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Abstract. The problem of orienting the edges of an undirected graph such that
the resulting digraph is acyclic and has a single source s and a single sink t has a
long tradition in graph theory and is central to many graph drawing algorithms. Such
an orientation is called an st-orientation. We address the problem of computing st-
orientations of undirected graphs with the minimum number of transitive edges. We
prove that the problem is NP-hard in the general case. For planar graphs we describe
an ILP (Integer Linear Programming) model that is fast in practice, namely it takes
on average less than 1 second for graphs with up to 100 vertices, and about 10 seconds
for larger instances with up to 1000 vertices. We experimentally show that optimum
solutions significantly reduce (35% on average) the number of transitive edges with re-
spect to unconstrained st-orientations computed via classical st-numbering algorithms.
Moreover, focusing on popular graph drawing algorithms that apply an st-orientation
as a preliminary step, we show that reducing the number of transitive edges leads to
drawings that are much more compact (with an improvement between 30% and 50%
for most of the instances).

1 Introduction

The problem of orienting the edges of an undirected graph in such a way that the resulting digraph
satisfies specific properties has a long tradition in graph theory and represents a preliminary step
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of several graph drawing algorithms. For example, Eulerian orientations require that each vertex
gets equal in-degree and out-degree; they are used to compute 3D orthogonal graph drawings [18]
and right-angle-crossing drawings [2]. Acyclic orientations require that the resulting digraph does
not contain directed cycles (i.e., it is a DAG); they can be used as a preliminary step to compute
hierarchical and upward drawings that nicely represent an undirected graph, or a partially directed
graph, so that all its edges are curves monotonically increasing in the same direction [4, 5, 16, 19,
23,25].

Specific types of acyclic orientations that are central to many graph algorithms and applications
are the so called st-orientations, also known as bipolar orientations [41], whose resulting digraphs
have a single source s and a single sink t. It is well known that an undirected graph G with
prescribed vertices s and t admits an st-orientation if and only if G, with the addition of the edge
(s, t) if not already present, is biconnected (i.e., the graph cannot be disconnected by removing
a single vertex). The digraph resulting from an st-orientation is also called an st-graph. An st-
orientation can be computed in linear time by first computing in linear time an st-numbering
(or st-ordering) of the vertices of G [21], and then by orienting each edge from the end-vertex
with smaller number to the end-vertex with larger number. A different algorithm that directly
computes an st-orientation (and which uses it to compute an st-ordering) is given in [7]. In
particular, if G is planar, a planar st-orientation of G additionally requires that s and t belong to
the external face in some planar embedding of the graph. Planar st-orientations were originally
introduced in the context of an early planarity testing algorithm [28], and are largely used in
graph drawing to compute different types of layouts, including visibility representations, polyline
drawings, dominance drawings, and orthogonal drawings (refer to [11, 27]). Planar st-orientations
and related graph layout algorithms are at the heart of several graph drawing libraries and software
(see, e.g., [9,10,26,44]). Algorithms that compute st-orientations with specific characteristics (e.g.,
bounds on the length of the longest path) are also proposed and experimented in the context of
visibility and orthogonal drawings [36,37].

Our paper focuses on the computation of st-orientations with a specific property, namely we
address the following problem: “Given an undirected graph G and two prescribed vertices s and t
for which G∪ (s, t) is biconnected, compute an st-orientation of G such that the resulting st-graph
G′ has the minimum number of transitive edges (possibly none)”. We recall that an edge (u, v) of
a digraph G′ is transitive if there exists a directed path from u to v in G′ \ (u, v). An st-orientation
is non-transitive if the resulting digraph has no transitive edges; st-graphs with no transitive edges
are also known as transitively reduced st-graphs [11, 20], bipolar posets [24], or Hasse diagrams of
lattices [12, 38]. The problem we study, besides being of theoretical interest, has several practical
motivations in graph drawing. We mention some of them:

� Planar st-oriented graphs without transitive edges admit compact dominance drawings with
straight-line edges, a type of upward drawings that can be computed in linear time with very
simple algorithms [13]; when a transitive edge is present, one can temporarily subdivide it
with a dummy vertex, which will correspond to an edge bend in the final layout. Hence,
having few transitive edges helps to reduce bends in a dominance drawing.

� As previously mentioned, many layout algorithms for undirected planar graphs rely on a
preliminary computation of an st-orientation of the input graph, in which each face consists
of two edge-disjoint directed paths, called left and right paths, sharing their two end-vertices.
We preliminary observed that reducing the number of transitive edges in such an orientation
has typically a positive impact on the readability of the layout. Indeed, transitive edges often
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Figure 1: Two polyline drawings of the same plane graph, computed using two different st-
orientations, with s = 6 (the green, bottomost vertex) and t = 7 (the red, topmost vertex); tran-
sitive edges are colored blue and thicker. All edges are drawn monotone in the upward direction.
(a) An unconstrained st-orientation with 8 transitive edges, computed through an st-numbering;
(b) An st-orientation with the minimum number (four) of transitive edges; the resulting drawing
is more compact, it reduces the area by about 15%

.

result in long curves; avoiding them produces faces where the lengths of left and right paths
are more balanced and leads to more compact drawings (see Fig. 1).

� Algorithms for computing upward confluent drawings of transitively reduced DAGs are stud-
ied in [20]. Confluent drawings exploit edge bundling to create “planar” layouts of non-planar
graphs, without introducing ambiguity [15]. These algorithms can be applied to draw undi-
rected graphs that have been previously st-oriented without transitive edges when possible.

We also mention algorithms that compute two-page book embeddings of two-terminal series-
parallel digraphs, which either assume the absence of transitive edges [1] or which are easier to
implement if transitive edges are not present [14].

Contribution. The contribution of our paper is twofold:

� From a theoretical perspective, we prove that deciding whether a graph admits an st-
orientation without transitive edges is NP-complete (Section 2). On the other hand, deciding
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whether an undirected graph has an orientation such that the resulting digraph coincides with
its own transitive closure is linear-time solvable [30];

� From a practical point of view, we provide an Integer Linear Programming (ILP) model for
planar graphs, whose solution is an st-orientation with the minimum number of transitive
edges (Section 3). In our setting, s and t are two prescribed vertices that belong to the same
face of the input graph in at least one of its planar embeddings. The results of an extensive
experimental analysis (Section 4) show that the ILP model works very fast in practice;
popular solvers such as CPLEX can find a solution in about 10 seconds for instances with
up to 1000 vertices. The number of transitive edges in the st-orientations computed by
our model is on average 35% smaller than the one in the st-orientations computed with
classical unconstrained algorithms; for some instances the improvement is greater than 80%.
Moreover, focusing on popular graph drawing algorithms that apply an st-orientation as a
preliminary step, we show that reducing the number of transitive edges leads to drawings
that are much more compact, with an improvement ranging from 30% to 50% for most of
the instances.

2 NP-Completeness of the General Problem

The complexity of the problem of orienting the edges of an undirected graph so that the resulting
digraph has no transitive-edge and no directed cycle has a long research history. This problem was
first posed in 1962 by Ore [35] who asked to recognize the undirected graphs that can be oriented as
the diagram of an ordered set. This is an equivalent formulation of the problem above, sometimes
called the cover graph recognition problem. In 1987 Nešetřil and Rödl claimed to have proven that
the cover graph recognition problem is NP-complete [33]. Unfortunately, in 1991 a flaw in their
proof was discovered [43], forcing the authors to amend the issue [34]. In doing so, they relied on
a result by Lund and Yannakakis [29] about the hardness of approximating the chromatic number
of a graph. As the resulting proof was thought to be very complex, Brightwell came up with an
alternative proof [8] which was much more simple, being a direct reduction from NAE3SAT [42].
Recall that the NAE3SAT problem asks whether a given Boolean formula in conjunctive normal
form with clauses containing exactly three literals can be satisfied by a truth assignment of its
variables, subject to the constraint that at least one literal in each clause is false. The proof in [8]
also uses an easy-to-prove observation [32, 39] that states that if a graph admits some orientation
without directed cycles and without transitive edges, it also admits one such orientation where an
arbitrarily chosen node is the only sink. Hence, finding one such orientations where the resulting
digraph is restricted to be a multi-source single-sink digraph (or equivalently a single-source multi-
sink digraph) is NP-complete as well, even if the only sink (or the only source) is provided in
advance. In this paper we address the problem of finding an orientation of an undirected graph
such that the resulting digraph is a non-transitive st-graph, where both the vertices s and t are
provided in advance. Namely we prove the NP-completeness of the following problem.

Problem: Non-Transitive st-Orientation (NTO)
Instance: An undirected graph G = (V,E) and two vertices s, t ∈ V .
Question: Does there exist a non-transitive st-orientation of G?

It is not hard to see that the NTO problem is in NP, as one could non-deterministically choose
among the two possible orientations of each edge in E and then check in polynomial time if the
obtained orientation is a non-transitive st-orientation of G. To prove the hardness we have two
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possible strategies. The first strategy uses the result in [40] where it is shown that the NTO
problem where nodes s and t are not provided in advance (recognizing “cover graphs of lattices”
in the terminology of [40]) is NP-complete. We call this problem Relaxed-NTO.

Problem: Relaxed-Non-Transitive st-Orientation (Relaxed-NTO)
Instance: An undirected graph G = (V,E).
Question: Does there exist a non-transitive st-orientation of G for some choice of two

vertices s, t ∈ V ?

We were unable to find a Karp-reduction from Relaxed-NTO to NTO. Specifically, we did
not find a polynomial-time function that maps instances of Relaxed-NTO to instances of NTO
while preserving the answer to the original instance of Relaxed-NTO. Instead, in Section 2.1 we
describe a Turing-reduction, i.e., a process that uses a hypothetic deterministic Turing machine M
that solves NTO in polynomial time to solve also in polynomial-time Relaxed-NTO, proving
that the hypothetic machine M cannot exist unless P = NP.

The second strategy is motivated by the fact that the proof in [40] is rather complex. Indeed,
similarly to [34], the proof in [40] starts from an instance of the coloring problem proved to be
NP-complete by Lund and Yannakakis [29], and transforms such an instance into the instances
of a sequence of different problems, the fourth of which is Relaxed-NTO. In [6], unaware of
the result in [40], we presented a very simple Karp-reduction from NAE3SAT to NTO. This
reduction is described in Section 2.2. Finally, Section 2.3 shows that NTO can be easily reduced
to Relaxed-NTO. Hence, the two reductions of Sections 2.2 and 2.3 provide an alternative and
simpler proof of the result in [40], as much as [8] provides an alternative and simpler proof of the
result in [34]. Notably, both the reduction of Section 2.2 and the reduction in [8] start from an
instance of NAE3SAT, although the constructions are quite different.

2.1 NP-Hardness of NTO by a Turing-reduction

Consider an instance G = (V,E) of Relaxed-NTO and assume to have a deterministic Turing
machine M that solves NTO. Choose in all the O(|V |2) possible ways the pair s, t and launch M
on the obtained instances ⟨G, s, t⟩. It is immediate to see that if at least one instace ⟨G, s, t⟩ is a
Yes instance then the instance G = (V,E) is also a Yes instance. Conversely, if all the ⟨G, s, t⟩
instances are No instances then istance G = (V,E) is a No instance. The above described process
corresponds to a deterministic Turing machine M ′ that solves Relaxed-NTO. If the deterministic
Turing machine M was able to decide NTO in polynomial time, as M ′ launches M a polynomial
number (actually quadratic number) of times, M ′ would decide Relaxed-NTO also in polynomial
time. This is a contradiction as in [40] Relaxed-NTO is shown to be NP-hard. Hence NTO
cannot be solved in polynomial time.

2.2 NP-Hardness of NTO by a Karp-reduction

We reduce the following NP-complete problem [42].

Problem: Not-All-Equal 3SAT (NAE3SAT)
Instance: A Boolean formula that is a conjunction of clauses, where each clause is a

disjunction of three literals from a set X of Boolean variables.
Question: Does there exist a truth assignment to the variables in X so that each clause

has at least one true and one false literal?
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Starting from a NAE3SAT instance φ, we construct an instance Iφ = ⟨G, s, t⟩ of NTO such
that Iφ is a yes instance of NAE3SAT if and only if φ is a yes instance of NTO. Instance Iφ has
one variable gadget Vx for each Boolean variable x and one clause gadget Cc for each clause c of
φ. By means of a split gadget, the truth value encoded by each variable gadget Vx is transferred
to all the clause gadgets containing either the direct literal x or its negation x. Observe that the
NAE3SAT instance is in general not “planar”, in the sense that if you construct a graph where
each variable x and each clause c is a vertex and there is an edge between x and c if and only if
a literal of x belongs to c, then such a graph would be non-planar. The NAE3SAT problem on
planar instances is, in fact, polynomial [31]. Hence, G has to be assumed non-planar as well.

Before describing the gadgets, we introduce two simple observations on the constraints imposed
by any non-transitive st-orientation of a graph G.

Observation 1 Let (v1, v2, . . . , vk) be a path of G such that its internal vertices v2, v3, . . . , vk−1

have degree 2 in G and are different from s and t. In any st-orientation of G the edges (vi, vi+1),
with i = 1, . . . , k − 1, are all directed from vi to vi+1 or they are all directed from vi+1 to vi.

Proof: Consider a path (v1, v2, . . . , vk) (refer to Fig. 2(a)). Suppose that in an st-orientation of
G the edges (vi, vi+1), with i = 1, . . . , k − 1, are not all directed from vi to vi+1 (as shown in
Fig. 2(b)) and that they are not all directed from vi+1 to vi. It follows that two edges of the path
have an inconsistent orientation (as in Fig. 2(c)) and the path contains an internal vertex that is
a source or a sink different from s and t, contradicting the hypothesis that the orientation is an
st-orientation. □

v1

v2

v3
v4

v5

(a)

v1

v2

v3
v4

v5

(b)

v1

v2

v3
v4

v5

(c)

v1

v2

v3
v4 v5

(d)

Figure 2: (a) A path of G with all internal vertices of degree two. (b) A consistent orientation of
the path. (c) An inconsistent orientation of the path generates sinks or sources. (d) A directed
path of G and a chord.

Observation 2 Let (v1, v2, . . . , vk) be a path of G and let (v1, vk) be an edge of G. In any non-
transitive st-orientation of G the edges (vi, vi+1), with i = 1, . . . , k− 1, cannot be all directed from
vi to vi+1.

Proof: Suppose for a contradiction that there exists a non-transitive st-orientation of G such that
each edge (vi, vi+1), with i = 1, . . . , k − 1, is directed from vi to vi+1 (refer to Fig. 2(d)). If edge
(v1, vk) was also directed from v1 to vk it would be a transitive edge, contradicting the hypothesis
that the orientation is non-transitive. Otherwise, if (v1, vk) was directed from vk to v1 it would
form a directed cycle, contradicting the hypothesis that the orientation is an st-orientation. □

The main ingredient of the reduction is the fork gadget (refer to Fig. 3), that is composed of
ten edges e1, e2, . . . , e10, such that e1, e2, e3, and e4 have a common endpoint, denoted by v; e5, e6,
and e9 have a common endpoint, denoted by w; e7, e8, and e10 have a common andpoint, denoted
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Figure 3: (a) The fork gadget. (b)-(c) The two possible orientations of the fork gadget in a non-
transitive st-orientation of the whole graph.

by z; e3, e6, and e7 have a common endpont; e2 and e5 have a common endpoint; and e4 and e8
have a common endpoint. The following lemma holds.

Lemma 1 Let G be an undirected graph having a fork gadget F as an induced subgraph such that
F does not contain the vertices s or t. In any non-transitive st-orientation of G, the edges e9 and
e10 of F are oriented either both exiting F or both entering F . They are oriented exiting F if and
only if edge e1 is oriented entering F .

Proof: Suppose edge e1 is oriented entering F (refer to Fig. 3(b)). Either e9 or e10 are oriented
exiting F , since otherwise F contains a sink contradicting the fact that we have an st-orientation
ofG. Since gadget F is symmetric, we may assume without loss of generality that edge e9 is oriented
exiting F . Therefore, there must be at least one directed path from e1 to e9 traversing F . There
are three possible such directed paths: (1) path (e1, e4, e8, e7, e6, e9); (2) path (e1, e3, e6, e9); and
(3) path (e1, e2, e5, e9). Suppose Case (1) applies, i.e., (e1, e4, e8, e7, e6, e9) is a directed path. We
have a contradiction because of Observation 2 applied to the directed path (e4, e8, e7) and the chord
e3. Suppose Case (2) applies, i.e., (e1, e3, e6, e9) is a directed path. Note that by Observation 1
the edges e2 and e5 must be both directed in the same direction. If they were directed towards v,
then we would have a directed cycle (e3, e6, e5, e2). Hence, (e2, e5) are directed away from v and,
since (e1, e2, e5, e9) is also a directed path, Case (2) implies Case (3). Conversely, suppose Case (3)
applies, i.e., (e1, e2, e5, e9) is a directed path. Edge e6 must be directed towards w. In fact, if e6 was
directed away from w we would have a contradicton by Observation 2 applied to the directed path
(e2, e5, e6) and the chord e3. Also, edge e3 must be directed away from v. In fact, if e3 was directed
towards v edge e6 would be a transitive edge with respect to the directed path (e3, e2, e5). It follows
that (e1, e3, e6, e9) would also be a directed path and Case (3) implies Case (2). Therefore, we
have to assume that Case (2) and Case (3) both apply. Note that by Observation 1 the edges e4
and e8 must be both directed in the same direction. If the path (e8, e4) was oriented exiting z and
entering v then we would have a contradiction because of Observation 2 applied to the directed
path (e8, e4, e3) and the chord e7. It follows that the path (e4, e8) is oriented exiting v and entering
z. Now, edge e7 must be oriented entering z, otherwise e3 would be a transitive edge with respect
to the path (e4, e8, e7). Finally, edge e10 must be oriented exiting z, otherwise z would be a sink.
In conclusion, if e1 is oriented entering F , then e9 and e10 must be oriented exiting F .
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Figure 4: The variable gadget Vx and its true (a) and false (b) orientations.

With analogous and symmetric arguments it can be proved that if e1 is oriented exiting F
(refer to Fig. 3(c)), then e9 and e10 must be oriented entering F . Since e1 must be oriented in one
way or the other, the only two possible orientations of F are those depicted in Figs. 3(b) and 3(c)
and the statement follows. □

For each Boolean variable x of ϕ we construct a variable gadget Vx by suitably combining two
fork gadgets, denoted Fx and Fx, as follows (see Fig. 4). We introduce two paths Px and Px of
length four from s to t. The edge e1 of Fx (of Fx, respectively) is attached to the middle vertex of
path Px (of path Px, respectively). Edge e10 of Fx is identified with edge e9 of Fx. The two edges
e9 of Fx and e10 of Fx are denoted x and x, respectively. The construction of Vx is such that,
even if a directed path was added outside Vx from edge x to edge x or vice versa, no directed cycle
traverses Vx. In fact, in both the orientations depicted in Figs. 4(a) and 4(b) there is no directed
path inside Vx from an entering edge to an exiting edge. Further, observe that, since the length of
the two paths Px and Px is four, the edges of Px and Px cannot be transitive edges with respect
to any directed path originating from s, ending with t, and traversing Vx. We have the following
lemma.

Lemma 2 Let G be an undirected graph containing a variable gadget Vx as an induced subgraph.
In any non-transitive st-orientation of G the two edges of Vx denoted x and x are one entering
and one exiting Vx or vice versa.

Proof: Suppose edge e1 of Fx is oriented entering Fx (see edge e1,x of Fig. 4(a)). By Lemma 1
edge x is oriented exiting Fx and, hence, exiting Vx. Also edge e9 of Fx, which coincides with
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Figure 5: The split gadget Sk.

e10 of Fx (see the edge labeled e9,x = e10,x of Fig. 4(a)), is oriented exiting Fx and entering Fx.
Always by Lemma 1, edge e1 of Fx is oriented exiting Fx (see edge e1,x of Fig. 4(a)) and edge e9
of Fx, which coincides with edge x of Vx, is oriented entering Fx and, hence, entering Vx.

Suppose now that edge e1 of Fx is oriented exiting Fx (see Fig. 4(b)). By Lemma 1 edge x
is oriented entering Fx and, hence, entering Vx. Also edge e9 of Fx, which coincides with e10 of
Fx, is oriented entering Fx and exiting Fx. Now, always by Lemma 1, edge e1 of Fx is oriented
entering Fx and edge e9 of Fx, which coincides with edge x of Vx, is oriented exiting Fx and, hence,
exiting Vx. □

By virtue of Lemma 2 we associate the true value of variable x with the orientation of Vx

where edge x is oriented exiting and edge x is oriented entering Vx (see Fig. 4(a)). We call such
an orientation the true orientation of Vx. Analogously, we associate the false value of variable x
with the orientation of Vx where edge x is oriented entering and edge x is oriented exiting Vx (see
Fig. 4(b)). Observe that edge x (edge x, respectively) is oriented exiting Vx when the literal x (the
literal x, respectively) is true. Otherwise edge x (edge x, respectively) is oriented entering Vx.

The split gadget Sk is composed of a chain of k − 1 fork gadgets F1, F2, . . . Fk−1, where, for
i = 1, 2, . . . , k − 2, the edge e9 of Fi is identified with the edge e1 of Fi+1. We call input edge of
Sk the edge denoted e1 of F1. Also, we call output edges of Sk the k − 1 edges denoted e10 of the
fork gadgets F1, F2, . . . Fk−1 and the edge e9 of Fk−1 (see Fig. 5). The next lemma is immediate
and we omit the proof.

Lemma 3 Let G be an undirected graph having a split gadget Sk as an induced subgraph such that
Sk does not contain the vertices s or t. In any non-transitive st-orientation of G, the k output
edges of Sk are all oriented exiting Sk if the input edge of Sk is oriented entering Sk. Otherwise,
if the input edge of Sk is oriented exiting Sk the ouput edges of Sk are all oriented entering Sk.

If the directed literal x (negated literal x, respectively) occurs in k clauses, we attach the edge
denoted x (denoted x, respectively) of Vx to a split gadget Sx, and use the k output edges of Sx to
carry the truth value of x (of x, respectively) to the k clauses. The clause gadget Cc for a clause
c = (l1 ∨ l2 ∨ l3) is simply a vertex vc that is incident to three edges encoding the truth values of
the three literals l1, l2, and l3 (see Fig. 6). We prove the following.

Theorem 1 Problem NTO is NP-hard.

Proof: The reduction from an instance φ of NAE3SAT to an instance Iφ previously described is
performed in time linear in the size of φ.

Suppose Iφ = ⟨G, s, t⟩ is a positive instance of NTO and consider any non-transitive st-
orientation of Gφ. Consider a clause c of φ and the corresponding vertex vc in G. Since vertex vc is



634 C. Binucci, W. Didimo, M. Patrignani st-Orientations with Few Transitive Edges

t

s

x2

x2
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Figure 6: The clause gadget Cc for clause c = (x1 ∨ x2 ∨ x3). The configurations of the three
variable gadgets correspond to the truth values x1 = true, x2 = false, and x3 = true. The
clause is satisfied because the first literal x is true and the second and third literals x2 and x3

are false.

not a sink nor a source it must have at least one entering edge ein and at least one exiting edge eout.
Consider first edge ein and assume it corresponds to a directed literal xi of c (to a negated literal
xi of c, respectively). By construction, edge ein comes from the edge xi (edge xi, respectively) of
variable gadget Vxi

or from an intermediate split gadget Sxi
(Sxi

, respectively) that has edge xi

(edge xi, respectively) as input edge. Therefore, by Lemmas 2 and 3 edge x (edge xi, respectively)
of Vxi

is oriented exiting Vxi
, which corresponds to a true literal of c. Now consider edge eout and

assume it corresponds to a directed literal xj of c (to a negated literal xj of c, respectively). With
analogous arguments as above you conclude that edge xj (edge xj , respectively) of Vxj is oriented
entering Vxj

, which corresponds to a false literal of c. Therefore, each clause c has both a true

and a false literal and the NAE3SAT instance φ is a yes instance.

Conversely, suppose that instance φ is a yes instance of NAE3SAT. Consider a truth assign-
ment to the variables in X that satisfies φ. Orient the edges of each variable gadget Vx as depicted
in Fig. 4(a) or Fig. 4(b) depending on whether variable x is set to true or false in the truth
assignment, respectively. Orient each split gadget according to its input edge. Since the truth as-
signment is such that every clause has a true literal and a false literal, the corresponding clause
gadget Cc will have at least one incoming edge and one outgoing edge. Therefore, in the obtained
orientation s is the only source and t is the only sink. Regarding acyclicity, observe that variable
gadgets and clause gadgets whose edges are oriented as depicted in Fig. 4 and Fig. 6, respectively,
are acyclic. Also, a split gadget whose output edges are oriented all exiting or all entering the
gadget is acyclic. Since all the directed paths that enter a variable gadget Vxi terminate at t
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without exiting Vxi
and all the directed paths that leave Vxi

come from s without entering Vxi
,

there cannot be a directed cycle involving a variable gadget Vxi
. It remains to show that there are

no directed cycles involving split gadgets and clause gadgets. However, by Lemma 3 no directed
path may enter a split gadget from a clause gadget and exit the split gadget towards a second
clause gadget. Hence, directed cycles involving clause gadgets and split gadgets alone cannot exist.
Finally, it can be easily checked that the obtained orientation of G is non-transitive. □

Observe that since instance Iφ used in the proof of Theorem 1 is biconnected, Problem NTO
is NP-hard even on biconnected graphs.

2.3 Reduction of NTO to Relaxed-NTO

In this section we provide a reduction of NTO to Relaxed-NTO. Consider an instance ⟨G∗, s∗, t∗⟩
of NTO. Add two vertices s+ and t+ to G∗ and connect them to s∗ and to t∗, respectively. Call G+

the obtained graph. Since s+ and t+ have degree one in G+, in any non-transitive st-orientation of
G+ they can only be sources or sinks, where if one of them is the source the other one is the sink.
Hence, given any non-transitive st-orientation of G+ you can immediately find a non-transitive
s∗t∗-orientation of G∗, possibly by reversing all edge orientations if t+ is the source and s+ is the
sink. Conversely, given a non-transitive s∗t∗-orientation of G∗ you easily find an st-orientation of
G orienting the edge (s+, s∗) from s+ to s∗ and the edge (t∗, t+) from t∗ to t+. Therefore, the
addition of edges (s+, s∗) and (t+, t∗) is a polynomial-time reduction of NTO to Relaxed-NTO,
proving the hardness of the latter problem. Since Relaxed-NTO is also trivially in NP it is
NP-complete.

3 ILP for Planar Graphs

Let G be a planar graph with two prescribed vertices s and t, such that G ∪ (s, t) is biconnected
and such that G admits a planar embedding with s and t on the external face. In this section we
describe how to compute an st-orientation of G with the minimum number of transitive edges by
solving an ILP problem.

Suppose that G′ is the plane st-graph resulting from a planar st-orientation of G, along with
a planar embedding where s and t are on the external face. It is well known (see, e.g., [11]) that
for each vertex v ̸= s, t in G′, all incoming edges of v (as well as all outgoing edges of v) appear
consecutively around v. Thus, the circular list of edges incident to v can be partitioned into two
linear lists, one containing the incoming edges of v and the other containing the outgoing edges
of v. Also, the boundary of each internal face f of G′ consists of two edge-disjoint directed paths,
called the left path and the right path of f , sharing the same end-vertices (i.e., the same source and
the same destination). It can be easily verified that an edge e of G′ is transitive if and only if it
coincides with either the left path or the right path of some face of G′ (see also Claim 2 in [24]).
Note that, if e is a transitive edge in a given planar embedding of G′, it remains transitive in any
other planar embedding of G′ (the property of being transitive is not related to planarity). Hence,
the aforementioned property holds for every planar embedding of G′. Due to this observation, in
order to compute a planar st-orientation of G with the minimum number of transitive edges, we
can focus on any arbitrarily chosen planar embedding of G with s and t on the external face.

Let e1 and e2 be two consecutive edges encountered moving clockwise along the boundary of
a face f , and let v be the vertex of f shared by e1 and e2. The triple (e1, v, e2) is an angle of G
at v in f . Denote by deg(f) the number of angles in f and by deg(v) the number of angles at
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Figure 7: (a) An st-labeling of a plane graph G with prescribed nodes s and t. (b) The corre-
sponding st-orientation of G.

v. As it was proved in [17], all planar st-orientations of the plane graph G can be characterized
in terms of labelings of the angles of G. Namely, each planar st-orientation of G has a one-to-
one correspondence with an angle labeling, called an st-labeling of G, that satisfies the following
properties:

(L1) Each angle is labeled either S (small) or F (flat)1, except the angles at s and at t in the
external face, which are not labeled;

(L2) Each internal face f has 2 angles labeled S and deg(f)− 2 angles labeled F;

(L3) For each vertex v ̸= s, t there are deg(v)−2 angles at v labeled S and 2 angles at v labeled F;

(L4) All angles at s and t in their incident internal faces are labeled S.

Given an st-labeling of G, the corresponding st-orientation of G is such that for each vertex
v ̸= s, t, the two F angles at v separate the list of incoming edges of v to the list of outgoing
edges of v, while the two S angles in a face f separate the left and the right path of f . See Fig. 7
for an illustration. The st-orientation can be constructed from the st-labeling in linear time by
a breadth-first search of G that starts from s, makes all edges of s outgoing, and progressively
orients the remaining edges of G according to the angle labels.

Thanks to the characterization above, an edge e = (u, v) of the st-graph resulting from an
st-orientation is transitive if and only if in the corresponding st-labeling the angle at u and the
angle at v in one of the two faces incident to e (possibly in both faces) are labeled S. Based on this,
we present an ILP model that describes the possible st-labelings of G (for any arbitrary planar

1Note that, a label F (flat) does not necessarily imply that the geometric angle will be a π angle; however we
use this notation to be consistent with the one introduced in [17] and in other subsequent papers on the subject.



JGAA, 27(8) 625–650 (2023) 637

embedding of G with s and t on the external face) and that minimizes the number of transitive
edges. The ILP model aims to assign angle labels that satisfy Properties (L1)–(L4) and counts
pairs of consecutive S labels that occur in the circular list of angles in an internal face; additional
constraints are needed to avoid that a transitive edge is counted twice when it coincides with both
the left and the right path of its two incident faces. The integer linear program uses a number of
variables and constraints that is linear in the size of G; it is defined as follows.

Sets. Denote by V , E, and F the sets of vertices, edges, and faces of G, respectively. Also let
Fint ⊂ F be the set of internal faces of G. For each face f ∈ F , let V (f) and E(f) be the set of
vertices and the set of edges incident to f , respectively. For each vertex v ∈ V , let F (v) be the set
of faces incident to v and let Fint(v) be the set of internal faces incident to v. For each edge e ∈ E,
let F (e) be the set consisting of the two faces incident to e.

Variables. We define a binary variable xvf for each vertex v ∈ V \{s, t} and for each face f ∈ F (v).
Also, we use binary variables xsf (resp. xtf ) for each face f ∈ Fint(s) (resp. f ∈ Fint(t)). If xvf = 1
(resp. xvf = 0) we assign an S label (resp. an F label) to the angle at v in f .

For each internal face f ∈ Fint and for each edge (u, v) ∈ E(f), we define a binary variable
yuvf . An assignment yuvf = 1 indicates that both the angles at u and at v in f are labeled S, that
is, xuf = 1 and xvf = 1. As a consequence, if yuvf = 1 then edge (u, v) is transitive. Note however
that the sum of all yuvf does not always correspond to the number of transitive edges; indeed, if
f and g are the two internal faces incident to edge (u, v), it may happen that both yuvf and yuvg
are set to one, thus counting (u, v) as transitive twice. To count the number of transitive edges
without repetitions, we introduce another binary variable zuv, for each edge (u, v) ∈ E, such that
zuv = 1 if and only if (u, v) is transitive.

min
∑

(u,v)∈E

zuv (1)

∑
v∈V (f)

xvf = 2 for f ∈ Fint (2)

∑
f∈F (v)

xvf = deg(v)− 2 for v ∈ V \ {s, t} (3)

xsf = 1 for f ∈ Fint ∩ F (s) (4)

xtf = 1 for f ∈ Fint ∩ F (t) (5)

xuf + xvf ≤ yuvf + 1 for f ∈ Fint and (u, v) ∈ E(f) (6)

zuv ≥ yuvf for e = (u, v) ∈ E and f ∈ F (e) (7)

xvf ∈ {0, 1} yuvf ∈ {0, 1} zuv ∈ R (8)

Objective function and constraints. The objective function and the set of constraints are
described by the formulas (1)–(8). The objective is to minimize the total number of transitive
edges, i.e., the sum of the variables zuv. Constraints 2 and 3 guarantee Properties (L2) and (L3)
of the st-labeling, respectively, while Constraints 4 and 5 guarantee Property (L4). Constraints 6
relate the values of the variables yuvf to the values of xuf and xvf . Namely, they guarantee that
yuvf = 1 if and only if both xuf and xvf are set to 1. Constraints 7 relate the values of the variables
zuv to those of the variables yuvf ; they guarantee that an edge (u, v) is counted as transitive (i.e.,
zuv = 1) if and only if in at least one of the two faces f incident to (u, v) both the angle at u and
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the angle at v are labeled S. Finally, we explicitly require that xuv and yuv are binary variables,
while we only require that each zuv is a real number; this helps to speed-up the solver and, along
with the objective function, is enough to guarantee that each zuv takes value 0 or 1.

4 Experimental Analysis

We evaluated the efficiency of our ILP model using the solver IBM ILOG CPLEX 20.1.0.0 (using
the default setting), running on a laptop with Microsoft Windows 11 v.10.0.22000 OS, Intel Core
i7-8750H 2.20GHz CPU, and 16GB RAM.

Instances. The experiments have been executed on a large benchmark of instances, each instance
consisting of a plane biconnected graph and two vertices s and t on the external face. These graphs
are randomly generated with the same approach used in previous experiments in graph drawing
(see, e.g., [3]). Namely, for a given integer n > 0, we generate a plane graph with n vertices
starting from a triangle and executing a sequence of steps, each step preserving biconnectivity
and planarity. At each step the procedure randomly performs one of the two following operations:
(i) an Insert-Edge operation, which splits a face by adding a new edge, or (ii) an Insert-Vertex
operation, which subdivides an existing edge with a new vertex. The Insert-Vertex operation is
performed with a prescribed probability piv (which is a parameter of the generation process), while
the Insert-Edge operation is performed with probability 1− piv. For each operation, the elements
(faces, vertices, or edges) involved are randomly selected with equal probability. To avoid multiple
edges, if an Insert-Edge operation selects two end-vertices that are already connected by an edge,
we discard the selection and repeat the step. Once the plane graph is generated, we randomly select
two vertices s and t on its external face, again with uniform probability distribution. We generated
a sample of 10 instances for each pair (n, piv), with n ∈ {10, 20, . . . , 90, 100, 200, . . . , 900, 1000} and
piv ∈ {0.2, 0.4, 0.5, 0.6, 0.8}, for a total of 950 graphs. Higher values of piv lead to sparser graphs.

On average, for piv = 0.8 we have graphs with density of 1.23 (close to the density of a tree), for
piv = 0.5 we have graphs with density of 1.76, and for piv = 0.2 we have graphs with density 2.53
(close to the density of maximal planar graphs). Fig. 8 shows for each sample the average density
(number of edges divided by the number of vertices) of the graphs in that sample, together with
the standard deviation. In addition to these information, Table 1 and Table 2 in the appendix
report for each sample the minimum and maximum density values.

Experimental Goals. Our experimental analysis has three main goals:

(G1) Evaluate the efficiency of our approach, i.e., the running time required by our ILP model.
We call OptST the algorithm that solves the integer linear program;

(G2) Evaluate the percentage of transitive edges in the solutions of the ILP model and how many
transitive edges are saved with respect to applying a classical linear-time algorithm that
computes an unconstrained st-orientation of the graph [22];

(G3) Evaluate the impact of minimizing the number of transitive edges on the area (i.e. the area
of the minimum bounding box) of polyline drawings constructed with an algorithm that
computes an st-orientation as a preliminary step.

For (G2) and (G3) we used implementations available in the GDToolkit library [10] for the
following algorithms: (a) A linear-time algorithm that computes an unconstrained st-orientation
of the graph based on the classical st-numbering algorithm by Even and Tarjan [22]. We refer to this
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(a) (b)

Figure 8: Density (mean values) and standard deviation of the different instances of our graph
benchmark for: (a) piv = 0.8− 0.5 and (b) piv = 0.4− 0.2.

(a) (b)

Figure 9: Box-plots of the running time of OptST. Whiskers represent the minimum and the
maximum values; for each box, the horizontal segment represents the median value, while the
lower and the upper part represent the first and the third quartile, respectively.

algorithm as BaseST. (b) A linear-time algorithm that first computes a visibility representation
of an undirected planar graph based on a given st-orientation of the graph, and then computes
from this representation a planar polyline drawing [12]. We call DrawBaseST and DrawOptST
the applications of this drawing algorithm to the st-graphs resulting from BaseST and OptST,
respectively.

Experimental Results. As for Goal (G1), Fig. 9 reports the running time (in seconds) of OptST,
i.e., the time needed by CPLEX to solve our ILP model. To make the charts more readable we split
the results into two sets, one for the instances with up to 90 vertices and the other for the larger
instances. OptST is rather fast: 75% of the instances with up to 90 vertices are solved in less than
one second and all these instances are solved in less than five seconds. For the larger instances (with
up to 1000 vertices), 75% of the instances are solved in less than 10 seconds and all instances are
solved in less than 25 seconds. These results clearly indicate that our ILP model can be successfully
used in several application contexts that manage graphs with up to a thousand vertices.

As for Goal (G2), Fig. 10 shows the reduction (in percentage) of the number of transitive edges
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(a) (b)

(c) (d)

Figure 10: Improvement (%) in the number of transitive edges.

in the solutions of OptST with respect to the solutions of BaseST. More precisely, Fig. 10(a)
reports values averaged over all instances with the same number of vertices; Fig. 10(b), Fig. 10(c),
and Fig. 10(d) report the same data, partitioning the instances by different values of piv, namely
0.8 (the sparsest instances), 0.4-0.6 (instances of medium density), and 0.2 (the densest instances).
For each instance, let trOpt and trHeur be the number of transitive edges of the solutions computed
by OptST and BaseST, respectively. The reduction percentage of OptST against BaseST is

measured by the value
(

trHeur−trOpt
max{1,trHeur}×100

)
. Over all instances, the average reduction is about 35%;

it grows above 60% on the larger graphs if we restrict to the sparsest instances (with improvements
greater than 80% on some graphs), while it is below 30% for the densest instances, due to the
presence of many 3-cycles, for which a transitive edge cannot be avoided. For completeness, we
also report in the appendix the total amount of transitive edges created by the two algorithms
OptST and of BaseST, expressed both as absolute values and as percentages with respect to the
total number of edges of the graph (Fig. 16). As expected, the amount of transitive edges increases
with the density of the graph (in particular, denser graphs have a higher probability of containing
triangles, hence transitive edges).

As for Goal (G3), Fig. 11 shows the percentage of instances for which DrawOptST produces
drawings that are better than those produced by DrawBaseST in terms of area requirement (the
label “better” of the legend). It can be seen that DrawOptST computes more compact drawings
for the majority of the instances. In particular, it is interesting to observe that this is most often
the case even for the densest instances (i.e., those for piv = 0.2), for which we have previously
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(a) (b)

(c) (d)

Figure 11: Instances for which DrawOptST produces drawings that are more compact than
DrawBaseST (label “better”).

seen that the average reduction of transitive edges is less evident. We also observe that in a small
percentage of cases, when the graph is small or rather sparse, the reduction of transitive edges
does not cause a reduction of the drawing area. We guess that this behavior may depend on the
fact that for most of these instances the absolute number of transitive edges is small, also in the
solution of the heuristic. The positive trend becomes definitely clear when the size and the density
of the instances increase. For those instances for which DrawOptST computes more compact
drawings than DrawBaseST, Fig. 12 reports the average percentage of improvement in terms of
area requirement (i.e., the percentage of area reduction). The values are mostly between 30% and
50%. To complement this data, Fig. 13 reports the trend of the improvement (reduction) in terms
of drawing area with respect to the reduction of the transitive edges (discretized in four intervals).
For the instances with piv = 0.8 and piv = 0.2, the correlation between these two measures is
quite evident. For the instances of medium density (piv ∈ {0.4, 0.5, 0.6}), the highest values of
improvement in terms of area requirement are observed for reductions of transitive edges between
22% and 66%. Figures 14 and 15 show examples of drawings computed by DrawBaseST and
DrawOptST for two of our instances.
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(a) (b)

(c) (d)

Figure 12: Area improvement (%) of DrawOptST with respect to DrawBaseST, for the in-
stances where DrawOptST is “better” (i.e., the “better” instances in Fig. 11).

5 Final Remarks and Open Problems

We addressed the problem of computing st-orientations with the minimum number of transitive
edges. This problem has practical applications in graph drawing, as finding an st-orientation is at
the heart of several graph drawing algorithms. Although st-orientations without transitive edges
have been studied from a combinatorial perspective [24], there is a lack of practical algorithms,
and the complexity of deciding whether a graph can be oriented to become an st-graph without
transitive edges seems not to have been previously addressed.

We proved that this problem is NP-hard in general and we described an ILP model for planar
graphs based on characterizing planar st-graphs without transitive edges in terms of a constrained
labeling of the vertex angles inside its faces. An extensive experimental analysis on a large set
of instances shows that our model is able to solve instances with up to 1000 vertices in about 10
seconds. It reduces on average by 35% the number of transitive edges with respect to a classical
algorithm that computes an unconstrained st-orientation. We also showed that for classical layout
algorithms that compute polyline drawings of planar graphs through an st-orientation, minimizing
the number of transitive edges yields more compact drawings (with an improvement between 30%
and 50%) in most cases (see also Fig. 14 and Fig. 15).

We conclude by suggesting two natural future research directions:
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(a) (b)

(c) (d)

Figure 13: Correlation between the improvement (reduction) in terms of drawing area and in terms
of transitive edges improvement.

� It remains open to establish the time complexity of the problem for planar graphs. Are
there polynomial-time algorithms that compute st-orientations with the minimum number
of transitive edges for all planar graphs or for specific subfamilies of planar graphs?

� From a practical point of view, it would be relevant to design fast heuristics for computing
st-orientations of graphs with few transitive edges, and experiment their behavior on large
real-world networks.
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(a) 14 transitive edges (b) 7 transitive edges

Figure 14: Two polyline drawings of the same plane graph with 100 vertices and piv = 0.8 computed
by (a) DrawBaseST and (b) DrawOptST. Transitive edges are colored blue and are thicker.
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(a) 52 transitive edges

(b) 37 transitive edges

Figure 15: Two polyline drawings of the same plane graph with 100 vertices and piv = 0.5 computed
by (a) DrawBaseST and (b) DrawOptST. Transitive edges are colored blue.
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[9] M. Chimani, C. Gutwenger, M. Jünger, G. W. Klau, K. Klein, and P. Mutzel. The open
graph drawing framework (OGDF). In Handbook of Graph Drawing and Visualization, pages
543–569. Chapman and Hall/CRC, 2013.

[10] G. Di Battista and W. Didimo. Gdtoolkit. In Handbook of Graph Drawing and Visualization,
pages 571–597. Chapman and Hall/CRC, 2013.

[11] G. Di Battista, P. Eades, R. Tamassia, and I. G. Tollis. Graph Drawing: Algorithms for the
Visualization of Graphs. Prentice-Hall, 1999.

[12] G. Di Battista and R. Tamassia. Algorithms for plane representations of acyclic digraphs.
Theor. Comput. Sci., 61:175–198, 1988. doi:10.1016/0304-3975(88)90123-5.

[13] G. Di Battista, R. Tamassia, and I. G. Tollis. Area requirement and symmetry display of planar
upward drawings. Discret. Comput. Geom., 7:381–401, 1992. doi:10.1007/BF02187850.

[14] E. Di Giacomo, W. Didimo, G. Liotta, and S. K. Wismath. Book embeddability of series-
parallel digraphs. Algorithmica, 45(4):531–547, 2006. doi:10.1007/s00453-005-1185-7.

https://doi.org/10.1007/3-540-62495-3_34
https://doi.org/10.7155/jgaa.00217
https://doi.org/10.1109/12.868028
https://doi.org/10.1109/12.868028
https://doi.org/10.1093/comjnl/bxv082
https://doi.org/10.1016/j.tcs.2014.01.015
https://doi.org/10.1016/j.tcs.2014.01.015
https://doi.org/10.1007/978-3-031-22203-0_15
https://doi.org/10.1007/978-3-031-22203-0_15
https://doi.org/10.1007/3-540-45749-6_25
https://doi.org/0.1007/BF01108825
https://doi.org/0.1007/BF01108825
https://doi.org/10.1016/0304-3975(88)90123-5
https://doi.org/10.1007/BF02187850
https://doi.org/10.1007/s00453-005-1185-7


JGAA, 27(8) 625–650 (2023) 647

[15] M. Dickerson, D. Eppstein, M. T. Goodrich, and J. Y. Meng. Confluent drawings: Visualizing
non-planar diagrams in a planar way. J. Graph Algorithms Appl., 9(1):31–52, 2005. doi:

10.7155/jgaa.00099.

[16] W. Didimo. Upward graph drawing. In Encyclopedia of Algorithms, pages 2308–2312. 2016.
doi:10.1007/978-1-4939-2864-4\_653.

[17] W. Didimo and M. Pizzonia. Upward embeddings and orientations of undirected planar
graphs. J. Graph Algorithms Appl., 7(2):221–241, 2003. doi:10.7155/jgaa.00068.

[18] P. Eades, A. Symvonis, and S. Whitesides. Three-dimensional orthogonal graph drawing algo-
rithms. Discret. Appl. Math., 103(1-3):55–87, 2000. doi:10.1016/S0166-218X(00)00172-4.

[19] M. Eiglsperger, M. Kaufmann, and F. Eppinger. An approach for mixed upward planarization.
J. Graph Algorithms Appl., 7(2):203–220, 2003. doi:10.7155/jgaa.00067.

[20] D. Eppstein and J. A. Simons. Confluent Hasse diagrams. J. Graph Algorithms Appl.,
17(7):689–710, 2013. doi:10.7155/jgaa.00312.

[21] S. Even and R. E. Tarjan. Computing an st-numbering. Theor. Comput. Sci., 2(3):339–344,
1976.

[22] S. Even and R. E. Tarjan. Corrigendum: Computing an st-numbering. TCS 2(1976):339-344.
Theor. Comput. Sci., 4(1):123, 1977.
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[40] V. Rödl and L. Thoma. The complexity of cover graph recognition for some varieties of finite
lattices. Order, 12(4):351–374, 1995. doi:10.1007/BF01110379.

[41] P. Rosenstiehl and R. E. Tarjan. Rectilinear planar layouts and bipolar orientations of planar
graphs. Discret. Comput. Geom., 1:343–353, 1986. doi:10.1007/BF02187706.

[42] T. J. Schaefer. The complexity of satisfiability problems. In Proc. of the 10th Annual ACM
Symposium on Theory of Computing, pages 216–226, 1978. doi:10.1145/800133.804350.

[43] J. Thostrup. Partial ordered sets and graphs. MSc. dissertation, Odense University, Denmark,
56 pp., 1992. In Danish.

[44] R. Wiese, M. Eiglsperger, and M. Kaufmann. yFiles - visualization and automatic lay-
out of graphs. In Graph Drawing Software, pages 173–191. Springer, 2004. doi:10.1007/

978-3-642-18638-7\_8.

https://doi.org/10.1145/49097.49099
https://doi.org/10.1145/49097.49099
https://doi.org/10.1007/BF00340774
https://doi.org/10.1007/BF00340774
https://doi.org/10.1090/coll/038
https://doi.org/10.1016/j.tcs.2008.08.012
https://doi.org/10.7155/jgaa.00210
https://doi.org/10.1016/0095-8956(76)90024-1
https://doi.org/10.1007/BF00390104
https://doi.org/10.1007/BF01110379
https://doi.org/10.1007/BF02187706
https://doi.org/10.1145/800133.804350
https://doi.org/10.1007/978-3-642-18638-7_8
https://doi.org/10.1007/978-3-642-18638-7_8


JGAA, 27(8) 625–650 (2023) 649

A Appendix

0.8 0.6 0.5
n AVG MIN MAX SD AVG MIN MAX SD AVG MIN MAX SD
10 1.16 1.00 1.40 0.11 1.33 1.10 1.50 0.11 1.50 1.20 1.80 0.22
20 1.19 1.05 1.30 0.08 1.54 1.30 2.15 0.25 1.65 1.35 2.05 0.20
30 1.23 1.07 1.37 0.10 1.49 1.37 1.67 0.10 1.68 1.43 1.93 0.16
40 1.22 1.10 1.30 0.06 1.58 1.43 1.78 0.11 1.83 1.58 2.08 0.14
50 1.22 1.16 1.28 0.04 1.57 1.46 1.66 0.06 1.74 1.54 1.86 0.09
60 1.24 1.15 1.33 0.06 1.51 1.38 1.63 0.09 1.77 1.55 1.95 0.13
70 1.22 1.16 1.36 0.06 1.57 1.41 1.71 0.10 1.84 1.66 1.93 0.08
80 1.25 1.19 1.33 0.05 1.57 1.49 1.68 0.06 1.71 1.63 1.79 0.05
90 1.24 1.16 1.33 0.06 1.54 1.40 1.71 0.10 1.80 1.67 1.96 0.11
100 1.25 1.15 1.34 0.05 1.53 1.40 1.67 0.09 1.80 1.69 1.97 0.09
200 1.25 1.20 1.28 0.03 1.57 1.50 1.65 0.06 1.78 1.69 1.84 0.05
300 1.25 1.19 1.30 0.03 1.59 1.48 1.67 0.07 1.82 1.73 1.93 0.07
400 1.25 1.19 1.31 0.03 1.59 1.53 1.64 0.04 1.80 1.74 1.86 0.04
500 1.25 1.21 1.27 0.03 1.59 1.53 1.62 0.03 1.82 1.75 1.89 0.05
600 1.25 1.21 1.29 0.02 1.59 1.54 1.64 0.04 1.80 1.73 1.88 0.05
700 1.24 1.21 1.27 0.02 1.57 1.55 1.59 0.01 1.79 1.71 1.84 0.04
800 1.24 1.23 1.26 0.01 1.59 1.55 1.62 0.02 1.80 1.73 1.88 0.05
900 1.25 1.22 1.28 0.02 1.59 1.54 1.66 0.04 1.80 1.75 1.86 0.04
1000 1.24 1.23 1.26 0.01 1.59 1.56 1.63 0.03 1.80 1.77 1.85 0.03

Table 1: Density of the different instances of our graph benchmark for piv = 0.8− 0.5.

0.4 0.2
n AVG MIN MAX SD AVG MIN MAX SD
10 1.71 1.50 2.00 0.14 1.89 1.40 2.20 0.26
20 1.76 1.60 2.05 0.15 2.41 2.25 2.55 0.11
30 1.93 1.83 2.07 0.08 2.42 2.23 2.57 0.11
40 1.97 1.70 2.23 0.20 2.49 2.43 2.58 0.05
50 2.02 1.80 2.30 0.14 2.54 2.40 2.68 0.09
60 2.00 1.83 2.25 0.13 2.54 2.43 2.67 0.07
70 2.04 1.89 2.20 0.11 2.55 2.41 2.70 0.09
80 2.03 1.79 2.18 0.14 2.54 2.44 2.65 0.07
90 2.05 1.93 2.17 0.08 2.59 2.42 2.76 0.10
100 2.06 1.90 2.20 0.09 2.60 2.54 2.70 0.05
200 2.03 1.92 2.10 0.05 2.58 2.53 2.65 0.04
300 2.08 2.02 2.15 0.05 2.63 2.58 2.68 0.03
400 2.10 2.04 2.15 0.03 2.63 2.55 2.66 0.03
500 2.08 2.02 2.16 0.05 2.62 2.59 2.68 0.03
600 2.07 2.02 2.11 0.02 2.63 2.61 2.65 0.01
700 2.08 2.04 2.11 0.02 2.63 2.60 2.66 0.02
800 2.09 2.05 2.14 0.03 2.62 2.59 2.67 0.03
900 2.08 2.02 2.17 0.04 2.63 2.60 2.66 0.02
1000 2.08 2.05 2.12 0.02 2.63 2.61 2.64 0.01

Table 2: Density of the different instances of our graph benchmark for piv = 0.4− 0.2
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Figure 16: Amount of transitive edges in the solutions of OptST and BaseST: (a)–(d) Absolute
values; (e)–(h) Percentages with respect to the total number of edges.
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