
Journal of Graph Algorithms and Applications
http://jgaa.info/ vol. 27, no. 7, pp. 565–580 (2023)
DOI: 10.7155/jgaa.00634

The Complexity of Angular Resolution
Marcus Schaefer 1

1School of Computing
DePaul University

Chicago, Illinois 60604, USA

Submitted: July 2022 Reviewed: July 2023 Revised: August 2023

Accepted: August 2023 Final: August 2023 Published: August 2023

Article type: Regular paper Communicated by: M. Kaufmann

Abstract. The angular resolution of a straight-line drawing of a graph is the
smallest angle formed by any two edges incident to a vertex. The angular resolution of
a graph is the supremum of the angular resolutions of all straight-line drawings of the
graph. We show that testing whether a graph has angular resolution at least π/(2k) is
complete for ∃R, the existential theory of the reals, for every fixed k ≥ 2. This remains
true if the graph is planar and a plane embedding of the graph is fixed.

1 Introduction
In graph drawing we measure the readability of a visualization by many parameters, including
area, crossing number, crossing resolution, curve complexity, and angular resolution [9, Chapter
55].

The (vertex) angular resolution of a straight-line drawing of a graph is the smallest angle formed
by any two incident edges of the graph. The (vertex) angular resolution of a graph is the supremum
of the angular resolutions of all straight-line drawing of the graph.1 If G is planar we can require
the drawing to be an embedding, that is, crossing-free, and we can even require the embedding
to be isomorphic to a given plane embedding of G; in general, the definition of angular resolution
does not require planar drawings, even of planar graphs. For a recent survey on angular resolution,
see [15].

In this paper we settle the computational complexity of the angular resolution problem and
some of its variants. Determining the angular resolution is as hard as deciding the truth of exis-
tential quantified sentences over the real numbers, that is, the existential theory of the reals. The
corresponding complexity class is called ∃R. Section 1.2 contains some background on ∃R.
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1When studying crossing numbers one typically excludes drawings in which more than two edges intersect in a

crossing; we do not do so here, e.g. see the rose drawings of the complete graph in Figure 4. Allowing multiple
crossings does not change the angular resolution of a graph: we can slightly perturb the vertices in the drawing to
remove any multiple crossings. Since the angular resolution of a graph is defined as a supremum, its value is not
affected.
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Theorem 1 The following two problems are ∃R-complete for every fixed k ≥ 2.

(i) Deciding whether a graph has a straight-line drawing with angular resolution at least π/(2k).

(ii) Deciding whether a graph has angular resolution at least π/(2k).

Both problems remain ∃R-complete if the graph is planar and we ask for an embedding, and if the
drawing or embedding is fixed (combinatorially).

Why do we require angles of the form π/(2k), what happens for k = 1, and why do we distin-
guish variants (i) and (ii)? We answer those questions next.

Why π/(2k)? Our ∃R-hardness proof is based on right angles. We need the angular resolution to
be of the form π/(2k), where k ≥ 2, so we can combine k of these angles to form a right angle.

Angular Resolution π/2. The case k = 1 is different. If the embedding is fixed, then Tamas-
sia [23] showed that the angular resolution problem for π/2 can be solved efficiently using network
flows (and that result extends to fixed drawings by planarizing the drawing in a first step). For
flexible embeddings, Formann, Hagerup, et al. [8] showed that deciding whether a graph of maxi-
mum degree 4 has a straight-line embedding with angular resolution π/2 is NP-hard.2 By a result
of Bodlaender and Tel [5], building on Tamassia’s network flow model, having a straight-line draw-
ing with angular resolution at least π/2 implies the existence of an isomorphic rectilinear drawing,
that is, an orthogonal grid drawing (all angles are multiples of π/2 and vertices can be placed on
a grid). It follows that if the drawing or embedding is not fixed, the angular resolution problem
for π/2 is NP-complete.

Variants (i) and (ii). Theorem 1 distinguishes between problem variants (i) and (ii) because of
a subtlety in the definition of the angular resolution of a graph: it is defined as a supremum, not
a maximum. Formann, Hagerup, et al. [8] already observed that the maximum may not actually
exist; they constructed a graph on 11 vertices which has a drawing with angular resolution π/3− ε
for every ε > 0, but not for π/3. Figure 1 shows that this same result still holds for π/4. As a
consequence, problems (i) and (ii) in the theorem are not a priori equivalent. Bieker [4] showed
that problem (i) can be tested in ∃R, and we extend his proof to (ii), which is a bit surprising,
since taking a supremum translates into a universal quantifier.

1.1 Related Problems
Just as angular resolution is defined for angles formed by edges at vertices, crossing resolution is
defined for angles formed by edges at crossings. Specifically, a straight-line drawing of a graph is
a right-angle crossing (RAC) drawing if all crossings occur at right angles. It would be natural to
define the crossing resolution of a graph as the supremum of the crossing resolutions of all straight-
line drawings of the graph, but I have not been able to locate this definition in the literature.
Crossing resolution, and the related graphs with junctions model introduced in [19], will be the
starting point for our ∃R-completeness proof.

Another notion similar to angular resolution is the planar slope number of a graph, that is,
the smallest number k of slopes so that the graph has a planar straight-line drawing in which the
line-segments require only k different slopes. Hoffmann [10] showed that deciding whether a graph
has planar slope number at most k is ∃R-complete.

2Pretty much the same construction also works for straight-line drawings.
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Figure 1: A graph with angular resolution π/4. The graph has a straight-line drawing with angular
resolution π/4− ε for every ε > 0, but not with π/4. The two vertices in the lower middle square
would be forced to overlap. For the proof note that two triangles that share an edge cannot be
nested inside each other in a drawing with angular resolution π/4.

Also related is the question whether a graph has a straight-line drawing with a given rotation
system. The rotation at a vertex is a cyclic permutation of edges incident to the vertex, and a
rotation system for a graph specifies a clockwise rotation for each vertex. Testing whether a graph
can be realized with a given rotation system is ∃R-complete, a result due to Kynčl [11]. This
remains true even if the maximum degree of the graph is bounded (by 131) as shown in [18]; the
bounded-degree condition takes us a step closer to the angular resolution problem, since graphs
with fixed angular resolution have bounded degree.

1.2 The Existential Theory of the Reals

The existential theory of the reals is the set of existentially quantified true sentences over the
real numbers, ETR := {(∃x ∈ Rk) φ(x)}, where φ is a Boolean formula over the non-logical
signature (0, 1,+, ·). The complexity class ∃R is then defined as the set of all problems that
polynomial-time many-one reduce to ETR, and ∃R-hardness and ∃R-completeness are defined
in the usual way, see, for example [16]. ∃R captures the complexity of many problems in graph
drawing and computational geometry, and the number of problems identified as being ∃R-complete
is steadily growing. Recent examples of ∃R-hard problems include the art gallery problem [2],
polygon coverings [1], area universality [7], and, outside graph drawing/computational geometry,
continuous constraint satisfaction problems [13] and training neural networks [3].

In terms of traditional complexity classes, it is known that ∃R lies between NP [21] and
PSPACE [6], and it is expected to lie strictly between the two. ∃R-hardness implies NP-hardness,
since NP ⊆ ∃R, so all the angular resolution problems in Theorem 1 are NP-hard as well.
Matoušek [12] gives an excellent survey (and introduction) to the existential theory of the reals.

2 Graphs with Junctions

We introduce two special types of vertices, called junctions, which come with restrictions on their
rotation (the clockwise permutation of incident edges) and the angles between incident edges. The
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following definitions and illustrations are taken verbatim from [17].

• a ⊤-junction is a vertex v which is incident to three special edges e1, e2, e3. A straight-line
drawing respects the ⊤-junction if there are right angles between e1 and e2 and e2 and e3 at
v; additional edges at v can occur, at any angle, between e1 and e3 (opposite of e2),

• a ×-junction is a vertex v which is incident to four special edges e1, e2, e3, e4. A straight-line
drawing respects the ×-junction if the rotation of the special edges at v is e1e2e3e4, or the
reverse, and there are right angles between ei and ei+1, for 1 ≤ i ≤ 3; additional edges may
occur, at any angle, inside one of the quadrants, e.g. between e3 and e4.

Figure 2 shows these junctions, and how we symbolize them in drawings.

ve3

e2
e1

· · → u

v

v
e4

e3

e2
e1

·· · → r
v

Figure 2: ⊤- and ×-junctions, and how we draw them in graphs using a ▼ and a ♦. Each of the
junctions is shown with one additional edge.

Two drawings of a graph (with or without junctions) are isomorphic if there is a homeomorphism
of the plane (which may be orientation-reversing) that maps the graphs to each other.

We introduced drawings with junctions in [17] as an intermediate problem to show that RAC-
drawability of graphs is ∃R-complete. We can use the same problem in our reduction to the angular
resolution problem.

Theorem 2 (Schaefer [17, 19, Theorem 3]) Given a graph G with ⊤- and ×-junctions and a
plane drawing D of G, it is ∃R-complete to decide whether G has a drawing respecting all junction
constraints. The problem remains ∃R-complete even with the following restrictions:

(i) the only non-junction vertices in G have degree 1, all ×-junctions have at most one additional
edge, and all ⊤-junctions have at most two additional edges, and

(ii) if G does have a straight-line drawing respecting all junction constraints, it has such a drawing
D+ which is isomorphic to D, and

(ii-×) if a ×-junction has an additional edge, it forms an angle of π/4 in D+ with the two
edges it neighbors in the rotation, and

(ii-⊤) if a ⊤-junction has two additional edges, they form a right angle in D+.
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We can eliminate ⊤-junctions from Theorem 2 by simulating them with ×-junctions; we did the
opposite when proving ∃R-hardness of RAC-drawability in [19], where we simulated ×-junctions
using ⊤-junctions.

Corollary 3 Given a graph G with ×-junctions (with at most one additional edge each) and a
planar drawing D of G, it is ∃R-complete to decide whether G has a straight-line drawing respecting
all junction constraints with angular resolution at least π/4. We can assume that

(a) the only non-junction vertices in G have degree 1, 4, 5, or 6 and

(b) if G does have a straight-line drawing respecting all junction constraints, it has such a drawing
D+ which is isomorphic to D and has angular resolution at least π/4.

Proof: By Theorem 2 we can assume that we are given a graph G with ⊤- and ×-junctions, and
a planar drawing D of G with G and D satisfying the restrictions stated in the theorem.

From G we construct a graph G′ by replacing each ⊤-junction with the gadget shown in
Figure 3; this gadget consists of six standard vertices with degrees ranging from 4 to 6 and thirty-
two ×-junctions, as well as some vertices of degree 1, which are not explicitly shown, to cap the
short stubs. We also extend the planar drawing D of G to a planar drawing D′ of G′. If G has
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Figure 3: Simulating a ⊤-junction (shaded gray) using ×-junctions. There are six standard vertices,
the corners of the two squares containing v, the remaining 32 vertices are ×-junctions. The short
stubs are capped by degree-1 vertices (not shown), the long stubs connect to other gadgets or
vertices.

straight-line drawing D+ isomorphic to D, then G′ has a straight-line drawing D′
+ isomorphic to

D′: we can simply replace the drawing of each ⊤-junction with the gadget shown in Figure 3.
Condition (a) then follows from condition (i) of the theorem.

Condition (ii)× of Theorem 2 tells us that the ×-junctions of D+ have angular resolution at
least π/4, so their counterparts in D′

+ still do. And the newly introduced ×-junctions (in each
gadget) all have angular resolution at least π/4. This leaves the six vertices of degree 4 to 6 (all
vertices of degree 1 having angular resolution 2π); we see that all these vertices also have angular
resolution at least π/4, the main vertex to check is v; if it is incident to two edges, which form a
right angle (by (ii)⊤). And any edge incident to v in D+ lies above e1 and e3, which means these
edges form an angle of at least π/4 with the two diagonal edges incident to v in D′

+. This proves
condition (b).
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For the other direction, let us assume that G′ has a straight-line drawing D+ with angular
resolution at least π/4. We need to argue that the gadget shown in Figure 3 is drawn as shown.
Let us label the twelve squares in the figure like a chessboard, so the bottom left square is A1 and
the top right square is D3. We first note that A1, B2, C1, and D2 each consist of five ×-junction,
forcing them to be geometric squares. This also forces A2, B1, C2 and D1 to be squares. Now A3
has to be a square (because the angular resolution is at least π/4, and its two vertices on the left
side are ×-junctions), so its height and width are the same, making it a square. By a symmetric
argument, D3 is a square. Now A3 has the same size as A2 which has the same size as D2, which
has the same size as D3. The angular resolution of at least π/4 then forces B3 and C3 to have
the same width and height (they are geometric squares with the top edge missing). This proves
that the gadget is drawn as shown, including the one or two additional edges attached to v, which,
because of the angular resolution, must lie above the line through the top of A3, B3, C3 and D3.
This means, we can replace the whole gadget with a ⊤-junction, yielding a straight-line drawing
D+ of G.

In summary, we have shown that G has a straight-line drawing D+ isomorphic to D if and only
if G′ has a straight-line drawing D′

+ isomorphic to D′. Since testing the former is ∃R-complete,
by Theorem 2, the later is ∃R-hard, even, as we showed, G′ and D′

+ satisfy conditions (a) and (b)
of the corollary. 2

3 Proof of Theorem 1

3.1 ∃R-membership

Showing that a problem lies in ∃R is typically straightforward, but here we face two obstacles: we
have to express cos(π/(2k)), and the definition of angular resolution in part (ii) of the theorem
hides a universal quantifier, because it is defined as a supremum. Both problems can be solved.

Bieker [4] shows membership in ∃R for problem (i), but his proof is restricted to a type of angles
that does not work for us. Following Bieker’s proof, it is easy to construct for a given n-vertex
graph G a predicate AG(x, y, t) with x, y ∈ Rn, and t ∈ R that expresses that if we place the i-th
vertex of G at position (xi, yi), for all i, then we obtain a straight-line drawing of G with angular
resolution α, where 0 ≤ α ≤ π/2 and cos(α) ≥ t.

Also, it is easy to write predicates ΠG(x, y) that express that if we place the i-th vertex of G
at position (xi, yi), for all i, then we obtain a straight-line embedding of G, and a variant Π′

D(x, y)
that restricts the embedding to be isomorphic to a given plane embedding D of G.

The values cos(π/(2k)) are so-called trigonometric numbers, and it is known that all trigono-
metric numbers are algebraic, that is, for every π/(2k), there is a nonzero polynomial p with integer
coefficients such that p(π/(2k)) = 0. As a matter of fact, the k-th Chebyshev polynomial (of the
first kind) will do (this is probably a folklore result, but can be found in [24], for example). We
can also pick an interval (r, s), with r, s ∈ Q, such that π/(2k) is the only root of p in (r, s).

Then G has a drawing with angular resolution at least π/(2k) if and only if

(∃x ∈ Rn, y ∈ Rn)(∃t ∈ R) [p(t) = 0 ∧ (r < t < s) ∧AG(x, y, t)]

is true. This shows membership of problem (i) in ∃R.
For part (ii) we can then express that G has angular resolution at least π/(2k) as

(∀ε > 0)(∃x ∈ Rn, y ∈ Rn)(∃t ∈ R) [p(t) = 0 ∧ (r < t < s) ∧AG(x, y, t− ε)].
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The formula is of the form ∀∃R, but we can eliminate the ∀ quantifier using a known result. Let
Φ(ε) = (∃x ∈ Rn, y ∈ Rn)(∃t ∈ R)[p(t) = 0 ∧ (r < t < s) ∧ AG(x, y, t − ε)]. The formula Φ(ε) is
monotone in ε in the sense that if ε′ > ε > 0, then Φ(ε) implies Φ(ε′). Using [20, Lemma 4.1], we
can then conclude that (∀ε > 0)[Φ(ε)] is equivalent to (∃ε, z)[ψ(ε, z)] for some formula ψ whose
length is polynomial in the length of AG and p.3 This shows that problem (ii) lies in ∃R.

If necessary, we can add ΠG(x, y), or Π′
D(x, y) if we are given a plane embedding D of G, to

the inner part of the formula for (i) or (ii). This yields ∃R-membership for all remaining variants
claimed in the theorem.

3.2 ∃R-hardness

The theorem claims ∃R-hardness of testing the angular resolution of (i) a drawing, and (ii) a
graph. We will show part (i) in this section and then see how it implies part (ii) in Section 3.3.

Using Corollary 3 we are left with showing how to simulate ×-junctions using angular resolution
constraints. We know that each ×-junction has at most one additional edge, and that the angular
resolution of a straight-line drawing D+ respecting the junctions in D and isomorphic to D is at
least π/4.

We first complete the proof for angular resolution π/4 in Section 3.2.2, since the gadgets are
simpler for this case. We then treat angular resolution π/(2k) for k > 2 in Section 3.2.3. In the
preparatory Section 3.2.1 we study some properties of drawings of the complete graph.

3.2.1 Rose Drawings

To build gadgets, we will work with a result essentially due to Formann, Hagerup, et al. [8]. They
show that the complete graph Kn has angular resolution π/n and that this angular resolution is
achieved by placing the n vertices at the corners of a convex n-gon, let us call this the (mystic)
rose drawing.4

Figure 4: A mystic rose drawing of a K12 with angular resolution π/12.

3Lemma 4.1 in [20] is stated in a parameterized version, with parameter y ∈ Rℓ, but the proof only establishes
the case ℓ = 0; fortunately, that’s the only case we need here.

4Both the drawings and the term are old, but it is not clear when the term was first applied to this type of
drawing. The earliest instance of this usage I could find is in a book from 1906 [22, pp. 40, 64].
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Lemma 1 Any straight-line drawing of a Kn with angular resolution π/n is a rose drawing.

Proof: Let P be the k-gon formed by the outer hull of the drawing, where k ≤ n. Then the corners
of P must be vertices of Kn. The total inner angle of the polygon is (k−2)π, so at least one of the
inner angles, say at v, is at most (k−2)π/k; since v is incident to at least n−2 angles inside P , the
angular resolution is at most (k−2)π/(k(n−2)). Then, by assumption, (k−2)π/(k(n−2)) ≥ π/n,
so n(k − 2) ≥ k(n − 2). Since k ≤ n, this forces n = k, and all vertices of Kn lie on P . Then
each inner angle must be at least (n− 2)π/n, but this is the most it can be, so each inner angle is
exactly (n− 2)π/n which implies that P is a regular n-gon. 2

Let us call the interior of the region bounded by the outer polygon of a rose drawing of a Kn

the inner region.

Lemma 2 In a straight-line drawing with angular resolution π/n of two Kn which have at least
one vertex in common, the inner regions of the two Kn are disjoint, unless they are identical.

In other words, if the drawings are not identical, they must look like one of the two illustrations
shown in Figure 5.

Figure 5: Two rose drawings of a K6 intersecting in one vertex (on the left) and in two vertices
(on the right).

Proof: Any two consecutive edges in a rose drawing of a Kn form an angle of exactly π/n, so
any other edge incident to a vertex of the rose drawing cannot lie in the inner region of the rose
drawing, unless it overlaps an edge of that drawing which would lead to a vertex of one of the
two Kn lying in the interior of an edge of the other Kn which we do not allow. Hence, if the two
Kn have exactly one vertex in common, their interior regions are disjoint. If the two Kn have at
least two vertices in common, then the common edge must lie on the circumference of both rose
drawings. If the two Kn have a third vertex in common, then their rose drawings are bounded by
the same outer circle and must therefore be identical. Otherwise, the two Kn have exactly two
vertices in common, and their inner regions are disjoint. 2

3.2.2 Angular Resolution π/4

We distinguish two cases, based on whether D+ is required to be an embedding or not.



JGAA, 27(7) 565–580 (2023) 573

Case 1: D+ is not required to be an embedding.

Consider the two gadgets shown in Figure 6. In straight-line drawings of these gadgets with
angular resolution at least π/4, each K4 is drawn as shown, by Lemma 1. Since the K4s cannot
overlap by Lemma 2, the five K4 in the left gadget form a ×-junction without an additional edge,
and the ten K4 in the right gadget form a ×-junction with an additional edge. Both gadgets are
drawn as shown, forcing the four (or five) edges incident to the gadget to leave at the required
angles; note that for the ×-junction with an additional edge we do not have to enforce the angle,
but it turns out to be easier to do so.

Figure 6: Angular gadgets simulating a ×-gadget without (left) and with (right) an additional
edge.

Let G′ be the graph obtained from G by replacing each ×-junction with the appropriate gadget,
and let D′ be the corresponding drawing obtained from D. Then G′ has a straight-line drawing
D+ with angular resolution at least π/4 if and only if G has a straight-line drawing respecting the
junctions. If the straight-line drawing exists, then there is a straight-line drawing D+ of G′ with
angular resolution at least π/4 isomorphic to D′.

This completes the proof of ∃R-hardness in Theorem 1 for the case that D+ is not required to
be an embedding.

Case 2: D+ has to be an embedding.

The proof is similar to Case 1, we only modify the gadgets in Figure 6 by replacing each crossing
with a dummy vertex. This turns each K4 into a W4, a wheel on five vertices. The argument in
Lemma 1 also applies to W4 as long as we know that the center of the wheel lies inside the 4-gon;
but this has to be the case, since otherwise two of the outer vertices of the wheel would have to
lie inside one of the triangles, forcing two right angles in that triangle, which is not possible. We
conclude that a plane drawing of W4 with angular resolution at least π/4 is a square with four
spokes lying on the two diagonals. The argument from Case 1 then still applies, so we can conclude
that the gadgets shown in Figure 6, modified to replace K4 with W4 work the same way as they
do in the drawing case.

Hence, we can construct G′ and D′ as in Case 1, with the difference that D′ is a plane em-
bedding. The conclusion then remains exactly the same, completing the ∃R-hardness proof in
Theorem 1 for the case that D+ has to be an embedding.
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3.2.3 Angular Resolution π/(2k) for k > 2

We start with the embedding case, since it is easier for k > 2.

Case 1: D+ has to be an embedding.
We base the ×-gadget on a modified wheel; in a drawing of a wheel W4k with angular resolution

at least π/(2k), the angles between neighboring spokes have to be exactly π/(2k). Since the rotation
system of a 3-connected graph, like the wheel, is uniquely determined in an embedding, we know
that the angle between two spokes that are separated by exactly k − 2 other spokes, is π/2. The
spokes ac and bc in Figure 7 illustrate that situation. We modify the wheel, by making both ac
and bc spokes in a W2k − v, with centers a and b, where v is the vertex opposite c, as can be seen
in Figure 7.

a c

b

Figure 7: The modified wheel gadget Mk for k = 3, with additional edges (in gray) attached to a
and b. Both ac and bc are spokes in a common W12, and each is a spoke in a W6 − v.

Additional edges attached to a or b can form an angle of at most π (and at least π/(2k), of
course).

For the plane ×-gadget, we assemble three Mk as shown in Figure 8. Each of the a- and b-
vertices of the three gadgets is attached to two additional edges, four of which meet in a central
vertex c, and the other four of which become e1, e2, e3, and e4. We connect each of the three
gadgets by a separate edge to the center c, and attack two more (W2k − v)-gadgets to the free a-
and b-vertices, as shown in the upper/right quadrant of Figure 8.

The combination of the three Mk-gadgets enforces that e1 and e3, as well as e2 and e4, are
collinear, and the two lines are orthogonal as long as we know that e1, e2, e3 and e4 lie on the outer
face of the gadget. This we can enforce by connecting neighboring ×-gadgets. Figure 9 shows an
example of a ×-junction with an additional edge between a degree-1 vertex to the left and another
×-junction on the right.

Case 2: D+ is not required to be an embedding.
Let Qn be the gadget shown in Figure 10 on the left, that is, a 4-cycle a, b, c, d, in which one

edge, bc, has been identified with a common edge of two Kn.

Lemma 3 In a straight-line drawing of Qn with angular resolution at least π/n, the inner angles
at vertices a and d are exactly π/n.

Proof: If the 4-gon abcd is not simple (crossing-free), as shown on the right in Figure 10, then
ad crosses bc. But then the angle δ at d is smaller than the angle ∠(c, d, b) which is at most
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e1

e2

e3

e4

Figure 8: The plane ×-gadget replacing each ×-junction, pictured with the additional edge for
k = 3.

Figure 9: Connecting ×-gadgets to enforce rotation; connecting edges are drawn in red.

π− (π−π/n) = π/n contradicting the assumption about the angular resolution. Hence, the 4-gon
is simple.

Let α, β, γ, δ be the inner angles at a, b, c and d. Then α, β ∈ [π − π/n, π + π/n], because ab
and cd have to lie in the exterior of the rose drawings. In a 4-gon we have α+β+γ+ δ = 2π, so it
follows that γ + δ ≤ 2π − 2(π − π/n) = 2π/n. Since γ and δ have to be at least π/n, we conclude
that γ = δ = π/n and therefore α = β = π − π/n. 2

With Qn as a building block to force angles of degree π/n we can complete the construction,
but we need to distinguish a couple of cases based on k mod 4.

Case 2.1.1: k = 0 mod 4.
The first two cases are k = 4 and k = 8, and the ×-gadget for each, with additional edge

shown, is pictured in Figure 11. We construct the gadget by taking four copies of K2k. We choose
a Hamiltonian cycle in each copy and identify the k-th edge of that cycle with the first edge of the
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a

b c

d

a

b c

d

Figure 10: Drawings of gadget Qn for n = 6 with angular resolution π/n (left), and angular
resolution less than π/n (right).

Hamiltonian cycle of the next K2k. To all remaining edges of the Hamiltonian cycles we attach a
Q2k-gadget by identifying the edge with the ad-edge of the Q2k-gadget.

e1

e2

e3

e4

e1

e2

e3

e4

Figure 11: The ×-gadget replacing each ×-junction, pictured with the additional edge; the Q2k-
gadgets are symbolized by red arcs. Left: for k = 4, right: for k = 8.

Since the four K2k share edges, they all have the same size; the Q2k-gadgets force which edges
appear on the outer cycle of each K2k and in which order. This already implies that in a straight-
line drawing with angular resolution at least π/(2k), the four rose-drawings look as shown in
Figure 11. Then the angles at which e1, e2, e3 and e4 leave the drawing are forced, and similarly
for the four edges connecting to the central vertex. If there is an additional edge attached to it,
the angle of that edge is not forced, but that was not required. It can be drawn as shown, however,
forming an angle of π/4 with both e1 and e4, since the Q2k-gadgets it intersects do not have vertices
along that line (see Figure 10: there are no vertices along the axis of symmetry orthogonal to bc).

Case 2.1.2: k = 2 mod 4.
We treated the case k = 2 in Section 3.2.2, so the first interesting case is k = 6. The construction

is similar to the case k = 0 mod 4, and for ×-junctions without additional edge, we can use the
×-gadget for that case. However, if there is an additional edge, that gadget no longer works, since
the additional edge would pass through vertices of the gadget when it is drawn so as to bisect
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the right angle between the lines through e1 and e4. Instead of attaching the additional edge to
the center vertex, we attach it to the outmost vertex of the K2k which the edge would otherwise
intersect. At this point, we have to enforce that the edge leaves the gadget at the right angle, to
simulate it starting at the center vertex. For this we combine k of the Q2k-gadgets as shown in
Figure 12 to build a gadget R2k that forces a right angle. (Figure 12 illustrates the case k = 3,
rather than k = 6, to keep the drawing readable.)

a

b c

d

Figure 12: R6: Using three Q6 to force a right angle at vertex d.

We attach two R2k-gadgets to a K2k by identifying the ad-edges of the R2k-gadgets with two
adjacent edges, the d-vertices of the gadgets becoming the shared vertex of the two R2k-gadgets.
In a straight-line drawing of angular resolution at least π/(2k), an additional edge at the shared
vertex must lie on a ray through the center of the rose drawing of the K2k, see Figure 13.

e1

e2

e3

e4

Figure 13: The ×-gadget for k = 6, pictured with the additional edge; the Q2k-gadgets are
symbolized by red arcs, and the two R2k-gadgets by green arcs.

Case 2.1.3: k = 1, 3 mod 4.
The remaining two cases are similar to the cases we have already covered, except that the rose

drawings of K2k in these cases do not contain two outer edges which lie on lines forming a right
angle. This can be addressed in various ways; we arrange four K2k as shown in Figure 14. The
two K2k in the top half and the bottom half have the same size, since they share an edge. Then
the K2k at the bottom and the top also have the same size, since their distance from the same
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points on the boundary is the same (the edges on the boundary, and their order, is forced by the
Q2k-gadgets).

Similar to the construction of R2k, the gadget forcing a right-angle, we can build a gadget A2k

that forces an angle of π(1/2 − 1/k). We attach a copy to each side of the edge connecting the
bottom two K2k to the center vertex. This forces the center vertex to be geometrically centered
in a drawing with angular resolution at least π/(2k).

We had to distinguish the cases k = 0 and k = 2 mod 4, since for k = 2 mod 4 there were
vertices of the ×-gadget along the diagonal lines, blocking an additional edge starting at the central
vertex. We do not have the same problem for k = 1 and k = 3 mod 4: in both cases, the additional
edge does not pass through any K2k- or Q2k-vertices when drawn at a π/4-degree angle, since
the K2k- and Q2k-vertices can be made to lie arbitrarily close to the center of the edge they are
attached to, and the additional edge cuts through the attachment edge off-center, see Figure 14.

e1

e2

e3

e4

Figure 14: The ×-gadget for k = 3, pictured with the additional edge; the Q2k-gadgets are
symbolized by red arcs, the two A2k-gadgets in green.

3.3 Angular Resolution of a Graph

At this point we have established part (i) of Theorem 1. We still have to argue part (ii). Recall that
part (ii) differs in considering the supremum of the angular resolutions of straight-line drawings of
G. As we saw in Figure 1 this can make a difference, but only because as we go to the limit some
vertex would overlap with another vertex or an edge it is not incident to. We claim that this cannot
happen in our specific ∃R-hardness construction: The gadgets we use to simulate junctions in the
proof of part (i) all have drawings with angular resolution exactly π/(2k). So realizability in the
limit could only be affected when combining multiple gadgets, which we do by identifying vertices
and edges of gadgets. However, except for these explicit vertex- and edge-overlaps, the gadgets do
not interfere with each other, or get close to each other. So a lack of realizability is due to the
same vertex being forced to lie in different locations by different gadgets, not by a vertex getting
close to another vertex or edge. This shows that for the graphs and drawings constructed in the
proof of part (i), the angular resolution equals the angular resolution achieved by the drawing D+,
so the supremum is a maximum, and part (ii) is ∃R-hard as well.
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4 Open Questions
Angles. We have shown that angular resolution is ∃R-complete for an infinite family of angles;
our construction required angles of the form π/(2k), for k ≥ 2, so we could form right angles, which
in turn allowed us to build on results from [19] on RAC-drawings. It’s likely that the construction
in [19] can be modified to work with other, fixed, angles, suggesting that angular resolutions of
α/(2k) lead to ∃R-hardness for all 0 < α < π, k ≥ 2 as well (membership in ∃R will depend on α,
of course). On the other hand, showing angular resolution π/3 hard for ∃R looks more challenging.

Degree Bounds. For a specific angular resolution, we can ask whether the problem remains
∃R-complete if we restrict the maximum degree; for example, for angular resolution π/4, our con-
struction requires graphs of degree eight; can that be reduced? We cannot expect the maximum
degree to be less than four in this case, since Mukkamala and Pálvöl [14] showed that all cubic
graphs have straight-line drawings with angular resolution at least π/4 [14].

Planar Graphs. The proof of Theorem 1 does not cover the case where G is planar, but we
do not require the drawing of G to be planar; we suspect that this variant of the problem is still
∃R-hard, but we need stronger gadgets than the ones we saw in Section 3.2; it seems hard to find
a sufficiently rigid gadget whose underlying graph is planar, even for angular resolution π/4.
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