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Abstract. Simple drawings are drawings of graphs in the plane such that vertices
are distinct points, edges are Jordan arcs connecting their endpoints, and edges intersect
at most once (either in a proper crossing or in a shared endpoint). Simple drawings
are generalized twisted if there is a point O such that every ray emanating from O
crosses every edge of the drawing at most once, and there is a ray emanating from O
which crosses every edge exactly once. We show that all generalized twisted drawings
of Kn contain exactly 2n− 4 empty triangles, by this making a substantial step towards
proving the conjecture that any simple drawing of Kn contains at least 2n− 4 empty
triangles.

1 Introduction

Simple drawings are drawings of graphs in the plane such that vertices are distinct points, edges
are Jordan arcs connecting their endpoints and not passing through any point corresponding to
another vertex, and edges intersect at most once, either in a proper (that is, transversal) crossing or
in a shared endpoint. Moreover, we assume for convenience that no three edges cross at a common
point, however, all statements in this work also hold without this additional assumption. The edges
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and vertices of a drawing partition the plane minus those objects into open connected regions,
which are called the cells of the drawing. When the edges are straight-line segments, the drawings
are usually called straight-line drawings.

Two simple drawings D and D′ are strongly isomorphic if there is a homeomorphism of the
sphere such that D is mapped to D′ (strictly speaking, a projection of the plane to the sphere
followed by a homeomorphism and a projection of the sphere to the plane). Two simple drawings
D and D′ are weakly isomorphic if there is a bijection between the vertices of D and D′ such that
a pair of edges in D crosses exactly when the corresponding pair of edges in D′ crosses.

A triangle in a simple drawing D is a subdrawing of D which is a drawing of K3, the complete
graph on three vertices. By the definition of simple drawings, any triangle is crossing free and thus
splits the plane (or the sphere) into two connected regions. We call those open regions the sides
of the triangle. If one side of a triangle does not contain any vertices of D, that side is called an
empty side of the triangle, and the triangle is called empty triangle. Note that empty (sides of)
triangles might be intersected by edges. We observe that simple drawings of K3 consist of exactly
one triangle, which has two empty sides. Triangles in simple drawings of graphs with n ≥ 4 vertices
have at most one empty side.

In this work, we consider the number of empty triangles in simple drawings of graphs. We focus
on drawings of Kn, the complete graph on n vertices, since in general, a drawing of a graph might
not contain triangles, even if the graph is dense, like for example the complete bipartite graph. In
particular, we study the number of empty triangles in a special family of such drawings, which we
call the family of generalized twisted drawings.

The number of empty triangles in any simple drawing of Kn is at most
(
n
3

)
because every such

drawing contains exactly
(
n
3

)
triangles (not all of which have to be empty). This upper bound is

tight, as there are simple drawings of Kn where every triangle is empty, for example, straight-line
drawings with vertices in convex position.

Much more interesting and challenging is to find a lower bound on the number of empty triangles
in a simple drawing of Kn. This has been studied quite intensively before and is also the subject of
this paper.

For straight-line drawings, it is easy to see that every such drawing of Kn contains Ω(n2) empty
triangles (since every edge is on the boundary of at least one empty triangle and every triangle has
exactly three edges). Further, motivated by questions of Erdős on the existence and number of
(empty) convex polygons in point sets, there has been a large amount of research on the number of
empty triangles in straight-line drawings of Kn. The currently best known bounds are that every
such drawing contains at least n2 +Ω(n log2/3 n) empty triangles [3] and there exist straight-line
drawings with at most 1.6196n2 + o(n2) empty triangles [8].

A drawing of a graph is pseudolinear if the edges can be extended to an arrangement of
pseudolines, where a pseudoline is a homeomorphic image of the real line in the plane so that its
complement is disconnected, and an arrangement of pseudolines is a set of pseudolines in which
every two cross exactly once. Any pseudolinear drawing of Kn has at least n2 +O(n log n) empty
triangles, as shown by Arroyo, McQuillan, Richter, and Salazar [6]. In the same work, the authors
also considered simple drawings of Kn with the following property: Every triangle has a side S such
that for any two vertices in the closure S̄ of S, the edge between them is also contained in S̄. They

showed that any drawing of Kn that fulfills this property1 has at least n2

3 +O(n) empty triangles.
While in the previous cases there is always at least a quadratic number of empty triangles, the

situation changes drastically for general simple drawings of Kn. Harborth [11] showed in 1989 that
there are simple drawings of Kn that contain only 2n − 4 empty triangles (see Figure 1 for an

1In [6], these drawings are called convex drawings and pseudolinear drawings are also called f -convex drawings.
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example). Note that this especially implies that, in contrast to straight-line drawings, most edges
in these drawings are not incident to any empty triangles. Moreover, it can be easily checked that
all empty triangles in Harborth’s drawings are incident to one of two edges.

Figure 1: A twisted drawing of K6. The red dashed arrow indicates a ray crossing every edge
exactly once. Further, any ray starting at the red square crosses every edge at most once.

On the other hand, Harborth observed that every vertex in those drawings is incident to at least
two empty triangles, a property which he conjectured to be true for any simple drawing of Kn.
In 2013, Fulek and Ruiz-Vargas [10, 15]2 proved this conjecture to be true, by this showing that
every simple drawing of Kn contains at least 2n

3 empty triangles.
The currently best lower bound on the number of empty triangles in simple drawings of Kn

is n [5]. The authors of [5] conjectured that Harborth’s upper bound of 2n− 4 should actually be
the true lower bound for n ≥ 4. This conjecture has been confirmed via computations for all simple
drawings of Kn of small cardinality, namely, for all such drawings with 4 ≤ n ≤ 9 [2].

Conjecture 1 ([5]) For any n ≥ 4, every simple drawing of Kn contains at least 2n− 4 empty
triangles.

The drawings that Harborth used for his upper bound were later called twisted drawings by
Pach, Solymosi, and Tóth [14], who defined them as follows. A simple drawing is twisted if there
is a labeling v1, v2, ..., vn of the vertices such that vivj (i < j) crosses vkvl (k < l) if and only if
i < k < l < j or k < i < j < l. Figure 1 shows a classic way of representing a twisted drawing: The
vertices are all placed on a line (and labeled from left to right). Edges vivn are drawn below that
line; edges vivj with i < j < n start at vi below the line, surround all the vertices to the right, and
enter vj from above the line.

Pach, Solymosi, and Tóth [14] showed that every simple drawing of Kn contains an induced

subdrawing on c log
1
8 (n) vertices (for some constant c) which is either a twisted drawing or a convex

drawing. A simple drawing is called convex in this context3 if there is a labeling v1, v2, ..., vn of
the vertices such that vivj (i < j) crosses vkvl (k < l) if and only if i < k < j < l or k < i < l < j.
Note that, up to weak isomorphism, there is exactly one convex and one twisted drawing of Kn, as
all crossings are determined by the definitions. The result shown in [14] has recently been improved

2The results appeared 2013 as a joint publication of Fulek and Ruiz-Vargas in [10] combined with work on disjoint
edges; and in 2015 as a publication by Ruiz-Vargas in [15] with a focus on empty triangles.

3Note that definition of convex drawing from [14] is different from the one given in [6]. The class of drawings
implied by the latter definition includes the ones by the former definition.
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by Suk and Zeng [16], who showed that every simple drawing of Kn contains a subdrawing which

is either a twisted or a convex drawing of Kn′ , where n′ = (log n)
1
4−o(1). Further, it has been

generalized to the setting of (abstract) rotation systems by Arroyo, Richter, Salazar, and Sullivan [7].
We remark that there are several more results in the context of twisted drawings, see [1, 9, 12, 13]
and references therein.

A generalization of twisted drawings was introduced in [4] as a special type of c-monotone
drawings. A simple drawing D in the plane is c-monotone if there is a point O of the plane such
that any ray emanating from O intersects any edge of D at most once. A c-monotone drawing D is
generalized twisted if there exists a ray r emanating from O that intersects every edge of D (see
Figure 1 and Figure 2(c) for examples). In [4], generalized twisted drawings are used to improve
the lower bound on the number of disjoint edges and the lower bound on the length of the longest
plain path in simple drawings of Kn.

The name “generalized twisted” comes from the fact that each twisted drawing admits a
generalized twisted representation. For instance, in the twisted drawing shown in Figure 1 the
red square in the middle of the drawing satisfies the properties required for the point O in the
definition of generalized twisted. Moreover, while for any n, there is only one twisted drawing
of Kn up to weak isomorphism, there are many generalized twisted drawings of Kn for n ≥ 6.
Up to weak isomorphism, Figure 2(a) shows the only generalized twisted drawing of K5 (which is
also twisted) and Figures 2(b)-(d) show all generalized twisted drawings of K6 (Figure 2(b) is the
twisted drawing among them).

As twisted drawings and the upper bound obtained by them are crucial in the study of empty
triangles, it is natural to ask about the number of empty triangles in their generalization. The initial
goal of this work was to prove Conjecture 1 for generalized twisted drawings of Kn. One might
expect that two generalized twisted drawings of Kn have a different number of empty triangles.
However, we show that, surprisingly, the conjectured bound is tight for all generalized twisted
drawings of Kn.

Theorem 1 For any n ≥ 4, every generalized twisted drawing of Kn contains exactly 2n− 4 empty
triangles.

In Section 2, we introduce some properties of generalized twisted drawings and empty triangles
in simple drawings. Then, in Section 3, we show several results about empty triangles in generalized
twisted drawings, which we finally put together to obtain a proof of Theorem 1. We conclude the
paper with some open problems in Section 4.

2 Preliminaries

It is well known that all weakly isomorphic drawings of Kn have the same empty triangles. One
way to see this is the following: Consider any triangle ∆ in a simple drawing of Kn and any pair of
vertices a and b that are not vertices of ∆. The vertices a and b lie on the same side of ∆ if and
only if the edge (a, b) crosses the boundary of ∆ an even number of times. Thus, ∆ is empty if
and only if every edge between two vertices that are not vertices of ∆ crosses ∆ an even number
of times. Therefore, drawings with the same pairs of crossing edges also have the same empty
triangles. As a consequence, the number of empty triangles of a generalized twisted drawing D
of Kn is the same as the number of empty triangles of any simple drawing of Kn that is weakly
isomorphic to D. To prioritize readability, several of our figures show drawings that are weakly
isomorphic to generalized twisted (sub-)drawings rather than a generalized twisted drawing.
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(a) (b)

(c) (d)
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Figure 2: All (up to weak isomorphism) generalized twisted drawings of K5 and K6 [4]. O and Z
have to lie in cells marked with red squares or in cells with blue crosses. One possible curve OZ for
each cell pair that could contain O and Z is drawn dashed or dash-dotted (and as ray in c).

We start by recalling some of the definitions and results from [4], which we will need later on.
Given a simple drawing D of Kn, two cells of D are called antipodal if for each triangle of D, they
lie on different sides. A cell with at least one vertex on its boundary is called a vertex-incident-cell
or, for short, a vi-cell.

For a generalized twisted drawing D of Kn, we can put a point Z into the unbounded cell of D,
on the ray r that crosses every edge. Thus, in a generalized twisted drawing of Kn there is always
a curve OZ crossing every edge once. One can prove [4] that the cells containing O and Z are
antipodal vi-cells (see Figure 2(c)). We denote the vi-cells containing O and Z by CO and CZ ,
respectively.

Theorem 2 ([4]) Let D be a generalized twisted drawing of Kn and let Z be a point on the ray
that crosses every edge such that the curve OZ crosses every edge once. Then CO and CZ are
antipodal vi-cells.

Theorem 2 implies that, for every drawing D that is weakly isomorphic to a generalized twisted
drawing, there exists a simple curve OZ crossing every edge once and two antipodal vi-cells CO

and CZ . The converse is also true, as the following theorem proven in [4] implies.
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Theorem 3 ([4]) Let D be a simple drawing of Kn. Then the following properties are equivalent.

1. D is weakly isomorphic to a generalized twisted drawing.

2. D contains two antipodal vi-cells.

3. D can be extended by a simple curve c such that c crosses every edge of D exactly once and
does not pass through any vertex.

We remark that, given a simple drawing D of Kn, there might be several antipodal vi-cell
pairs that could be used as CO and CZ such that D is weakly isomorphic to a generalized twisted
drawing. For instance, Figure 2 shows all generalized twisted drawings of K5 and K6 up to weak
isomorphism [4], together with all possible antipodal vi-cell pairs CO and CZ , and some curve OZ
for each pair.

The following lemma summarizes some properties of generalized twisted drawings that we will
use later. Parts of them have also implicitly been shown in [4]. For the sake of completeness, we
include short proofs.

Lemma 1 Let D be a simple drawing in the plane that is weakly isomorphic to a generalized twisted
drawing of Kn. Let CO and CZ be a pair of antipodal vi-cells of D. Then the following statements
hold.

1. D does not contain three interior-disjoint triangles.

2. Every subdrawing of D induced by four vertices of D contains exactly one crossing. If p is
this crossing in such a subdrawing D′, then the cells CO and CZ lie in two cells of D′ that
are both incident to p and opposite to each other (that is, they are interior disjoint and the
intersection of their boundaries is exactly p).

Proof: To prove Lemma 1(1), suppose that ∆1, ∆2 and ∆3 are three interior-disjoint triangles.
Since CO and CZ are antipodal, CO must be inside one of the triangles, say ∆1, and hence CZ is
outside that triangle. Since CO is inside ∆1, it is outside ∆2 and thus CZ must be inside ∆2. But
then CO and CZ lie on the same side of ∆3, a contradiction. Therefore, D cannot contain three
interior-disjoint triangles.

For the first part of Lemma 1(2), recall that there are only two different drawings of K4 (up
to strong isomorphism), one without crossings and one with exactly one crossing. The drawing
without crossings contains three interior-disjoint triangles. Thus, since D cannot contain three
interior-disjoint triangles by Lemma 1(1), any subdrawing of D induced by four vertices contains a
crossing.

To prove the second part of Lemma 1(2), consider the subdrawing induced by the four vertices.
There is (up to strong isomorphism) only one way to draw this (see Figure 3(a) for a drawing). It
contains two pairs of triangles whose empty sides are disjoint. With the labeling of Figure 3(a),
these are the pair of triangles abc and abd and the pair of triangles acd and bcd. Since CO and CZ

are antipodal, CO and CZ have to be on different sides of each of those triangles.
Assume without loss of generality that CO lies on the empty side of abc (otherwise, invert the

roles of CO and CZ). Since the empty sides of abc and abd are disjoint, it follows that CZ needs to
lie on the empty side of abd. If CO lies on the empty side of acd, then CZ lies on the empty side
of bcd, which leads to CO and CZ being the cells marked by blue crosses in Figure 3(a). Otherwise,
CZ lies on the empty side of acd, and hence CO lies on the empty side of bcd. This leads to CO

and CZ being the cells marked by red squares in Figure 3(a). □

We will also need the following technical lemma for simple drawings.
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Figure 3: (a) Proof of Lemma 1(2): CO and CZ have to be either the cells marked with red squares
or the cells with blue crosses. (b) Proof of Lemma 2: The edge (x, y) cannot cross both of the edges
(v, u) and (v, w).

Lemma 2 Let D be a simple drawing of Kn and let ∆ be a triangle of D with vertices u, v, w. Let
x and y be two vertices on the same side of ∆. If the edge (x, v) crosses (u,w), then the edge (x, y)
can cross at most one of (v, u) and (v, w).

Proof: Assume for a contradiction that (x, y) crosses both (v, u) and (v, w). Since x and y are on
the same side of ∆, the edge (x, y) must cross the boundary of ∆ an even number of times. Thus,
if (x, y) crosses (v, u) and (v, w), it cannot cross (u,w). Let p be the crossing point between (x, v)
and (u,w) (see Figure 3(b) for an illustration). Suppose that (x, y), when walking from x to y,
crosses (v, u) before it crosses (v, w). Consider the closed curve C consisting of (v, u), the part of
the edge (u,w) from u to p and the part of the edge (x, v) from p to v. The vertex y and the part
of (x, y) directly after the crossing with (v, u) are in different regions defined by C; see Figure 3(b).
Thus, after crossing (v, u), the edge (x, y) must cross C to reach y. However, as (x, y) cannot cross
(u,w) as argued before and, by simplicity, it can neither cross (v, x) nor cross (u, v) a second time.
Thus, (x, y) cannot cross (v, w) if it crossed (v, u) before. An analogous analysis can be done if
(x, y) crosses (v, w) before it crosses (v, u), leading to a contradiction also for that case. Therefore,
(x, y) crosses at most one of the edges (v, w) and (v, u). □

In addition to the properties of generalized twisted drawings, we will use the concept of star
triangles as introduced in [5]. A triangle ∆ with vertices x, y, z is a star triangle at x if the edge
(y, z) is not crossed by any edge incident to x. In [5], star triangles were used to prove that any
simple drawing of Kn contains at least n empty triangles. For our purposes, we will need the
following properties of star triangles in simple drawings of Kn, the first two of which have been
shown in [5].

Lemma 3 Let D be a simple drawing of Kn in the plane and x be a vertex of D. Then the following
statements hold.

1. A star triangle xyz at a vertex x is an empty triangle if and only if the vertices y and z are
consecutive in the rotation around x [5, Proposition 1].

2. There are at least two empty star triangles at x [5, Corollary 1].
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3. For any two different empty star triangles at x, xyz and xy′z′, the empty sides of xyz and
xy′z′ are disjoint.

Proof: To prove Lemma 3(3), consider the triangles xyz and xy′z′ and their boundary edges. Since
both triangles are different, at most one of {y, z} can coincide with one of {y′, z′}.

Suppose first that x is the only common vertex to both triangles. As xyz and xy′z′ are star
triangles of x, no edge incident to x can cross (y, z) or (y′, z′). Edges incident to x cannot cross each
other because the drawing is simple. Thus, of the boundary edges of xyz and xy′z′, the only pair
that could cross is (y, z) and (y′, z′). However, y′ and z′ lie on the same side of the triangle xyz, so
(y′, z′) has to cross the boundary of xyz an even number of times. This is not possible if exactly
(y, z) and (y′, z′) cross. Hence, no edges on the boundary of the star triangles cross, and therefore
their empty sides are disjoint.

Suppose now that one of {y, z} coincides with one of {y′, z′}, say z = y′, so xyz and xzz′ share
the edge (x, z). As before, no edge incident to x can cross (y, z) or (z, z′). Moreover, (y, z) and
(z, z′) cannot cross each other as they share a common endpoint. Thus, again the edges on the
boundary of the star triangles cannot cross, so their empty sides are disjoint. □

3 Proof of Theorem 1

In this section, we derive several lemmata about empty triangles in generalized twisted drawings.
These lemmata put together will yield the proof of Theorem 1. Throughout the section, we always
assume that given a generalized twisted drawing of Kn, the antipodal vi-cells CO and CZ are also
given.

The first of these lemmata shows that in a generalized twisted drawing, every vertex is incident
to exactly two empty star triangles.

Lemma 4 Let D be a generalized twisted drawing of Kn in the plane with n ≥ 4 and v be a vertex
of D. Then v is incident to exactly two empty star triangles at v, where one has CO on the empty
side and the other has CZ on the empty side. Further, these star triangles have disjoint empty sides.

Proof: By Lemma 3(2 and 3), for every vertex v there are at least two empty star triangles
at v and the empty sides of any two star triangles at a vertex are disjoint. Any triangle of a
generalized twisted drawing has CO on one side and CZ on the other side, and D cannot contain
three interior-disjoint triangles by Lemma 1(1). Thus, for any vertex v in a generalized twisted
drawing, the following three properties hold. (i) one empty star triangle at v has CO on the empty
side, (ii) another empty star triangle at v has CZ on the empty side, and (iii) there cannot be a
third empty star triangle at v. □

The following lemma proves that in any generalized twisted drawing, all empty triangles that
contain CO on the empty side are star triangles and have a common incident vertex.

Lemma 5 Let D be a generalized twisted drawing of Kn with n ≥ 4. Let v be a vertex on the
boundary of CO. Let ∆ be an empty triangle in D that has CO on the empty side. Then the
following statements hold.

1. The vertex v is a vertex of ∆, that is, ∆ = xyv for some x, y.

2. The triangle ∆ = xyv is an empty star triangle at x or y or both.
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Figure 4: (a) and (b) Illustrations for the proof of Lemma 5(2). (c) Proof of Lemma 5(3): Any
empty triangle of D that has CO on the empty side cannot be a star triangle at three vertices. In
all of (a), (b), and (c), the label CO indicates that the cell CO lies in the interior of the triangle.
For (a) and (b), CO is in addition incident to the vertex v.

3. If ∆ = xyz is a star triangle at two vertices, say x and y, then all edges from the third
vertex z, except (z, x) and (z, y), emanate from z to the empty side of ∆ and cross (x, y).

4. ∆ is a star triangle for at most two of its vertices.

Proof: Since ∆ contains CO on its empty side, and since v is on the boundary of CO, ∆ has to
contain v on its empty side or on its boundary. As ∆ is empty, v must be on the boundary of ∆
and hence one of the vertices of ∆, implying that Lemma 5(1) is satisfied.

To prove Lemma 5(2), assume to the contrary that neither at x nor at y, ∆ is an empty star
triangle. Then from each of x and y, at least one edge must emanate into the empty side of ∆. Let
these edges be (x, x′) and (y, y′), respectively. Since there are no vertices on the empty side of ∆,
the edge (x, x′) must cross (v, y) at a point q′ and the edge (y, y′) must cross (v, x) at a point q.
Further, these two edges must cross at a point p on the empty side of ∆. See Figure 4(a) for an
illustration.

Now consider the subdrawing D′ induced by x, x′, y and y′. Observe that since (x, y′) must not
cross either of (x, v) and (y, y′) by the simplicity of D, the cell of D′ defined by x, p and y′ cannot
contain CO, regardless of how (x, y′) is drawn. (In Figure 4(b), the two possibilities for (x, y′) are
indicated with a dotted and dashed curve, respectively. In the former case, the corresponding cell
is bounded, while in the latter it is unbounded.) Thus, by Lemma 1(2) applied to D′, CO and CZ

must be contained in the cells of D′ defined by x′, p and y′, and x, p and y, respectively. Since
v is on the boundary of CO and in the cell of D′ defined by x′, p and y′, the cell CO of D must
be contained in the cell of D′ defined by x′, p and y′. Consequently, CZ is contained in the cell
of D′ defined by x, p and y. This contradicts that CO and CZ lie on different sides of ∆. As a
consequence, ∆ is a star triangle at x or y or both.

To prove Lemma 5(3), we may assume without loss of generality that ∆ = xyz is a star triangle
at x and y (and v is an arbitrary vertex ∈ {x, y, z}). Let w be any vertex of D that is not a vertex
of ∆. By Lemma 1(2), the subdrawing induced by x, y, z, and w has a crossing. As ∆ is a star
triangle at x and y, any edge incident to x or y emanates from x or y on the non-empty side of ∆,
so neither (x,w) nor (y, w) can cross ∆. Hence (z, w) must cross (x, y) and emanate from z to the
empty side of ∆ (see Figure 4(c)). As we did not make any additional assumption about w, this
completes the proof of Lemma 5(3).
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Finally, Lemma 5(4) is an immediate consequence of Lemma 5(3): If ∆ is a star triangle at two
vertices, then by Lemma 5(3), it cannot be a star triangle at the third vertex. Therefore, ∆ is a
star triangle for at most two of its vertices. □

In the previous lemma we proved that any empty triangle containing CO is a star triangle at
one or two vertices. The following lemma shows that exactly two such triangles are star triangles
at two vertices.

Lemma 6 Let D be a generalized twisted drawing of Kn with n ≥ 4. Then D contains exactly two
empty triangles with CO on the empty side that are star triangles at two vertices.

v

u w

a

b

CO

v

u w

a

b

CO

(a) (b)

Figure 5: Proof of Claim 1: Forbidden cases for an edge (a, b) to define part of the boundary of CO.
The label CO indicates that the cell CO lies in the interior of ∆ and is incident to v. The blue
angular markings at vertices indicate that no further edge emanates from the vertex in this area.

Proof: Let v be a vertex on the boundary of CO. Note that v might not be unique; see for example
the drawing in Figure 2(a). By Lemma 4, there is an empty star triangle ∆ = vuw at v that has
CO on the empty side. By Lemma 5(2 and 4), ∆ is a star triangle at exactly one of u or w, say w.
Thus, ∆ is an empty star triangle at two vertices (v and w) with CO on the empty side. Moreover,
by Lemma 5(3), all edges emanating from u (except (u, v) and (u,w)) cross (v, w).

We next show the following claim, which guarantees a second empty triangle that is a star
triangle at two vertices.

Claim 1 Let (a, b) be an edge different from (v, u) and (v, w) that defines part of the boundary
of CO. Then the triangle vab is a star triangle at a and b, and the side F of vab that contains CO

is empty.

Proof of Claim 1: We distinguish two cases depending on whether a and b are different from u
and w or not.

Case 1: Both a and b are different from u and w. Since ∆ is empty and CO is on its empty
side, necessarily (a, b) has to cross two edges of ∆. As all edges incident to u cross (v, w), also
(u, a) crosses (v, w). Thus, if (a, b) crosses (v, u) and (u,w) (see Figure 5(a)), then (a, b) would also
cross (u, a), contradicting the simplicity of the drawing. Further, if (a, b) crosses (v, w) and (u,w)
(see Figure 5(b)), then (u, a) would separate (a, b) from the cell CO, contradicting that (a, b) defines
part of the boundary of CO. Therefore, (a, b) has to cross (v, w) and (v, u).
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We now show that F is empty. Note that in the plane, F can be bounded (as in Figure 6(a))
or unbounded (as in Figure 6(b)). However, the two drawings shown in Figure 6 are strongly
isomorphic. Likewise, any drawing with a side of a closed curve being unbounded is strongly
isomorphic to a drawing where that side is bounded. Hence, for the rest of the proof we assume
without loss of generality that F is bounded.

Let p be the crossing of (a, b) with (v, w) and let q be the crossing of (a, b) with (v, u), as
indicated in Figure 6. F is partitioned into three triangular regions vaq, vqp, and vpb, where CO

lies inside vqp. Note that the sides of vaq, vqp, and vpb that are contained in F are the insides of
vaq, vqp, and vpb because F is bounded. We first show that vpb is empty.

v

u w

a
b

CO
q p

x

v

u w

a

b
CO

q p
xF

F

(a) (b)

Figure 6: Proof of Claim 1: The case where a and b are different from u and w. The label CO

indicates that the cell CO lies in the interior of ∆ and is incident to v. The blue angular markings
at vertices indicate that no further edge emanates from the vertex in this area.

Assume for a contradiction that a vertex x lies inside vpb. We show that (a, x) cannot intersect
vqp and has to cross (v, b). As a and x both lie outside vpb, the edge (a, x) has to cross the boundary
of vpb an even number of times. Since the drawing is simple, (a, x) cannot cross (a, b), and hence
(a, x) cannot cross the arc (q, p). Thus, (a, x) either crosses neither of the arcs (v, p) and (v, q), or
it crosses both of them. If (a, x) crosses both (v, p) and (v, q), the edge (a, b) cannot lie on the
boundary of CO, by this contradicting the definition of (a, b). Thus, (a, x) does not intersect vqp.
Further, since (a, x) cannot cross (a, b) by simplicity, it must cross (v, b) to connect a and x (see
again Figure 6).

As the subdrawing induced by a, b, v and x is a simple drawing of K4 and contains the crossing
between (a, x) and (v, b), the edges (v, x) and (b, x) cannot cross any of the edges (a, b), (v, b),
and (v, a). Hence, the edges (v, x) and (b, x) are completely contained in F . Moreover, the
edges (v, x) and (b, x) lie completely inside vpb for the following reasons. The edge (v, x) cannot
cross (v, w) because the drawing is simple and thus (v, x) cannot cross the arc (v, p) and lies
completely inside vbp. The edge (b, x) can cross neither (b, u) nor (a, b) because the drawing is
simple. Hence, if (b, x) crosses the arc (v, p), in order to connect x with b, the edge (b, x) has
to either lie partly outside F , contradicting the previous conclusions, or cross the arc (v, p) and
thus the edge (v, w) twice, contradicting the simplicity of the drawing. Hence, (x, v) and (x, b) lie
inside vbp and one side F ′ of the triangle vxb is contained inside vbp. As CO is not in F ′ and CO

and CZ are antipodal, it follows that CZ has to be in F ′. This implies that both CO and CZ are
in F , a contradiction. Therefore, vbp is empty.

Using a similar argument, one can prove that vqa is also empty. Since by assumption on ∆,
vpq is empty, then F is empty. Moreover, any edge incident to a or b must emanate from a or b
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outside F because F is empty and (a, b) defines part of the boundary of CO. As a consequence, the
side F of the triangle vab that contains CO is empty and is a star triangle at a and b.

Case 2: At least one of a and b is identical to u or w. As ∆ is a star triangle at w, any edge
incident to it cannot enter into ∆. As (a, b) is different from (v, u) and (v, w), this implies that w
cannot coincide with a or b. So suppose that some of a and b, say a, is u and b is a vertex v′ on the
non-empty side of ∆. In this case, the reasoning to show that F is empty and is a star triangle at a
and b is analogous to the previous one where neither a nor b are vertices of ∆. The only difference
is that F is now partitioned into only two triangular regions vup and vpb, where p is the crossing
point between (u, b) and (v, w).

As in each of the two cases, F is the empty side of a star triangle at both a and b, this completes
the proof of Claim 1. □

v

u w

a

b
CO

x
y

Figure 7: Proof of Lemma 6: The triangle vxy cannot be a star triangle at v. The label CO

indicates that the cell CO lies in the interior of ∆ and is incident to v. The blue angular markings
at vertices indicate that no further edge emanates from the vertex in this area.

The triangle vab of Claim 1 is different from the triangle ∆. Both triangles, vab and ∆, are empty
star triangles at two vertices that contain CO on their empty side. What remains to show is that
there is no third empty triangle with CO on the empty side that is a star triangle at two vertices.
Assume for a contradiction that such a triangle xyz exists. By Lemma 5(1), one of x, y and z must
be v, say z = v. By Lemma 4, v, a, and b are each incident to exactly one empty star triangle with
CO on the empty side. Hence, x and y must be different from a and b, and vxy cannot be a star
triangle at v. Consequently, vxy is a star triangle at x and y.

Consider now the triangle vab. By Lemma 5(3), the edges (v, x) and (v, y) must cross (a, b)
(see Figure 7). In addition, by Lemma 2, since x and y are on the same side of vab and since (v, x)
crosses (a, b), the edge (x, y) cannot cross both (v, a) and (v, b). But then applying Lemma 5(3) on
the triangle vxy, all edges emanating from v whould have to cross (x, y), a contradiction. Therefore,
xyz cannot exist. As a consequence, D contains exactly two empty triangles with CO on the empty
side that are star triangles at two vertices. □

We remark that Lemmata 4–6 and their proofs hold for every choice of CO and any vertex v
on the boundary of CO. However, whether a triangle is empty, and at how many vertices it is a
star triangle, does not depend on the choice of CO or v (it does not even change between weakly
isomorphic drawings). As a consequence, the empty star triangles obtained in these lemmata and
proofs must be the same, regardless of the choice of CO and the vertex v on the boundary of CO.

We also remark that the reasoning in the proofs of Lemmata 5 and 6 for empty triangles having
CO on the empty side works analogously for empty triangles having CZ on the empty side. This
implies that these triangles are as well star triangles at one or two vertices, and that exactly two of
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them are star triangles at two vertices. By Lemma 6 and these remarks, we obtain the following
result.

Lemma 7 Let D be a generalized twisted drawing of Kn with n ≥ 4. Then D contains exactly four
empty triangles that are star triangles at two vertices.

Now we have all ingredients to prove our main theorem, Theorem 1, whose statement we repeat
here for convenience.

Theorem 1 For any n ≥ 4, every generalized twisted drawing of Kn contains exactly 2n− 4 empty
triangles.

Proof: When summing up the number of empty star triangles over all vertices, we obtain 2n empty
star triangles by Lemma 4 (n triangles with CO on the empty side and n with CZ on the empty
side). By Lemma 5 (and the previous remarks), all empty triangles of D have been counted this
way, but the triangles that are empty star triangles at two vertices have been counted twice. By
Lemma 7, there are exactly four triangles that are empty star triangles at two vertices. Thus, there
are exactly four triangles that have been counted twice, implying that the precise number of empty
triangles in D is 2n− 4. □

Corollary 1 Let D be a generalized twisted drawing of Kn with n ≥ 4. Then CO and CZ are
triangular cells.

Proof: Let v be a vertex on the boundary of CO. At the beginning of the proof of Lemma 6, we
have seen that there is an empty triangle vuw that contains CO on its empty side and is a star
triangle at v and w. Moreover, by Claim 1, any edge (a, b) defining part of the boundary of CO

defines a triangle vab that is an empty star triangle at a and b containing CO on its empty side.
Since by Lemma 6, there are exactly two triangles that are empty star triangles at two vertices and
contain CO on its empty side, there is only one edge (a, b) defining part of the boundary of CO, in
addition to (v, u) and (v, w). Therefore, the cell CO is a triangular region. The same reasoning
applies to show that the cell CZ is triangular as well. □

4 Conclusion and Open Problems

We have shown that the number of empty triangles in any generalized twisted drawing of Kn is
exactly 2n− 4. Twisted drawings, which are included in the class of generalized twisted drawings,
were the first drawings for which it was shown that they do not contain more than 2n− 4 empty
triangles. We believe that the fact that also the wider class of generalized twisted drawings has
exactly 2n− 4 empty triangles can be a step towards obtaining results for general simple drawings.

While it was known before that also other simple drawings of Kn also have only 2n− 4 empty
triangles, to the best of our knowledge, generalized twisted drawings of Kn are the only defined
class with more than one different weak isomorphism class (for fixed n ≥ 6) such that each drawing
has only 2n− 4 empty triangles. For n up to 8, computational results on how many different weak
isomorphism classes of drawings of Kn there are, and how many of them have exactly 2n− 4 empty
triangles, are listed in [5].

One example of a simple drawing of K8 that has exactly 2n − 4 empty triangles has been
presented in [5] and is also depicted in Figure 8. As it contains seven triangles with pairwise disjoint
empty sides (the triangles are marked in bold, red edges in Figure 8), by Lemma 1(1), it is not
generalized twisted. This raises the question of which drawings of Kn, other than generalized
twisted drawings, have 2n− 4 empty triangles.
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Figure 8: A drawing that is not generalized twisted and has only 2n− 4 empty triangles [5]. The
bold, red edges are edges of seven triangles with pairwise disjoint empty sides.

Question 1 What are characterizations of simple drawings of Kn that contain exactly 2n−4 empty
triangles?

A complete characterization might help to better understand empty triangles in simple drawings
of Kn and to progress towards proving Conjecture 1, or to at least get more insight to approach
the big open question behind the conjecture.

Question 2 How many empty triangles does every simple drawing of Kn contain at least?
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