weights is k.
The removal of a vertex v from a face-k-weighted planar embedding ϕ of H produces a face-(k+1)-
weighted planar embedding ϕ−v of H \ v such that the planar embedding of ϕ−v is the restriction
of the planar embedding of ϕ to H \ v and the weights of the faces are changed as follows: (i) all
the faces in common between ϕ and ϕ−v have the same weight in ϕ−v as in ϕ, and (ii) the new
face of ϕ−v resulting by the removal of v has a weight that is one plus the sum of the weights of
the faces of ϕ incident to v.

Let S be a graph story and let ϕi be a face-k-weighted planar embedding of Gi, for i ∈
{ω, . . . , n}. Two face-k-weighted planar embeddings ϕi−1 and ϕi, with i = ω + 1, . . . , n, are
compatible if removing vi−ω from ϕi−1 produces the same face-(k+1)-weighted planar embedding
of Gi−1 ∩Gi as removing vi from ϕi.

Lemma 3. A graph story S = (G,ω, k, τ) is realizable if and only if there exists a sequence
⟨ϕω, ϕω+1, . . . , ϕn⟩ of face-k-weighted planar embeddings for the graphs ⟨Gω, Gω+1, . . . , Gn⟩, such
that ϕi−1 and ϕi are compatible (ω + 1 ≤ i ≤ n).

Proof: Suppose first that S is realizable and let R = ⟨Γ1, . . . ,Γn⟩ be a realization of S. Consider
two consecutive drawings Γi−1 and Γi of Gi−1 and Gi, respectively, for ω+1 ≤ i ≤ n. Define a face-
k-weighted planar embedding ϕi−1 of Gi−1 (ϕi of Gi, respectively), where the planar embedding
is that of Γi (Γi+1, respectively) and the weight of each face is the number of unused points that
the face contains in the drawing Γi (Γi+1, respectively). By Property R2 of Definition 2, the
restrictions of Γi−1 and Γi to Gi−1 ∩ Gi is the same drawing, comprehensive of the positions of
the k + 1 unused points. We use the k + 1 unused points of Gi−1 ∩ Gi to define a face-(k + 1)-
weighted planar embedding ϕ∩ of Gi−1 ∩Gi, where the planar embedding is the one of Γi ∩ Γi+1

and the weight of each face is the number of unused points it contains in the drawing Γi ∩ Γi+1.
It is immediate to see that removing vertex vi−ω from ϕi−1 as well as removing vertex vi from ϕi

produces in both cases ϕ∩, i.e., ϕi−1 and ϕi are compatible.

Suppose vice versa that there exists a sequence of face-k-weighted planar embeddings ⟨ϕω, ϕω+1,
. . . , ϕn⟩ such that any two consecutive face-k-weighted planar embeddings in the sequence are
compatible. Let Γω be any planar drawing of Gω and let P be the set of points of Γω corresponding
to the vertices of Gω plus k unused points arbitrarily distributed inside the faces of Γω according
to the weights of ϕω. For each i = 1, . . . , ω − 1, define Γi as the restriction of Γω to Gi. For each
i = ω + 1, . . . , n, by the compatibility of ϕi with ϕi−1, we have that removing vertex vi−ω from
Γi yields a drawing Γ∩ of G∩ = Gi−1 ∩ Gi that has the same face-(k + 1)-weighted embedding
ϕ∩ = ϕi−1 \ vi−ω = ϕi \ vi of G∩. We construct Γi from Γ∩ by inserting vi inside the face of Γ∩

corresponding to the face of ϕ∩ that is generated by the removal of vi from ϕi. Also, we planarly
insert each edge connecting vi to each of its neighbors according to embedding ϕi, without changing
the starting drawing and by leaving on each generated face f the number of unused points that
corresponds to the weight of f in ϕi (for example using the technique in [9], where the unused
points are regarded as isolated vertices). The sequence ⟨Γ1,Γ2, . . . ,Γn⟩ satisfies Properties R1
and R2, i.e., it is a realization of S on P .
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′
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′
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of graph G of the story S = (G,ω, 4, τ) constructed from the instance of Figure 3(a). The vertices
of DA

1 (DA
2 , D
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3 , resp.) are red (blue, green, resp.); the vertices of
∆i (1 ≤ i ≤ 4) are purple. (c) Γω. (d) Γω+2ω̃. (e) Γω+4ω̃. The points of P are represented as
yellow disks.

4 Realizability Testing of Graph Stories

We first prove that testing whether a graph story is realizable is NP-hard for any given integer
k ≥ 0 (Theorem 1). Then we prove the that the problem is in FPT when parameterized by σ =
ω + k (Theorem 2). Note that, by Theorem 1 we can exclude that the problem is in FPT when
parameterized by k only, unless P = NP.

Theorem 1. For any integer k ≥ 0, testing the realizability of a graph story S = (G,ω, k, τ) is
NP-hard.

Proof: We use a reduction from the Sunflower SEFE problem, which is defined as follows. Let
G′

1, G
′
2, . . . , G

′
l be graphs having the same vertex-set V ′ such that each edge in the union of all

graphs belongs either to only one of the input graphs or to all the input graphs. The Sunflower
SEFE problem asks whether there exist l planar drawings Γ′

1,Γ
′
2, . . . ,Γ

′
l of G

′
1, G

′
2, . . . , G

′
l, respec-

tively, such that: (i) each vertex of V ′ is mapped to the same point in every drawing Γ′
i (1 ≤ i ≤ l);
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(ii) each edge that is common to all the input graphs is represented by the same simple curve in
the drawings of all such graphs. In other words, the problem asks whether there exists a drawing
Γ′ of G′

1 ∪G′
2 ∪ · · · ∪G′

l such that two edges cross only if they do not belong to the same graph G′
i.

We remark that the Sunflower SEFE problem is a variant of the SEFE problem, which allows
an edge to belong to an arbitrary number of input graphs. Both the SEFE and the Sunflower
SEFE problems are NP-complete for l ≥ 3 [1, 17, 26].

Starting from an instance of the Sunflower SEFE problem with l = 3, we construct a non-
minimal graph story S = (G = (V,E), ω, k, τ) as follows; refer to Figure 3 for an example with
k = 4. Let G′

1, G
′
2, and G′

3 be the input graphs of Sunflower SEFE having vertex-set V ′, let E′
i

be the set of edges that belong only to graph G′
i (1 ≤ i ≤ 3), and let E′

∩ be the set of edges that
belong to all the input graphs. Without loss of generality, we can assume that |E′

1| ≥ |E′
2| ≥ |E′

3|.
We now show how we define sets V and E. For every graph G′

i (1 ≤ i ≤ 3), we subdivide each
edge e of E′

i with two vertices dAe and dBe and we add them to two sets DA
i and DB

i , respectively;
see, e.g., dA(u,y) and dB(u,y) in Figure 3(b). We add the three edges obtained by subdividing e to a set

E′′
i . If needed, we enrich sets DA

2 , D
B
2 , DA

3 , and DB
3 with isolated vertices so that all the sets DX

i

have the same cardinality ω̃ = |E′
1| (note that ω̃ = |DA

1 | = |DB
1 |), with 1 ≤ i ≤ 3 and X ∈ {A,B};

see, e.g., the green isolated vertices in Figure 3(b). Also, we create four sets ∆j (1 ≤ j ≤ 4) of ω̃
isolated vertices δj,1, . . . , δj,ω̃; see, e.g., the purple isolated vertices in Figure 3(b). We define the
set V of vertices of G as V = V ′ ∪ DA

1 ∪ DB
1 ∪ DA

2 ∪ DB
2 ∪ DA

3 ∪ DB
3 ∪ ∆1 ∪ ∆2 ∪ ∆3 ∪ ∆4 and

the set E of edges of G as E = E′
∩ ∪ E′′

1 ∪ E′′
2 ∪ E′′

3 . We set the size ω of the viewing window as
ω = |V ′|+ 6ω̃. Finally, we suitably define τ in such a way that the vertices of the various subsets
of V appear in the following order: ⟨DA

1 ,∆1, D
A
2 ,∆2, D

A
3 , V

′, DB
1 ,∆3, D

B
2 ,∆4, D

B
3 ⟩.

Observe that S can be constructed in O(|V ′|) time and that ω ∈ O(|V ′|). We now show that S
is realizable if and only if the triplet {G′

1, G
′
2, G

′
3} is a yes instance of Sunflower SEFE. Refer

to Figures 3(c) to 3(e) for an example.

(⇒) Let P be a set of ω + k points. If S admits a realization on P , there exists a sequence of
drawings ⟨Γ1,Γ2, . . . ,Γ|V |⟩ that satisfies Properties R1 and R2.

Drawing Γω is induced by all vertices of DA
1 , ∆1, D

A
2 , ∆2, D

A
3 , V

′, and DB
1 . This drawing is

crossing-free by Property R1 and its restriction to the vertices of V ′, DA
1 , and DB

1 is a subdivision
of a drawing of G′

1. Similarly, drawing Γω+2ω̃ is induced by all vertices of DA
2 , ∆2, D

A
3 , V

′, DB
1 ,

∆3, and DB
2 ; its restriction to the vertices of V ′, DA

2 , and DB
2 is a subdivision of a (planar) drawing

of G′
2. Finally, drawing Γω+4ω̃(= Γ|V |) is induced by all vertices of DA

3 , V
′, DB

1 , ∆3, D
B
2 , ∆4, and

DB
3 ; its restriction to the vertices of V ′, DA

3 , and DB
3 is a subdivision of a (planar) drawing of G′

3.
By Property R2, Γω, Γω+2ω̃, and Γω+4ω̃ are such that their restrictions to their common sub-

graph are identical. Since V ′ belongs to all these drawings, the edges in E′
∩ are drawn identically

in Γω, Γω+2ω̃, and Γω+4ω̃.

(⇐) If the triplet {G′
1, G

′
2, G

′
3} is a yes instance of Sunflower SEFE, there exists a drawing Γ′ of

G′
1∪G′

2∪G′
3 such that two edges cross only if they do not belong to the same graph G′

i (1 ≤ i ≤ 3).
The set P that we use for the realization of S is the union of the following sets: (i) A set P ′

consisting of the points of Γ′ to which the vertices of V ′ are mapped, thus |P ′| = |V ′|; (ii) a set
PA
i (PB

i , resp.) consisting of an arbitrarily chosen point pAe (pBe ̸= pAe , resp.) for each edge e of
E′

i (1 ≤ i ≤ 3), such that pAe (pBe , resp.) belongs to the simple curve representing e in Γ′, thus
|PA

i | = |E′
i| (|PB

i | = |E′
i|, resp.); (iii) a set Pd consisting of 2(|E′

1|−|E′
2|)+2(|E′

1|−|E′
3|) additional

points; (iv) a set Pk of k additional points. Note that, |P | = |V ′|+6|E′
1|+k = |V ′|+6ω̃+k = ω+k.

We now prove that S admits a realization on P .
Recall that V = V ′ ∪DA

1 ∪DB
1 ∪DA

2 ∪DB
2 ∪DA

3 ∪DB
3 ∪∆1 ∪∆2 ∪∆3 ∪∆4 and that τ is such

that the vertices appear in the following order: ⟨DA
1 ,∆1, D

A
2 ,∆2, D

A
3 , V

′, DB
1 ,∆3, D

B
2 ,∆4, D

B
3 ⟩.
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Observe that, by construction, each non-isolated vertex of DX
i can be uniquely associated with a

distinct point of PX
i , where 1 ≤ i ≤ 3 and X ∈ {A,B}. Namely, for each edge e ∈ E′

i, we associate
vertex dAe to pAe and vertex dBe to pBe . Drawing Γω is such that:

� Each vertex of DA
1 is mapped to the corresponding point of PA

1 ;

� the vertices of ∆1 are distributed on all the points of PB
2 and on |E′

1| − |E′
2| points of Pd;

� each vertex of DA
2 is mapped to the corresponding point of PA

2 ;

� the vertices of ∆2 are distributed on all the points of PB
3 and on |E′

1| − |E′
3| points of Pd;

� each vertex of DA
3 is mapped to the corresponding point of PA

3 ;

� the vertices of V ′ are mapped on the points of P ′;

� each vertex of DB
1 is mapped to the corresponding point of PB

1 .

The edges of Γω are the portions of the edges of Γ′ between points of P to which the vertices of
Γω are mapped. Γω is planar, since it is a subdivision of the planar subgraph of Γ′ induced by the
edges of E′

1 ∪E′
∩, plus some degree-1 vertices (the ones in DA

2 and DA
3 ), plus the isolated vertices

in ∆1 and ∆2. Also, for j = 1, 2, . . . , ω − 1, define Γj as the restriction of Γω to Gj . This implies
that the sequence ⟨Γ1,Γ2, . . . ,Γω⟩ satisfies Properties R1 and R2.

Drawing Γω+ω̃ is obtained by replacing each vertex of DA
1 with the isolated vertices of ∆3.

The edges of Γω+ω̃ are the portions of the edges of Γ′ between points of P to which the vertices
of Γω+ω̃ are mapped. It is easy to see that Properties R1 and R2 are satisfied by the sequence
⟨Γω,Γω+1, . . . ,Γω+ω̃⟩.

In the drawing Γω+2ω̃, the vertices of DB
2 replace the isolated vertices of ∆1, which were

distributed on the points of PB
2 and on |E′

1| − |E′
2| points of Pd. The edges of Γω+2ω̃ are the

portions of the edges of Γ′ between points of P to which the vertices of Γω+2ω̃ are mapped. Γω+2ω̃

is planar, since it is a subdivision of the planar subgraph of Γ′ induced by the edges of E′
2 ∪ E′

∩,
plus some degree-1 vertices (the ones in DB

1 and DA
3 ), plus the isolated vertices in ∆2 and ∆3.

Also, for j = ω + ω̃, ω + ω̃ + 1, . . . , ω + 2ω̃ − 1 define Γj as the restriction of Γω+2ω̃ to Gj . This
implies that the sequence ⟨Γω+ω̃,Γω+ω̃+1, . . . ,Γω+2ω̃⟩ satisfies Properties R1 and R2.

The drawing Γω+3ω̃ is obtained by replacing each vertex of DA
2 with the isolated vertices of

∆4. The edges of Γω+3ω̃ are the portions of the edges of Γ′ between points of P to which the
vertices of Γω+3ω̃ are mapped. It is easy to see that Properties R1 and R2 are by the sequence
⟨Γω+2ω̃,Γω+2ω̃+1, . . . ,Γω+3ω̃⟩.

In the drawing Γω+4ω̃(= Γ|V |), the vertices of DB
3 replace the isolated vertices of ∆2, which

were distributed on the points of PB
3 and on |E′

1| − |E′
3| points of Pd. The edges of Γω+4ω̃ are the

portions of the edges of Γ′ between points of P to which the vertices of Γω+4ω̃ are mapped. Γω+4ω̃

is planar, since it is a subdivision of the planar subgraph of Γ′ induced by the edges of E′
3 ∪ E′

∩,
plus some degree-1 vertices (the ones in DB

1 and DB
2 ), plus the isolated vertices in ∆3 and ∆4.

Also, for j = ω + 3ω̃, ω + 3ω̃ + 1, . . . , ω + 4ω̃ − 1 define Γj as the restriction of Γω+4ω̃ to Gj . This
implies that the sequence ⟨Γω+3ω̃,Γω+3ω̃+1, . . . ,Γω+4ω̃⟩ satisfies Properties R1 and R2.

Observe that the obtained realization of S is such that, for each drawing Γi (i = 1, . . . , |V |) no
vertex is mapped to a point of Pk.

We finally show that S admits a realization on a set of ω + k points if and only if it admits
a realization on a set of ω points. Clearly, if S admits a realization on ω points, it also admits
a realization on a set of ω + k points. For the other direction, suppose by contradiction that S
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admits a realization on a set of ω+ k points and that it does not admit a realization on any set of
ω points. Note that in each drawing Γi (i = 1, 2, . . . , |V |) of the realization, there are k points to
which no vertex is mapped. Also, observe that |DA

1 ∪DA
2 ∪DA

3 ∪V ′∪DB
1 ∪DB

2 ∪DB
3 | = ω. Hence,

there are at least k points to which only vertices of ∆1 ∪∆2 ∪∆3 ∪∆4 are mapped in some set
of drawings of the realization. These vertices are isolated and thus they could have been mapped
(without creating crossings) to points to which vertices of DA

1 ∪DA
2 ∪DA

3 ∪ V ′ ∪DB
1 ∪DB

2 ∪DB
3

are mapped in some set of drawings of the realization. This implies that the k extra points could
have not been used, and thus that S admits a realization on a set of ω points.

Theorem 2. Let S = (G,ω, k, τ) be a graph story and let n be the number of vertices of G. There
exists an O(n · 2(4σ+1) log2 σ)-time algorithm that tests whether S is realizable, where σ = ω + k.

Proof: For each subgraph Gi (i = ω, . . . , n), let Ei = {ϕ1
i , ϕ

2
i , . . . , ϕ

si
i } be the set of all planar

face-k-weighted embeddings of Gi. We construct a DAG (directed acyclic graph) D as follows:
(i) For each element ϕj

i ∈ Ei (i = ω, . . . , n and j = 1, . . . , si), D has a node vji corresponding to ϕj
i .

(ii) For each pair of elements ϕj
i and ϕr

i+1 (ω ≤ i ≤ n− 1; 1 ≤ j ≤ si; 1 ≤ r ≤ si+1), D contains a

directed edge (vji , v
r
i+1) if and only if ϕj

i and ϕr
i+1 are compatible face-k-weighted embeddings.

Each set Ei, with i = ω, . . . , n, defines a distinct layer of vertices of D, called layer i. By
construction, each vertex of layer i can only have outgoing edges towards vertices of layer i+ 1 (if
i < n) and incoming edges from vertices of layer i − 1 (if i > ω). We complete the construction
of D by adding a dummy source s connected with outgoing edges to all vertices of layer 1 and a
dummy sink t connected with incoming edges to all vertices of layer n. By Lemma 3, we have that
S is realizable if and only if there is a directed path Π from s to t in D. In fact Π (if any) consists
of exactly one vertex per layer, and the sequence of its vertices from layer ω to layer n corresponds
to a sequence of compatible face-k-weighted planar embeddings of ⟨Gω, Gω+1, . . . , Gn⟩.

We now analyze the time complexity of the given algorithm. The number |Ei| of nodes in layer i
equals the number of distinct face-k-weighted embeddings of Gi. This number is the product of two
factors: the number π of possible planar embeddings of Gi times the number ρ of ways you have
to distribute k units of weight among the faces of each planar embedding of Gi. If Gi is connected,
π is upper bounded by the number of possible rotation systems for Gi, i.e., π = O(ω!). If Gi is
not connected, for each rotation system we also have to consider all possible ways of arranging a
component inside the face of some other component. Since the number of faces is O(ω), this leads
to π = O(ω! ·ωω) planar embeddings, which can be increased to O(ω! · (ω+k)ω). Observe that this
space of planar embeddings is actually computable at the same cost using SPQR-trees and BC-
trees for describing the planar embeddings of each connected component and using an inclusion
tree for describing the inclusion relationships among the different plane connected components.
The number ρ of ways you have to distribute k units of weight among the faces of a planar
embedding of Gi can be obtained (using the stars and bars metaphor popularized by [16]) as ρ =(
ω−1+k
ω−1

)
= ω

ω+k

(
ω+k
ω

)
. Since

(
n
m

)
= O(n

m

m! ), we have ρ = O( ω
ω+k · (ω+k)ω

ω! ), which can be increased

to ρ = O( (ω+k)ω

ω! ). Hence, π · ρ = O(ω! · (ω + k)ω · (ω+k)ω

ω! ) = O((ω + k)2ω) = O(22ω log2(ω+k)).

Since we have O(n) layers, generating the vertex set of D takes O(n · π · ρ). The number
of edges of D is O(n · (π · ρ)2), and checking whether we have to add an edge between two
vertices of consecutive layers of D can be done in O(ω) = O(ω + k) time, as we need to test the
compatibility of the embeddings corresponding to the two vertices. Hence, generating the edge
set of D takes O((ω + k) · n · (π · ρ)2) time. Finally, checking whether a directed path from s to
t exists in D takes linear time in the size of D. It follows that the whole testing algorithm takes
O((ω + k) · n · (π · ρ)2) = O(n · 2log(ω+k) · 24(ω+k) log2(ω+k)) = O(n · 2(4σ+1) log2 σ) time.
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Theorems 1 and 2 imply the following corollary.

Corollary 1. For any integer k ≥ 0, testing the realizability of a graph story S = (G,ω, k, τ) is
NP-complete.

Also, fixing k = 0 in the statement of Theorem 2, we have the following.

Corollary 2. Let S = (G,ω, τ) be a minimal graph story and let n be the number of vertices of
G. There exists an O(n · 2(4ω+1) log2 ω)-time algorithm that tests whether S is realizable.

5 Minimal Graph Stories

We now turn our attention to minimal graph stories. As observed in Remark 2, if a graph story
S = (G,ω, k, τ) is realizable, every other story S ′ = (G,ω, k′, τ) with k′ > k is also realizable. This
observation naturally motivates the investigation of the extremal case k = 0, i.e., when we have a
minimal graph story. In particular, we want to study which minimal graph stories can be realized
for relatively small values of ω, i.e., keeping the visual complexity of the layout low. As it will
be clarified, although the realizability problem is trivial for values of ω up to four, this problem
becomes immediately more difficult for larger values of ω. More precisely, if ω ≤ 4 every minimal
graph story is easily realizable, independent of G and of τ , and even if G is not a planar graph;
it is enough to use any predefined planar drawing of the complete graph K4 as a support for each
Γi (i = 1, . . . , n). On the contrary, establishing which minimal graph stories are realizable when
ω ≥ 5 is more challenging. In the following, we show that every graph story is realizable if G is
outerplanar (Theorem 3), while if G is a series-parallel graph this is not always the case, even if
ω = 5 (Lemma 4). Nonetheless, for ω = 5 we prove that every minimal graph story is realizable
if G is a planar triconnected cubic graph (Theorem 4); we recall that a graph is cubic if all its
vertices have degree three. We finally prove, in Section 5.1, that stories of partial 2-trees (which
include series-parallel graphs) are always realizable for ω = 5 if we are allowed to “reroute” at
most one edge per time (a formal definition is given later); this result is an implication of a more
general result for stories with ω = 5 (Theorem 5). Lemma 4 and Theorem 5 together close the gap
on the realizability of minimal graph stories of partial 2-trees when ω = 5.

For a story of an outerplanar graph, we show that any outerplanar embedding is a supporting
embedding. We recall that a supporting embedding for a graph story is a planar embedding of the
graph such that each drawing of the realization of the story preserves this embedding.

Theorem 3. Let G be an outerplanar graph such that all its edges are visible. Every minimal
graph story S = (G,ω, τ) is realizable. Also, any outerplanar embedding of G is a supporting
embedding for S.

Proof: Let ϕ be any outerplanar embedding of G, and let ϕi be the restriction of ϕ to Gi (1 ≤
i ≤ n). Consider any two consecutive planar embeddings ϕi−1 and ϕi, for ω + 1 ≤ i ≤ n. Since
ϕi and ϕi−1 are restrictions of the same planar embedding of G, their restrictions to Gi ∩ Gi−1

determine the same set F of faces. Also, both vi and vi−ω lie in the plane region corresponding to
the external face of F . Hence, ϕi−1 and ϕi are compatible and, by Lemma 3, S is realizable.

Lemma 4. For any ω ≥ 5, there exists a minimal graph story S = (G,ω, τ) such that G is a
series-parallel graph and S is not realizable.
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Figure 4: (a) A minimal graph story of a series-parallel graph that is not realizable. (b),(c),(d),(e)
the four combinatorial embeddings of G5.

Proof: We first prove the statement for ω = 5, and then extend the result to any ω > 5. Consider
the instance S = (G, 5, τ) in Figure 4(a), where the vertices are labeled with their subscript in the
sequence τ = ⟨v1, v2, . . . , v8⟩. Graph G5 admits one of the four embeddings in Figures 4(b) to 4(e).
Observe that, in all four cases either cycle 3, 4, 5 separates 6 from 7 in G7 (Figures 5(c) and 5(n)),
or cycle 4, 5, 6 separates 7 from 8 in G8 (Figures 5(g) and 5(k)).

To extend the result to any ω > 5, we modify the above described instance. Consider the
instance S ′ = (G′, ω′, τ ′), where ω′ > 5, G′ is obtained from G by adding ω − 5 vertices in a
path between v4 and v5, and τ ′ = ⟨v′1, v′2, . . . , v′8+ω−5⟩ is such that for p = 1, 2, . . . , 5, we have
v′p = vp; for q = 6, 7, . . . , ω we have that v′q is a vertex of the added path; and for r = 1, 2, 3
we have v′ω+1 = v5+r. Observe that G′

5 = G5. From G′
6 to G′

ω vertices v′6, . . . v
′
ω are added to

G′
5. Neglecting the added path, for r = 1, 2, 3, graph G′

ω+r = Gr and the same non-planarity
configurations of the graph story S occur.

The next result that we present is described in Theorem 4. Before giving the proof, we need
further definitions and terminology. Let G be a graph and S = (G,ω, τ) be a minimal graph story.
A basic element of G is either a vertex or an edge. Two basic elements of G are coeval if they both
belong to the same graph Gi, for some 1 ≤ i ≤ n; observe that by the edge visibility assumption
(i.e., Remark 1), every two adjacent vertices of G are coeval.

We will consider both planar and non-planar embeddings of graphs in the plane. Unless other-
wise specified, with the term “embedding” we refer to a non-planar embedding, where we interpret
each crossing as a dummy vertex. Given an embedding ϕ of G and a cycle C of G, we say that
a point lies inside C if it belongs to one of the bounded plane regions delimited by C; note that
C may cross itself many times. We denote by G(C) the union of C and the subgraph of G that
lies inside C, i.e., the vertices that lie inside C and all the edges incident to two vertices that lie
inside C. A critical cycle of G in ϕ is a cycle C such that there exists a vertex v ∈ G(C)\C that is
coeval with every vertex and every edge of C. In this case we say that C is critical for v. Of course,
this does not imply that C and v belong to the same Gi, for some 1 ≤ i ≤ n. See, for example,
the story with ω = 5 depicted in Figure 6(b), where the red cycles C1 and C2 are both critical for,
respectively, v4 and v18. A good embedding of G is an embedding with no critical cycle and such
that no two coeval edges cross. Figure 6(c) shows the same graph as the one of Figure 6(b), but
where the embedding is a good embedding.

The following lemma shows that the existence of a good embedding is a sufficient condition for
the realizability of a minimal graph story. The proof immediately follows from Lemma 3, assuming
the number of extra points k is equal to zero. Indeed, for each 1 ≤ i ≤ n, a good embedding ϕ of
G induces an outerplanar embedding ϕi of Gi, and any two consecutive embeddings ϕi−1 and ϕi

are compatible for ω + 1 ≤ i ≤ n.
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Figure 5: Tentative realizations of the story of Figure 4(a) starting from the embeddings of Fig-
ures 4(b) to 4(e). They all lead to a failure.
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Figure 6: (a) A planar triconnected cubic graph. Notice that it can be extended in the highlighted
face. (b) A planar embedding of G that is not a good embedding, since it contains two critical
cycles C1 and C2. (c) A good embedding of G.

Lemma 5. If G admits a good embedding ϕ, then S is realizable.

We now show that minimal graph stories with ω ≤ 5 are always realizable for planar tricon-
nected graphs.

Theorem 4. Let G be an n-vertex planar triconnected cubic graph such that all its edges are
visible. Every minimal graph story S = (G, 5, τ) is realizable. A sequence of compatible planar
embeddings for S can be found in O(n) time.

Proof: Our goal is to prove Claim 5, which claims that a planar triconnected cubic graph always
admits a good embedding. Then, the proof follows immediately by Lemma 5 and Claim 5. In order
to prove Claim 5 we need intermediate results, stated by the next four claims. A critical cycle is
internal if it is not the boundary cycle of the external face. Claim 1 shows how to construct an
embedding of G having only internal critical cycles and where the crossings have specific properties.

Claim 1. There always exists an embedding ϕ′ of G that satisfies the following properties: (i) The
boundary of the external face is a crossing-free cycle of G which is not a critical cycle; (ii) every
two crossing edges are not coeval and one of them is an edge e∗ incident to v1.

Proof: First, observe that since G is cubic triconnected and since every edge is incident to two
coeval vertices, there is no face of G incident to the vertices in the set {v1, v2, v3, v4, v5}.

We first show that there exists a face f of G incident to v1 and to at least three vertices of the
set {v2, v3, v4, v5}. Suppose that v1 is not adjacent to v2. Refer to Figure 7(a). In this case v1 is
adjacent to v3, v4, and v5. Also, v2 has to be adjacent to at least two vertices vi and vj among
v3, v4, and v5. Since in a triconnected cubic plane graph different from K4 any 4-cycle is a face,
there exists a face formed by the edges (v1, vi), (vi, v2), (v2, vj), and (vj , v1). Suppose now that
v1 is adjacent to v2. Refer to Figure 7(b). There exist i, i′, i′′ ∈ {3, 4, 5} such that v1 is adjacent
to vi and vi′ ; vi′′ is adjacent to v2. Since G is cubic: There exists a face f incident to the path
{vi′′ , v2, v1}; either (v1, vi) or (v1, vi′) is incident to f .

Consider the planar embedding ϕ of G when f is the external face of G. Let a, b, c, d ∈ {2, 3, 4, 5}
and assume that va, vb, and vc are adjacent to v1. Refer to Figure 7(c), where a = 2, b = 3, c = 5,
and d = 4. We have that two among these vertices, say va and vb, are in the external face. Hence,
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Figure 7: Illustration for Claim 1.

vc is not in the external face, otherwise v1, vc would have been a separation pair. Vertex vd is in
the external face due to the choice of f . If (vc, va) ∈ E and (vc, vb) ∈ E, va, vb form a separation
pair. Hence, there exists a path π connecting vc to either va or vb containing only edges not coeval
with v1. Say that π connects vc to vb. Notice that, since (v1, vc) ∈ E, e∗ = (v1, va) ∈ E is incident
to f and to an internal face incident to vc. We can change ϕ so that e∗ crosses an edge in π and
vc is incident to the external face. We call ϕ′ the new embedding.

Since vi for i = 1, . . . , 5 is part of the external cycle, every internal vertex of G is not coeval
with v1 and, consequently, Property (i) holds. Since we changed the embedding only with respect
to e∗, Property (ii) holds for ϕ′. ■

The next claims prove relevant properties of the internal critical cycles.

Claim 2. For every internal critical cycle C of G, 6 ≤ |C| ≤ 8.

Proof: Since G is cubic triconnected and since G(C) ̸= C, we have |C| ≥ 6. Since every vertex is
coeval with at most 8 vertices, we have |C| ≤ 8. ■

Claim 3. An internal critical cycle C is critical for exactly one vertex.

Proof: Suppose that there are two vertices v and v′ for which C is critical. Since every vertex is
coeval with at most 8 vertices and since v and v′ are distinct vertices, in this case it is not possible
that |C| > 6. If |C| = 6, there are two possibilities: (1) v and v′ are the only two vertices in
G(C) \ C. In this case, there are exactly two vertices x and y of C not adjacent to vertices in
G(C) \ C. Vertices x, y are a separating pair. (2) Otherwise, in C there are exactly three vertices
incident to vertices of G(C) \C. Let v′′ be another vertex in G(C) \C. Vertex v′′ is incident to v
and v′, but it cannot be coeval with both of them (the only vertices coeval with both v and v′ are
the ones of C). In Cases (1) and (2) we have a contradiction. ■

Claim 4. Let C be an internal critical cycle for vertex v. Given any other critical cycle C ′ for a
vertex v′, we have (G(C ′) \ C ′) ∩ (G(C) \ C) = ∅.

Proof: By Claim 3, C is not critical for v′ and C ′ is not critical for v. Suppose, by contradiction,
that the statement does not hold. We consider two different cases: (i) v′ ̸∈ C and v ̸∈ C ′; (ii) v′ ∈ C
or v ∈ C ′.

Case (i). Suppose first that C ̸∈ G(C ′) and C ′ ̸∈ G(C); see, e.g., Figure 8(a). In this case, since
G does not have vertices of degree 4, there are at least four vertices xa, xb, xc, xd ∈ C ∩ C ′ such
that xi (i ∈ {a, b, c, d}) is incident to one edge in C ∩ C ′, one in C ′ and not in C, and one in C
and not in C ′. The external cycle of C ∪ C ′ has at least three vertices ya, yb, and yc, adjacent
to vertices outside it. Notice that, since G is cubic, two vertices xi and yj , with i ∈ {a, b, c, d}
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Figure 8: Illustration for Claim 4, Case (i).

and j ∈ {a, b, c} cannot coincide. Also, in C ∪ C ′ there are three other vertices za, zb, and zc

connected to v with three disjoint paths, due to the fact that G is triconnected. Similarly, C ∪C ′

contains three other vertices zd, ze, and zf connected to v′ with three disjoint paths. Notice that
it is possible to choose zi (i ∈ {a, . . . , f}) such that it does not coincide with any: zj (j ̸= i and
i ∈ {a, . . . , f}); xk (k ∈ {a, . . . , d}); yg (g ∈ {a, b, c}). Hence, |C ∩ C ′| ≥ 4 and |C ∪ C ′| ≥ 13.
It follows that either |C| > 8 or |C ′| > 8, a contradiction. For example, in Figure 8(a) we have
|C ′| = 9.

Suppose C ′ ∈ G(C); see, e.g., Figure 8(b). Vertex v is coeval with: Its three adjacent vertices
xa, xb, xc; at least three vertices ya, yb, yc in C adjacent to three vertices outside G(C); at least
three vertices za, zb, zc in C adjacent to three vertices in G(C ′). Notice that if there are less than
three vertices of C connected to vertices of G(C ′), then the graph is not triconnected. In the figure,
we have za, zb, zc ∈ C ∩C ′. If, for example, C and C ′ are disjoint, we have that za, zb, zc are in C
(and not in C ′). We have that v is coeval with 9 vertices. A contradiction. The case C ∈ G(C ′)
is analogous, where the role of v, C and v′, C ′ is inverted.

Case (ii). Refer to Figure 9(a). Observe that, since G is planar cubic triconnected, the external
cycle of C ∪ C ′ has the following distinct vertices:

� (at least) three vertices xa, xb, and xc adjacent to a vertex outside the cycle, ya, yb, and yc,
respectively.

� six other vertices za, zb, zc and zd, ze, zf , such that za, zb, zc (zd, ze, zf ) are connected with
three disjoint paths to v (v′), respectively.

Notice that one between xa, xb, xc has to be contained in C (resp. C ′) and not in C ′ (resp.
C), otherwise two between za, zb, zc (resp. zd, ze, zf ) form a separation pair. We consider two
subcases: (ii.a) v ∈ C ′ and v′ ∈ C; (ii.b) v ∈ C ′ and v′ ̸∈ C ′ (the case v ̸∈ C ′ and v′ ∈ C ′ is
analogous).

Case (ii.a): Suppose v ∈ C ′ and v′ ∈ C. Refer to Figure 9(a). In this case at least two between
za, zb, zc, say zb and zc, and two between zd, ze, zf , say zd and ze, are in C ∩ C ′. Cycle C (resp.
C ′) contains za, zb, and zc (zd, ze, and zf ). Hence, either |C ′| = |C| = 8, or |C ′| = 8 and |C| = 7,
or |C ′| = 7 and |C| = 8. We assume |C ′| = 8 and |C| = 7, the other two cases can be solved
similarly. Since |C| = 7 and |C ′| = 8: za ∈ C and za ̸∈ C ′; zf ∈ C ′ and zf ̸∈ C; xa ∈ C and
xa ̸∈ C ′; xc, xb ∈ C ′ and xc, xb ̸∈ C. We show that, in this case, G contains an edge incident to



668 G. Di Battista et al. Small Point-Sets Supporting Graph Stories

π

v
C

C ′

v′
xa

xb

xc

ya

yb

yc

zc zd

zb

zf

za

ze

(a) v ∈ C′, v′ ∈ C

v
C

C ′

v′
xa

xb

xc

ya

yb

yc

zc zd

zb
zf

za

ze

(b) v ∈ C′, v′ ̸∈ C: Case (1)

v
C

C ′

v′
xa

xb
xc

ya

yb

yc

zc zd

zb

zf

za

ze

(c) v ∈ C′, v′ ̸∈ C: Case (2)

Figure 9: Illustration for Claim 4, Case (ii).

two vertices that are not coeval. This would be a contradiction. Let τ(u) = i for any vertex u = vi
of G. Suppose, w.l.o.g., τ(v) < τ(v′).

We show that τ(ya) < τ(v). We have that C ′ contains all the vertices coeval with v′.
Since τ(v) < τ(v′) and v and v′ are coeval (v ∈ C ′ and v′ ∈ C), for any u such that τ(u) > τ(v)

and u is coeval with v, we have that u and v′ are coeval. Since xa is coeval with v and not coeval
with v′, we have τ(xa) < τ(v). If τ(ya) > τ(v), since xa and v are coeval, we have that ya and v
are coeval. In this case, ya would be coeval with v′, but this is not possible since all the vertices
coeval with v′ are in C ′. Hence, τ(ya) < τ(v).

We now show that τ(yc) > τ(v′). Notice that, similarly to the previous case, since τ(v) < τ(v′)
and since v and v′ are coeval, for any u such that τ(u) < τ(v′) and u is coeval with v′, u and
v are coeval. Let w be the vertex coeval with v and not in C (recall that we assumed |C| = 7).
We have that w can be contained in at most one of the two paths connecting ya to xb and xc

that are outside C ∪C ′ and containing yb and yc, respectively. Assume, w.l.o.g., that such path π
connecting ya to xc does not contain w. Hence, w ̸= xc and, consequently, xc and v are not coeval.
It follows that τ(xc) > τ(v′). If τ(yc) < τ(v′), since xc and v′ are coeval, we have yc and v′ are
coeval. In this case, yc would be coeval with v, but this is not possible since this implies yc = w
but that contradicts the fact that w ̸∈ π. Hence, τ(yc) > τ(v′).

We have τ(v) < τ(v′), τ(ya) < τ(v), τ(yc) > τ(v′). Any vertex u coeval with v such that
τ(u) > τ(v) is in G(C)∪G(C ′) or it is w. Recall that π connects ya to yc and does not contain w.
Hence, π contains an edge incident to two vertices that are not coeval. A contradiction.

Case (ii.b): Suppose v ∈ C ′ and v′ ̸∈ C. There are two cases: (1) G(C ′) ⊂ G(C); (2) G(C ′) ̸⊂
G(C), G(C) ̸⊂ G(C ′), and G(C ′) ∩G(C) ̸= ∅.

(1) Refer to Figure 9(b). In this case we can choose ze and zd such that C contains either: ze or
zd, if C ′ contains only one between xc and xb; or, otherwise, both of them, as in the figure. Since
G(C ′) ⊂ G(C), C contains xb, xc, yb, and yc. Hence |C| ≥ 9 and by Claim 2 C is not critical.

(2) Refer to Figure 9(c). There is a path (in the figure, an edge) such that v and v′ are not in
the same face. In this case the value of |C ′| increases by two with respect to its value in Case (ii.a)
and |C ′| ≥ 9 (|C ′| = 9 if one between xb and xc is in C and not in C, |C ′| = 10 otherwise). Hence
|C ′| ≥ 9 and by Claim 2 C ′ is not critical.

In both Cases (i) and (ii), we have a contradiction. ■

Finally, we have all the ingredients to prove Claim 5.

Claim 5. Graph G always admits a good embedding.

Proof: Let ϕ be any embedding of G with the properties described by Claim 1. We have that the
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Figure 10: Illustration for Claim 5, Part I. Critical cycle C does not contain other critical cycles.

external cycle of G is not a critical cycle. In order to prove the claim, we consider all the critical
cycles of G and we modify ϕ in order to make them not critical, one by one. In Part I of the proof
we consider critical cycles that do not contain other critical cycles. In Part II, we will show how
to handle the rest of the cycles. During the first two parts of the proof we change ϕ with respect
to some edges. In Part III we show that these edges do not cross in the final embedding.

Part I: Let C be a critical cycle not containing other critical cycles. Let vk be the vertex
for which C is critical. By Claim 3, this vertex is unique. Since any vertex vi such that i ≤ 3 or
i ≥ n− 2 is coeval with less than 6 vertices, by Claim 2 we can assume 3 < k < n− 2.

Suppose |C| = 6. See Figure 10(a). Cycle C always contains a vertex vi such that at least
two vertices in C are not coeval with vi. In particular, if C contains a vertex vj such that
j ∈ {k − 4, k + 4}, i = j. Otherwise, C = {vk−3, vk−2, vk−1, vk+1, vk+2, vk+3} and i = k − 3 (or
i = k + 3).

Consider the 6 faces adjacent to C, three internal and three external. Vertex vi is not coeval
with some edge incident to 4 of the 6 vertices of C, hence, the subgraph of G(C) consisting only of
vertices coeval with vi consists of two faces and at least one of them, say f , is incident to all the
vertices of C. See Figure 10(b). Let e = (vi, vi′) be an edge of C and assume that, going from vi
to vi′ , v is on the right (left) of e. We can change the embedding around the vertices of e so that
e goes through f such that v is on the left (right) of e. Cycle C is not critical for v anymore and
we did not introduce crossings between two coeval edges. See Figure 10(c).

Suppose |C| = 7 or |C| = 8. In this case there is always a vertex vi that has 3 and 4 vertices
of C that are not coeval with v. In particular, we can always choose vi such that either i = k − 4
or i = k + 4. Hence, we always have that the remaining vertices coeval with vi are 4, as in the
previous case, and we can prove these two new cases with the same considerations.

Part II: Let Ca and Cb be two cycles such that Ca ∈ G(Cb) critical for va and vb, respectively.
By Claim 4 and Claim 3, Ca and Cb are critical for the same vertex v = va = vb. Hence, by Claim 2
and since v is coeval with 8 vertices, 6 ≤ Ca ∩ Cb ≤ 7.

Suppose, w.l.o.g., that Cb ̸⊂ Ca. We first show that Ca ⊂ Cb. Suppose, by contradiction,
Ca ̸⊂ Cb. Since the graph is triconnected, in this case there is an edge connecting the vertices of
Ca not contained in Cb to the vertices of Cb not in Ca, otherwise there are two vertices w and w′

that are a separation pair. See Figure 11(a). Refer now to Figure 11(b). Graph Ca ∪ Cb contains
the following vertices: Three vertices xa, xb, xc connected with a path to v; three vertices ya, yb,
yc connected to the graph outside G(Ca ∪ Cb); (at least) four vertices za, zb, zc, zd incident to
the three edges connecting Ca to Cb, that have to be different from the previous vertices. Hence,
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Figure 11: Illustration for Claim 5, Part II. Critical cycle Cb contains critical cycle Ca.

|Ca ∪ Cb| ≥ 10 and v is coeval with 10 vertices, which is a contradiction.

We have Ca ⊂ Cb and, consequently, Ca is composed of vertices of Cb and chords connecting
two vertices of Cb. See Figure 11(c). We can apply the approach of Part I, with the difference
that if vi is adjacent to one of these chords, we change the embedding with respect to the edge e
incident to vi in Ca that is not the chord. In Figure 11(c), the edges in common between Ca and
Cb are dashed.

Part III: Notice that in Parts I and II we changed the embedding with respect to exactly
one edge e (or simply, we “moved one edge e”) for each critical cycle C. Also, after this operation,
e crosses only edges in G(C). Hence, by Claim 4, no two edges that we moved in Parts I and
II cross. We have that, for any edge e that we moved, e is never incident to vk such that k ≤ 5,
since there exist no critical cycle of G such that the vertex vi with maximum i in C is k. Hence,
by Claim 1, no edge moved in Parts I and II crosses the edge moved while processing the
external face.

In Parts I and II we processed one by one each critical internal cycle in order to make it not
critical, without creating crossings between coeval edges. We did it starting from an embedding
where the external face was not critical. Hence, the obtained embedding is a good embedding. ■

The theorem holds by Lemma 5 and Claim 5. Concerning the computational time, choosing
an embedding where the external face is not critical can be done in O(1) time as described in the
proof of Claim 1. Computing all the critical cycles can be done in O(n) time. Fixing one by one
each one of them, as described in the proof of Claim 5, takes linear time. This is sufficient by
Lemma 5.

5.1 Rerouting

Since Property R2 of Definition 2 is a strict requirement, one can think of relaxing it by allowing
a partial change of the drawing of Gi−1 ∩ Gi when vertex vi enters the viewing window. Let Γ
be a planar drawing of G, (u, v) be an edge of G incident to two distinct faces f and f ′ of Γ,
and p be a point of the plane inside face f ; see Figure 12(a). Rerouting (u, v) with respect to p
consists of planarly redrawing (u, v) such that u and v keep their positions and p lies inside f ′;
see Figure 12(b). The obtained drawing has the same planar embedding as Γ. Note that this
operation “moves” a single point from f to f ′ by redrawing e. If e is rerouted with respect to a
set Q of points, all inside f , we say that e is rerouted with respect to Q.
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Figure 12: Rerouting edge (u, v) with respect to point p.

An h-reroute realization of S = (G,ω, k, τ) on a set P of ω + k points (h ≥ 0) is a sequence
⟨Γ1,Γ2, . . . ,Γn⟩ satisfying Property R1 of Definition 2 and such that the restriction of Γi toGi−1∩Gi

(2 ≤ i ≤ n) is obtained from the restriction of Γi−1 to Gi−1 ∩ Gi by rerouting at most h distinct
edges each with respect to a subset Q of P . S is h-reroute realizable if it has an h-reroute realization
on a set of ω + k points.

The next theorem characterizes the set of graph stories S = (G, 5, τ) that are 1-reroute realiz-
able. It properly includes those stories whose G is planar.

Theorem 5. Let G be a graph such that all its edges are visible. Every minimal graph story
S = (G, 5, τ) is 1-reroute realizable if and only if G does not contain K5.

Proof: Suppose first that G contains K5. Since all the edges of G are visible, each edge appears
in some Gi (1 ≤ i ≤ n). This implies that there must be an index j ∈ {1, . . . , n} for which Gj

contains all vertices of the K5, i.e., Gj coincides with K5. Indeed, if there were a pair of vertices
of the K5 that never appear in the same Gi, the edge connecting these two vertices would not be
visible throughout any realization of the graph story. Therefore, since Gj is non-planar, G is not
h-reroute realizable, for any h ≥ 0.

Suppose vice versa that G does not contain K5. This implies that each subgraph Gi (1 ≤ i ≤ n)
does not contain K5 and hence it is planar. To prove that S is 1-reroute realizable, we show that
it admits a 1-reroute realization on any arbitrarily chosen set P of 5 points. Let Γ4 be a planar
drawing of G4 on P . Let p be the point of P to which no vertex of G4 is mapped, let f be the
face of Γ4 that contains p, and let N(v5) be the set of neighbors of v5 in G5. If the boundary
of f has four vertices, then v5 can be mapped to p and it can be connected to all its neighbors
without creating edge crossings, so to obtain a planar drawing Γ5 of G5. If the boundary of f has
three vertices, mapping v5 to p and connecting it to its neighbors may create an edge crossing. To
avoid this crossing, it is possible to reroute an edge of the boundary of f with respect to p such
that p lies inside a face whose boundary contains all vertices in N(v5). Such an edge always exists
because the faces of Γ4 are pairwise adjacent. More precisely, if G4 is not K4, then there must be
a face f ′ of Γ4 (adjacent to f) such that f ′ contains all vertices of G4; in this case, we can reroute
any edge e shared by f and f ′ so that p lies inside f ′. If G4 is K4, then |N(v5)| ≤ 3, as G does
not contain K5. Also, there is a face f ′ of Γ4 that contains all vertices of N(v5); as before, we
can reroute any edge e shared by f and f ′ so that p lies inside f ′. After the rerouting operation,
v5 can be mapped to p and connected to all its neighbors without creating edge crossings, so to
obtain a planar drawing Γ5 of G5. This procedure can be applied for each pair of graphs Gi−1 and
Gi (5 < i ≤ n): Γi is obtained by mapping vi to the same point p of P to which vi−5 is mapped
in Γi−1, by rerouting at most one edge with respect to p.
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6 Lower Bounds for Non-minimal Graph Stories

In this section we study lower bounds on the number of extra points needed for the realizability
of graph stories. More precisely, we provide a lower bound for stories whose graphs are nested
triangulations and ω = 9 (Theorem 6), and then for stories of series-parallel graphs with ω ≥ 8
(Theorem 7). To prove the first result, we start with the following technical lemma.

Lemma 6. Let S = (G,ω, k, τ) be a realizable graph story. Suppose that: (i) G contains vertex-
disjoint cycles C1, . . . , Ch such that Cj−2, Cj−1, Cj ∈ Gij , with j = 3, . . . , h, ij−1 < ij and ij −
ij−1 < ω; (ii) in all planar embeddings of Gij , Cj−1 separates Cj−2 from Cj . We have that
σ = ω + k ∈ Ω(h).

Proof: Let R = ⟨Γ1, . . . ,Γn⟩ be a realization of S and let σi be the total number of points used by
R to draw ⟨Γ1, . . . ,Γi⟩. Without loss of generality, assume that in all planar embeddings of Gij ,
cycle Cj is outside Cj−1, which is outside Cj−2. Also, observe that a cycle has at least 3 vertices.

The proof is by induction on j, showing that the points used by R to represent vertices in
{C1, . . . , Ch−1} are contained in the region of the plane delimited by Ch and that σh ≥ 9+3(h−1).
As a base case, consider any planar drawing Γi3 of graph Gi3 . It contains vertex-disjoint cycles
C1, C2, and C3. Hence, by hypothesis the region of the plane delimited by C3 contains the points
used to represent C1 and C2. Also, R uses at least σi3 ≥ 9 points for the drawings of ⟨Γ1, . . . ,Γi3⟩.

As for the inductive case, consider graph Gij and any of its drawings Γij . By the inductive
hypothesis, the points used by R to represent vertices in {C1, . . . , Cij−1−1} are contained in the
region of the plane delimited by Cij−1

. Also, the realization R uses σij−1
≥ 9+3((j − 1)−1) points

for drawings ⟨Γ1, . . . ,Γij−1⟩. Drawing Γij contains cycles Cij−2 , Cij−1 , and Cij . By hypothesis, we
have that cycle Cij is outside Cij−1 , that is outside Cij−2 in Γij . There exist at least three vertices
that belong to Cij and are outside Cij−1

. Therefore, the points used by R to represent vertices in
{C1, . . . , Cij} are contained in the region of the plane delimited by Cij and that σij ≥ σij−1

+ 3 ≥
9 + 3(j − 1).

Theorem 6 generalizes a previous result given in the literature [7, Theorem 1]; as anticipated at
the beginning of the section, its proof exploits Lemma 6. Let n = 3h, for an integer h ≥ 1. An n-
vertex nested triangles graph G contains the vertices and edges of the 3-cycle Ci = (vi−2, vi−1, vi),
for i = 3, 6, . . . , n, plus the edges (vi, vi+3), for i = 1, 2, . . . , n − 3. For n ≥ 6, G is triconnected,
thus it has a unique planar embedding (up to the choice of the external face) [28].

Theorem 6. Let S = (G, 9, k, τ) be a realizable graph story such that G is a 3h-vertex nested
triangles graph, where τ is given by the indices of the vertices of G. Any realization of S has
k ∈ Ω(n), where n = 3h is the number of vertices of G.

Proof: Consider the vertex-disjoint cycles C1 = (v1, v2, v3), C2 = (v4, v5, v6), . . . , Ci = (v3i−2,
v3i−1, v3i), . . . , Ch = (v3h−2, v3h−1, v3h). We have that G9 contains cycles C1, C2, and C3. Also,
in any planar embedding of G9 we have that C2 separates C1 from C3. More generally, for
j = 3, 4, . . . , h graph G3j contains cycles Cj−2, Cj−1, and Cj , and in any planar embedding of G3j

we have that Cj−1 separates Cj−2 from Cj . By Lemma 6, we have that ω + k ∈ Ω(h) ∈ Ω(n).
Since ω is a constant, we have that k ∈ Ω(n).

While Theorem 6 exploits the uniqueness of the embedding of G, the next result provides lower
bounds also for graphs that have several planar embeddings.

Theorem 7. Let G be a series-parallel graph such that all its edges are visible. For any ω ≥ 8,
there exists a graph story S = (G,ω, k, τ) that is not realizable for k < ⌊ω

2 ⌋ − 3.
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Figure 13: Illustration for Theorem 7. Case ω = 8. Graph G and drawings of G8 and G11.

Proof: We first prove the statement for ω = 8, and then we extend the result to any ω > 8.
Consider the instance S = (G, 8, 0, τ) in Figure 13(a), where the vertices are labeled with their

subscript in the order τ = ⟨v1, v2, . . . , v11⟩. Graph G is a parallel composition of four components,
three of which are a series of an edge and a triangle, which we call flags, and the other one is
a path of length four. Observe that, in any planar embedding of Gω = G8 at most two among
v1, v2, and v3 can be incident to the same face (see, e.g., Figure 13(b)). Graph G11 contains the
paths (v7, v4, v8), (v7, v5, v8), (v7, v6, v8), and (v7, v9, v10, v11, v8). Since v9, v10, and v11 are mapped
to the points where v1, v2 and v3 are mapped, respectively, it is not possible to obtain a planar
embedding of G11 (see, e.g., Figure 13(c)). Thus, S does not admit a realization.

To prove that S = (G, 8, k, τ) is realizable for k ≥ ⌊ω
2 ⌋ − 3 = 1, suppose that v1 and v2 are

drawn on the same face f and there is an extra point p inside f . In this case S is realizable, and
G8 and G11 are drawn as in Figures 13(d) and 13(e).

Consider now the case in which ω > 8 and even. Graph G is similar to the one described in
the previous case, but it has ω

2 − 1 parallel flags and a path of length ω
2 , as shown in Figure 14(a).

In any planar embedding of Gω, at most two vertices of the sequence v1, . . . , vω
2 −1 can be inside

the same cycle vω, vi, vi+1, vω−1 (i = ω
2 , . . . , ω − 2). If k = ω

2 − 4, in Gω the number of free points
(i.e., points to which no vertex is mapped) is equal to the number of flag components minus 3. Let
f be a face shared by two vertices of the sequence v1, . . . , vω

2 −1, say v1 and v2, and assume that
all the k free points are inside f (see, e.g., Figure 14(b)). For Gω+1, . . . , G 3

2ω−2 all the vertices
of the path can be drawn using the k extra points, as they are incident to the same face. Note
that Gω+1 does not contain vertex v1 and Gω+2 does not contain vertex v2, thus face f has been
merged with the faces of the flags comprehending v1 and v2, and this new face f ′ contains the two
points to which v1, v2 were mapped. In G 3

2ω−1, vertex v 3
2ω−1 should be drawn in f ′ so to maintain

planarity, but all the points in f ′ have been used to draw the ω
2 − 2 vertices of the path and the

k free points are inside other faces (at most two are in the same face). Thus (G,ω, k, τ) is not
realizable for k = ω

2 − 4 < ⌊ω
2 ⌋ − 3 (see, e.g., Figure 14(c)). Note that with one more point on f ′,

i.e., k = ω
2 − 3 = ⌊ω

2 ⌋ − 3, S is realizable; see Figures 14(d) and 14(e).

Finally, consider the case in which ω > 8 and odd. Again, graph G is similar to the one of the
previous case, but there are ω+1

2 −1 parallel flags, two of which are on the same parallel component,
thus creating a double flag, and the path has length ω+1

2 , as shown in Figure 15(a).
In any planar embedding of Gω, at most three vertices of the sequence v1, . . . , vω+1

2 −1 can be

inside the same cycle vω, vi, vi+1, vω−1 (i = ω+1
2 , . . . , ω − 2), due to the presence of the double

flag. Note that at most one face can be shared by more than two vertices of the sequence. If
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Figure 14: Illustration for Theorem 7. Case ω > 8 even. Graph G and drawings of Gω and G 3
2ω−2.
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k = ω+1
2 − 5, in Gω there is a number of free points (where no vertex is drawn) equal to the

number of flag components minus 4. Let f be the face shared by two vertices of the sequence
v1, . . . , vω

2 −1, say v2 and v3, one of which is part of the double flag containing also v1, and assume
that all the k free points are inside f (see, e.g., Figure 15(b)). For Gω+1, . . . , G 3

2ω−4 all the vertices
of the path can be drawn using the k extra points, as they are incident to the same face. Note that
Gω+1 does not contain vertex v1, Gω+2 does not contain vertex v2, and Gω+3 does not contain
vertex v3, thus the face f has been merged with the faces of the flags comprehending v1, v2, and v3,
and this new face f ′ contains the three points to which v1, v2, and v3 were mapped. In G 3ω+1

2 −1,

vertex v 3ω+1
2 −1 should be drawn in f ′ so to maintain planarity, but all the points in f ′ have been

used to draw the ω+1
2 − 2 vertices of the path and the k free points are inside other faces (at

most two are in the same face). Thus (G,ω, k, τ) is not realizable for k = ω+1
2 − 5 < ⌊ω

2 ⌋ − 3
(see Figure 15(c)). Note that with one more point on f ′, i.e., k = ω+1

2 − 4 = ⌊ω
2 ⌋ − 3, S is

realizable; see Figures 15(d) and 15(e).

7 Final Remarks and Open Problems

We conclude with some open research directions.

� Theorem 1 implies that the realizability testing of graph stories is paraNP-hard1 when pa-
rameterized by k. On the other hand, Theorem 2 proves that the problem is in FPT when
parameterized by ω + k. For non-minimal graph stories, it remains open to establish the
complexity of the realizability problem when parameterized by ω alone. The proof of Theo-
rem 1 relies on the presence of isolated vertices. It would be interesting to extend the result
to the case of connected or biconnected graphs.

� About minimal graph stories, we showed that for ω ≥ 5 there are stories of series-parallel
graphs that are not realizable. For k = 1, the smallest ω for which we have a non-realizable
story of a series-parallel graph is 10. What about the realizability of series-parallel graphs
for k = 1 and 5 ≤ ω ≤ 9?

� We showed that every minimal graph story with ω = 5 is 1-reroute realizable if and only if
the graph does not contain K5. Is any (minimal) graph story h-reroute realizable for h being
a constant or a sublinear function of ω?

� We considered the scenario where vertices enter and exit one at a time. It would be interesting
to study the case when ℓ vertices enter and exit at each time step (2 ≤ ℓ ≤ ω).

� We studied graph stories in the offline model for dynamic graphs. It would be interesting to
extend the study to the online model or to the look-ahead model.

� Considering the result of Lemma 1, we focused on the topology of the problem. It remains
open to study the complexity of realizing the graph story when the sequence of compatible
embeddings is given.

Acknowledgements. This work started at the Bertinoro Workshop on Graph Drawing 2022. The
authors wish to thank all the participants to the workshop, and in particular Fabrizio Montecchiani
and Ignaz Rutter, for useful discussions.

1A problem is paraNP-hard with respect to a certain parameter if it is NP-hard already for a constant value of
the parameter.
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