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Abstract. In a planar confluent orthogonal drawing (PCOD) of a directed graph
(digraph) vertices are drawn as points in the plane and edges as orthogonal polylines
starting with a vertical segment and ending with a horizontal segment. Edges may
overlap in their first or last segment, but must not intersect otherwise. PCODs can be
seen as a directed variant of Kandinsky drawings or as planar L-drawings of subdivisions
of digraphs. The maximum number of subdivision vertices in any edge is then the split
complexity. A PCOD is upward if each edge is drawn with monotonically increasing
y-coordinates and quasi-upward if no edge starts with decreasing y-coordinates. We
study the split complexity of PCODs and (quasi-)upward PCODs for various classes of
graphs.

1 Introduction

We consider plane digraphs, i.e., planar directed graphs with a fixed planar embedding and a fixed
outer face. Directions of edges in node-link diagrams are usually indicated by arrow heads. Since
this might cause clutter at vertices with high indegree, Angelini et al. [4] proposed L-drawings in
which each edge is drawn with a 1-bend orthogonal polyline starting with a vertical segment at the
tail. A plane digraph can only have an L-drawing without crossings if it is 4-modal, where a plane
digraph is k-modal if in the cyclic order around a vertex there are at most k pairs of consecutive
edges that are neither both incoming nor both outgoing. However, not every 4-modal digraph
admits a planar L-drawing. This motivates to extend the model to drawings with more than one
bend per edge.

In a planar confluent orthogonal drawing (PCOD) of a digraph, vertices are represented as
points in the plane with distinct x- and y-coordinates and each edge is represented as an orthogonal
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Figure 1: Different representations of a 4-modal irreducible triangulation.

polyline starting with a vertical segment at the tail and ending with a horizontal segment at the
head. Distinct edges may overlap in a first or last segment, but must not intersect otherwise. For
better readability bends have distinct coordinates and are drawn with rounded corners. A plane
digraph has a PCOD if and only if it is 4-modal.

A PCOD of a digraph G corresponds to a planar L-drawing of a subdivision of G. The number
of subdivision vertices on an edge is its split complexity. See the red encircled vertex in Figure 1b for
the subdivision vertex. Since each edge starts with a vertical segment and ends with a horizontal
segment, the number of bends on an edge is odd. An edge with split complexity k has 2k + 1
bends. The split complexity of a PCOD is the maximum split complexity of any edge. The PCOD
in Figure 1b has split complexity one. A planar L-drawing [4, 16] is a PCOD of split complexity
zero. If the embedding is not fixed, then it is NP-complete to decide whether a digraph admits a
planar L-drawing [16]. Every 2-modal digraph without 2-cycles has a planar L-drawing [3].

A PCOD of a digraph corresponds to a Kandinsky drawing [20] of the underlying undirected
graph with the only difference that edges partially overlap instead of being drawn in parallel with
a small gap. See Figure 1c. While every simple planar graph has a Kandinsky drawing with one
bend per edge [15], deciding whether a multigraph has a Kandinsky drawing with one bend per
edge [15] or finding the minimum number of bends in a Kandinsky drawing of a plane graph [13] is
NP-hard. For the bend-minimization problem in the Kandinsky model there are 2-approximization
algorithms [5, 19] and heuristics [6].

Among the results for orthogonal drawings of undirected graphs where edges must not overlap,
we mention three: With one exception, every plane graph of maximum degree four admits an
orthogonal drawing with at most two bends per edge [10]. In a bend-minimum drawing, however,
there might have to be an edge with a linear number of bends [27]. An orthogonal drawing with
the minimum number of bends can be computed by means of a min-cost flow approach [26] even
if an upper bound on the number of bends per edge must be respected.

In an upward-planar drawing of a digraph, each vertex is drawn as a point, each edge is drawn
as a y-monotone curve between the drawings of its end vertices, and the drawings of two edges
must not cross except in common endpoints. A digraph is upward-planar if and only if it has an
upward-planar drawing. A PCOD is upward if each edge is drawn with monotonically increasing
y-coordinates. A plane st-graph, i.e., a plane acyclic digraph with a single sink and a single source,
both on the outer face, is always upward-planar; moreover, it has an upward-planar L-drawing if
and only if it admits a so-called bitonic st-ordering [16]. Since it suffices to subdivide the edges of
a plane st-graph at most once in order to obtain a digraph that admits a bitonic st-ordering [1,22],
it follows that every plane st-graph admits an upward PCOD with split complexity one. Moreover,
the minimum number of bends in an upward PCOD of a plane st-graph can be determined in linear
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time. In general, a digraph admits an upward-planar L-drawing, if and only if it is a subgraph of a
plane st-graph admitting a bitonic st-ordering [2]. Not every 2-modal tree admits an upward-planar
L-drawing [2].

In a quasi-upward-planar drawing [7] edges must be strictly monotonically increasing in y-
direction in a small vicinity around the end vertices. A digraph has a 2-modal embedding if and
only if it admits a quasi-upward-planar drawing. Every 2-modal graph without 2-cycles admits a
quasi-upward planar drawing with at most two bends per edge and the maximum number of bends
on any edge in such drawings can be minimized utilizing a min-cost flow approach [12]. We call a
PCOD quasi-upward if no edge starts with decreasing y-coordinates.

Our Contribution. We show that PCODs of 4-modal trees have split complexity zero (Theo-
rem 2), split complexity two is sufficient (Theorem 4) and sometimes necessary (Theorem 3) for
PCODs of 4-modal digraphs with parallel edges or loops, while split complexity one suffices for
4-modal irreducible triangulations (Theorem 5), i.e., internally triangulated plane graphs without
separating triangles and with an outer face of degree 4. Every upward-planar digraph admits
an upward PCOD. Moreover, split complexity one suffices for upward PCODs of upward-plane
digraphs (Theorem 6) and for quasi-upward PCODs of 2-modal digraphs without 2-cycles (The-
orem 8). We show that for plane st-graphs both the split complexity and the total number of
bends can be minimized simultaneously in linear time (Theorem 6); however testing whether an
arbitrary directed acyclic graph admits a PCOD with split complexity zero is NP-complete (The-
orem 7). Using an ILP, we conducted experiments that suggest that every simple 4-modal digraph
without separating 2-cycles admits a PCOD with split complexity one (Section 8). Constant split
complexity is not to be expected for bend-minimum PCODs (Theorem 1).

2 Preliminaries

Consider an edge e in a PCOD. We call a bend on e independent if it is the second, fourth, etc.
bend on e. Since the number of bends on any edge is odd in a PCOD, the definition of independent
bends does not depend on the direction of the edge. The drawing of a PCOD is determined by the
coordinates of the vertices and the independent bends. Considering a PCOD as an L-drawing of
a subdivision, the independent bends correspond to the subdivision vertices. The split complexity
of an edge is the number of its independent bends. The total number of bends equals the number
of edges plus twice the number of independent bends. The top, left, bottom, and right side of a
vertex is its North, West, South, and East port, respectively.

Two consecutive incident edges of a vertex v are a switch if both edges are incoming or both
outgoing edges of v. A graph is k-connected if it contains at least k + 1 vertices and removing
any k − 1 vertices yields a connected graph. A 2-connected graph is also called biconnected. A
separating triangle of a plane graph is a triangle such that both its interior and its exterior contain
at least one vertex. Observe that a plane triangulated graph is 4-connected if and only if it does
not contain any separating triangles.

An st-ordering of a biconnected (undirected) graph G = (V,E) with an edge between two
distinct vertices s and t is a bijection π : V → {1, . . . , |V |} such that π(s) = 1, π(t) = |V |, and
each vertex v ∈ V \ {s, t} has neighbors u and w with π(u) < π(v) < π(w). Let now G = (V,E)
be a plane st-graph. If (v, vi), i = 1, . . . , k are the outgoing edges of a vertex v from left to
right then S(v) = ⟨v1, . . . , vk⟩ is the successor list of v. A bitonic st-ordering of G is a bijection
π : V → {1, . . . , |V |} such that π(u) < π(v) for (u, v) ∈ E and S(v) = ⟨v1, . . . , vk⟩ is bitonic for each
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vertex v, i.e., there is a 1 ≤ h ≤ k such that π(vi) < π(vi+1), i = 1, . . . , h− 1 and π(vi) > π(vi+1),
i = h, . . . , k − 1. The successor list S(v) = ⟨v1, . . . , vk⟩ contains a valley with transitive edges
(v, vℓ−1) and (v, vr+1) if there is a directed vℓ-vℓ−1-path and a directed vr-vr+1-path for some
1 < ℓ ≤ r < k. A plane st-graph admits a bitonic st-ordering if and only if it does not contain a
valley [22].

Incremental Orthogonal Drawings. The proof of Theorem 4 is inspired by an approach of
Biedl and Kant [10] for incrementally constructing an orthogonal drawing of a planar undirected
graph G = (V,E) with maximum degree four. We briefly summarize the approach for biconnected
graphs here. First, an edge {s, t} on the outer face of G is chosen, an st-ordering π is computed,
and the edges are oriented from lower to greater st-numbers. For i = 1, . . . , |V | let vi = π−1(i). By
the st-ordering, it follows that for i = 1, . . . , |V | the vertex vi is in the outer face of the subgraph
Gi of G induced by the vertices v1, . . . , vi. Now the vertices are processed in the order v1, . . . , v|V |.
In principle, the st-number π(v) of a vertex v is its y-coordinate. An edge where one endpoint is
already processed is assigned a column. Depending on the indegree, the x-coordinate of a vertex is
determined by its incoming edges as indicated in Figure 2. In order to guarantee planarity, columns
for new outgoing edges are inserted near the currently processed vertex. Again, see Figure 2 for
the different cases.

(a) indegree = 0 (b) indegree = 1 (c) indegree = 2 (d) indegree = 3 (e) indegree = 4

Figure 2: Cases by indegree in incremental orthogonal drawings.

3 Confluent Orthogonal Representation

Let Γ be a PCOD of a plane digraph G. We call a bend covered if it is contained in the drawing
of another edge. We associate an orthogonal drawing of a plane graph GΓ with Γ as follows [3]:
Replace every covered bend in Γ by a dummy vertex. The result is shown in Figures 1d and 3b,
where dummy vertices are drawn as empty circles. A zig-zag is a pair of uncovered bends on an
edge, one with a left turn, and one with a right turn. E.g., on the edge (u, v) in Figure 3a there is
a zig-zag, while on the edge (u,w) there is both a left and a right turn, but the left turn is covered,
so there is no zig-zag. Since the number of bends in an orthogonal drawing can always be reduced
by eliminating zig-zags, we will also do so in PCODs (see Figure 3c) and, thus, the ordering of left-
and right-turns at uncovered bends of an edge will not matter. Since planar (confluent) orthogonal
drawings can be stretched independently in x- and y-directions, it is algorithmically often easier
not to work with actual x- and y-coordinates, but rather with the shape of the faces in terms of
bends on the edges and angles at the vertices. See also [20,26].

A confluent orthogonal representation R of a plane digraph G = (V,E) is a set of circular lists
H(f), one for each face f of G. The elements of H(f) are tuples r = (e, v, a, s, b) associated with
each edge e incident to f in counter-clockwise order.

(a) v is the end vertex of e traversed immediately before e.
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Figure 3: Eliminating zig-zags.

(b) a ∈ {0, π
2 , π,

3π
2 , 2π} is the angle at v between e and its predecessor on f . It is a multiple of

π if and only if it describes an angle at a switch: If a describes an angle at a switch, then
either both edges are incoming at v and, thus, attached to the South or the North port of
v or both edges are outgoing at v and, thus, attached to the West or the East port of v. In
either case a is an integer multiple of π. Analogously, a is π/2 or 3π/2 if it does not describe
the angle at a switch.

(c) s is the number of left turns (when traversing e starting from v) at bends on e.

(d) b ∈ {L,N,R} represents a covered bend on the segment of e incident to v, if any, with (L)
a left bend, (R) a right bend, or (N) no such bend. Observe that only one endpoint of the
respective segment is a bend since the other endpoint is a vertex.

Let rp be the predecessor of r in H(f). If r is not clear from the context, we denote the
entries by e[r], v[r], a[r], s[r], b[r]. For each edge, there are two tuples containing it in a confluent
orthogonal representation, one for each of the two faces incident to the edge. Let r be the (other)
entry containing e[r]. Observe that s[r] is the number of right turns at bends on e[r] we make when
traversing e[r] starting from v[r]. A confluent orthogonal representation is feasible if it fulfills the
following.

(i) The rotation
∑

r∈H(f)(2− a[r]/π
2 + s[r]− s[r]) of a face f is −4 if f is the outer face and 4

otherwise. (ii) The angular sum
∑

r;v[r]=v a[r] around a vertex v is 2π. (iii) If b[r] = L or b[r] = R,

then s[r] ≥ 1, and if both b[r] = L and b[r] = R, then even s[r] ≥ 2. This ensures that covered
bends are counted by s and that covered bends adjacent to the head or the tail of an edge must
be distinct. (iv) The bend-or-end property [20] has to be fulfilled, i.e., if a[r] = 0, then b[r] = R or
b[rp] = L. (v) The total number of bends s[r] + s[r] on e[r] is odd.

From a Representation to a PCOD. In order to construct a PCOD from a feasible confluent
orthogonal representation R of a plane digraph G, we transform G into a graph GR of maximum
degree 4 and a feasible orthogonal representation R′ without angles of magnitude 0 or 2π. Using
compaction for orthogonal representations [26] on GR then yields a PCOD or a π/2-rotation of
a PCOD in linear time. The idea for the construction of GR is analogous to the construction of
GΓ from a PCOD Γ and is as follows: Consider a vertex v ∈ V and let e1, . . . , ek be a maximum
sequence of consecutive edges around v with angles of magnitude 0. For i = 1, . . . , k, let ri be the
entry with e[ri] = ei and v[ri] = v. Due to Property iv, there is some m with 1 ≤ m ≤ k such that
b[rj ] = L for all j with j < m and b[rj ] = R for all j with j > m. We subdivide the segment of
em that is incident to v with k − 1 vertices v1, . . . , vm−1, vk, . . . , vm+1 in this order, starting from
v. We attach ej , j ̸= m to vj instead of v. The representation R′ is updated accordingly.
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Figure 4: Graphs with a linear number of bends in any bend-minimum PCOD.

4 Some Initial Results

We start with an example that shows that a bend minimum PCOD might require an edge whose
split complexity is linear in the number of vertices. Together with Theorem 4, this implies in
particular that the split complexity and the number of bends cannot be minimized simultaneously.

Theorem 1 There is a family Gk, k > 0 of 4-modal digraphs with 14k − 3 vertices and 16k − 4
edges such that in any bend-minimum PCOD of Gk there is an edge with split complexity at least
k + 2.

Proof: Consider the digraphs Gk indicated in Figure 4a. Let e be the red dashed edge. Let Pk

be the path s1, x1, t1, y1, . . . , sk, xk, tk of length 4k− 2 in Gk that is drawn vertically in Figure 4a.
Consider a planar L-drawing of Gk − e in which all edges of Pk (traversed from s1 to tk) bend
to the left and the edge incident to s1 is to the top of s1. Such a drawing for G2 is indicated in
Figure 4b, where k = 2. Since all vertices of Pk are 4-modal this uniquely determines the drawing
of Pk and also of the transitive edges of Pk. In order to preserve the embedding, e can only be
inserted into the drawing with split complexity at least k + 2.

Consider a PCOD of Gk with fewer bends on e. Since all vertices are 4-modal, the rotation of
the cycle C composed of Pk and e can only be maintained, if the number of bends on at least one
edge of Pk, say (si, xi), is increased. But then we also must increment the number of bends on
an edge (si, ti) to maintain the rotation of the face bounded by the edges (si, ti), (si, xi), (xi, ti).
Thus, for each independent bend less on e the total number of bends increases by at least 2. □

Even though not every 2-modal tree has an upward-planar L-drawing [2], every 4-modal tree
has a planar L-drawing, despite its fixed embedding.
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Figure 5: Constructing a tree from its subtrees.

(a) Loop

(b) Parallel Edges

Figure 6: Multigraphs with
split complexity two.

Theorem 2 Every 4-modal tree has a planar L-drawing. Moreover, such a drawing can be con-
structed in linear time.

Proof: Let T be a 4-modal tree and let v be a leaf of T . We show by induction on the number m
of edges that we can draw T as a planar L-drawing Γα such that v is in the corner α (lower left
(ℓℓ), lower right (ℓr), upper left (uℓ), upper right (ur)) of the bounding box of Γα. We give the
details for Γℓℓ; the other cases are analogous.

If m = 1, draw v at (0, 0) and its neighbor at (1, 1). If m > 1, let the neighbor of v be
v′, and let the connected components of T − v′ be v, T1, . . . , Tk in clockwise order around v′.
See Figure 5. Let T0 be the subtree consisting of v only. Each tree Ti + v′, i = 0, . . . , k
has at most m − 1 edges and the leaf v′; therefore, by the inductive hypothesis, we can con-
struct planar L-drawings Γα

i , α ∈ {ℓℓ, ℓr, uℓ, ur} of Ti + v′ with v′ in the respective corner of
the bounding box. W.l.o.g. let v be the tail of the edge connecting v and v′, see Figure 5a.
Let 1 ≤ a ≤ b ≤ c ≤ d ≤ k such that Td+1, . . . , Tk, T0, T1, . . . , Ta and Tb+1, . . . , Tc are con-
nected to v′ by an incoming edge and Ta+1, . . . , Tb and Tc+1, . . . , Td by outgoing edges. Choose
Γur
0 ,Γℓr

1 , . . . ,Γℓr
a ,Γℓℓ

a+1, . . . ,Γ
ℓℓ
c ,Γur

c+1, . . . ,Γ
ur
k for Ti + v′, i = 1, . . . , k. Finally, merge the drawings

of the subtrees at v′. The other case where v is the head of the edge connecting it to v′ is shown
in Figure 5b.

In order to compute a confluent orthogonal representation, using dynamic programming, only
O(deg(v′)) steps are required for each vertex v′. Thus, the total time complexity is linear. □

5 Multi-Graphs

In this section, we prove that split complexity two is always sufficient, even if there are loops or
parallel edges. We start with two plane multi-graphs that also require split complexity two.

Theorem 3 There are 4-modal multigraphs that need split complexity at least two in any PCOD.

Proof: Consider the digraph containing a loop in Figure 6a or the digraph containing two parallel
edges in Figure 6b. The incident 4-modal vertices on the one hand and the rotation of the outer
face on the other hand, imply that the loop and one of the two parallel edges, respectively, must
have split complexity two. In the case of the loop, the angle at the vertex in the outer face is
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(a) + (b) +− (c) +−+ (d) +−+− (e) +−+−+

(f) − (g) −+ (h) −+− (i) −+−+ (j) −+−+−

Figure 7: Drawings around vk in the proof of Theorem 4. A + represents outgoing edges from
below. A − represents incoming edges from below.

convex. Since the rotation of the outer face is −4, it follows that five concave bends (i.e., with
angle 3π/2 in the outer face) on the loop are needed. In the case of two parallel edges, the angles
at the vertices in the outer face have magnitude 0. Thus, the two edges together must have eight
concave bends. Since each edge has an odd number of bends, there must be an edge with five
bends. □

Theorem 4 Every 4-modal multigraph has a PCOD with split complexity at most two. Moreover,
such a drawing can be computed in linear time.

Proof: The approach is inspired by [10]. Subdivide each loop. Let the resulting digraph be G.
Then make the digraph biconnected maintaining its 4-modality [3, Lemma 3]. Now compute in
linear time [14] an st-ordering v1, . . . , vn of this biconnected graph G′ (without taking into account
the direction of the edges). Iteratively add the vertices with increasing y-coordinates in the order
of the st-ordering, maintaining a column for each edge for which one of its end vertices is already
drawn while the other one is not.

Let vk be a vertex. An edge e incident to vk is incident to vk from below if e has an end vertex
that is before vk in the st-ordering. Let e1, . . . , ej be the sequence of edges incident to vk from
below as they appear from left to right. Since vk is 4-modal, e1, . . . , ej can be divided into at
most five subsequences of edges consisting only of incoming (−) or only of outgoing (+) edges of
vk. Depending on the arrangement of these subsequences, we assign the bends around vk. E.g.,
consider the Case “+−” in Figure 7b, i.e., among the edges incident to vk from below, there are first
some outgoing edges, followed by some incoming edges. All outgoing edges from below are attached
to the South port, while all incoming edges from below are attached to the East port. Mind that all
outgoing edges except one need two bends near vk. Consider now the edges incident to vk to later
vertices in the st-ordering. By 4-modality, there can be at most some incoming edges, followed by
some outgoing, some incoming and again some outgoing edges in counter-clockwise order around
vk. We attach them to the East, North, West, and South port of vk, respectively. The edges from
below determine the position of vk. More precisely, in all cases except Case “−” in Figure 7f, i.e.,
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in particular in the case considered here, vk inherits the x-coordinate of its rightmost outgoing
edge from below.

See Figure 7 for the routing of the edges from below and the possible edges to later end vertices
in the other cases. For v1, we choose the assignment according to Figure 7a or Figure 7f. After all
vertices are placed, we remove edges that are in G′ but not in G. If x is a vertex that was inserted
into a loop, we reroute the two incident edges near x such that the incoming edge of x has exactly
one bend near x and the outgoing edge has no bend near x. Finally, we eliminate zig-zags.

By the st-ordering, the columns of the edges incident to vk from below are consecutive among
the edges for which exactly one of the end vertices is already drawn [10]. This implies planarity
if the columns for the new edges are inserted directly next to vk. For each edge e, there are at
most two bends near the tail of e and at most three bends near the head of e. Consider now a
2-cycle (v, x), (x, v) replacing a loop at v. Since the subdivision vertex x is incident to exactly one
incoming and one outgoing edge, it follows that near x there is no bend on (x, v) and one bend on
(v, x). If (x, v) does not have three bends near v then in total there are at most six bends on the
loop, namely the four bends near v plus one bend near x plus the bend on x. Since the number
of bends on an edge must be odd, there are only five. Consider now the case that (x, v) has three
bends near v (Figures 7f and 7j). If in addition (v, x) has two bends near v, then there are seven
bends on the loop. However, in this case, there is a zig-zag on (v, x) formed by the bend near x
and the second bend near v. Thus, after eliminating zig-zags, the split complexity is at most two.
See Figure 8 for an example. □

1
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Figure 8: (a) A multigraph, (b) with subdivided loops, augmented to biconnectivity, (c) drawn
as a PCOD, (d) with dummy edges and vertices removed and zig-zags eliminated. With each
subsequent vertex, the drawing up to the next dotted line is computed.

6 Irreducible Triangulations

Recall that an irreducible triangulation is an internally triangulated graph with an outer face
of degree four that does not contain any separating triangles. We prove that every 4-modal
digraph whose underlying undirected graph is an irreducible triangulation has a PCOD with split
complexity at most one.

Motivated by the approaches in [3, 11], we use rectangular duals, a contact representation of
an irreducible triangulation G = (V,E) with the following properties. Each vertex v ∈ V is
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Figure 9: Perturbed PCOD and corresponding PCOD after zig-zag elimination. Red encircled
bends are due to the change of the coordinate system and not proper.

represented by an internally disjoint axis-parallel rectangle R(v). Two rectangles touch if and only
if the respective vertices are adjacent in G. Moreover, no four rectangles representing a vertex meet
at the same point and

⋃
v∈V R(v) is a rectangle. See the rectangles in Figure 9a. A rectangular

dual for an irreducible triangulation can be computed in linear time [8, 9, 23,24].
Given a rectangular dual, we perturb the coordinate system such that in each rectangle the

axes correspond to the diagonals. The perturbed x-axis is the diagonal containing the bottommost-
leftmost point of the rectangle, the other diagonal is the perturbed y-axis. A perturbed orthogonal
polyline is a polyline such that in each rectangle the segments are parallel to one of the axes. A bend
of a perturbed orthogonal polyline at the boundary of two rectangles is a proper bend if among the
two incident segments one is parallel to a perturbed x-axis and the other parallel to a perturbed
y-axis. Bends inside a rectangle are always proper. In a perturbed PCOD each vertex v is drawn
at the center of R(v). An edge (u, v) is a perturbed orthogonal polyline in R(u)∪R(v) between u
and v starting with a segment on the perturbed y-axis in R(u) and ending with a segment on the
perturbed x-axis in R(v). The drawing of (u, v) must have at least one bend in the interior of both
R(u) and R(v) and must cross the boundary of R(u) and R(v) exactly once. Distinct edges may
overlap in a first or last segment, but must not intersect otherwise. No two bends have the same
coordinates. See Figure 9a. The North port of v is the port above and to the left of the center of
Rv. TheWest, South, and East ports are the other ports in counter-clockwise order.

Almost identically to the arguments in [3, Lemma 5], we obtain that a perturbed PCOD yields
a confluent orthogonal representation where the number s of left turns counts only proper bends.

Lemma 1 Let Γ be a perturbed PCOD of an irreducible triangulation G. There exists a PCOD
Γ′ of G such that for each edge e the number of left (right) turns on e in Γ′ equals the number of
left (right) turns at proper bends on e in Γ.

Proof: Let G be an irreducible triangulation and let Γ be a perturbed PCOD of G. In a first step,
we construct a PCOD Γ′′ of G. We will then show that zig-zag elimination yields a PCOD with
the desired property.

Similar to the construction on Page 526, we construct a graph G′ of maximum degree 4 from Γ
by replacing each bend and each intersection with the boundary of a rectangle by a dummy vertex.
See Figure 10b. Now each edge is contained in exactly one rectangle. Let Re be the rectangle
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(a) perturbed PCOD Γ (b) dummy vertices

(c) polylines (d) PCOD Γ′′+dummy vertices (e) Γ′ after zig-zag elimination

Figure 10: From a perturbed PCOD to a PCOD. Only the part of the graph within a rectangle of
the rectangular dual is shown.

containing e. We replace each edge e of G′ with an orthogonal polyline close to e satisfying the
following properties. (a) No two polylines of two edges cross. (b) The polyline of no edge is self-
intersecting. (c) Each polyline contains as many left bends as right bends. (d) If e is incident to
the top left (top right, bottom right, bottom left, respectively) of its tail then its polyline leaves
its tail to the top (right, bottom, left) and enters its head from the bottom (left, top, right). See
Figure 10c.

We obtain a drawing that fulfills all properties of a PCOD of G except that edges might overlap
in a prefix or a suffix that need not be a straight-line segment. In order to remedy this, we split
the edges on their first segment and route them close to each other in the order in which they
appear in the embedding around their common end vertex. This results in the PCOD Γ′′. See
Figure 10d. Since the number of left turns equals the number of right turns on each polyline in Γ′′,
we can remove all bends on any polyline by zig-zag elimination which yields the drawing Γ′. See
Figure 10e. Observe that the proper bends of the original drawing Γ still correspond to bends of
the constructed drawing and have the same turns (left or right). Also observe that in Γ′ there is
only a bend at a dummy vertex inserted at the border of a rectangle if there was a proper bend
there in Γ. □

By the next theorem, we can derive a PCOD with split complexity one from a suitable perturbed
PCOD after zig-zag elimination. See Figure 9b.

Theorem 5 Every 4-modal irreducible triangulation has a PCOD with split complexity at most
one; and such a drawing can be computed in linear time.

Proof: Let G be an irreducible triangulation. We construct a rectangular dual for G ignoring edge
directions. Routing the edges inside any rectangle independently, we then construct a perturbed
PCOD that yields a confluent orthogonal representation with split complexity at most one after
zig-zag elimination.

Let v be a vertex of G. For a side s of R(v) let ui, i = 1, . . . , k be the adjacent vertices of v in
counter-clockwise order such that s and R(ui) intersect in more than a point. Let ei be the edge
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(l) mod 2

v s
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Figure 11: Routing the edges in a perturbed PCOD.

between v and ui. Consider the division of ⟨e1, . . . , ek⟩ into mono-directed classes, i.e., maximal
subsequences such that any two edges in a subsequence are either both incoming or both outgoing
edges. Let the modality mod(s) of s be the number of these subsequences. Since G is 4-modal we
have mod(s) ≤ 5. Assume now that s is a side of R(v) with maximal modality. Assume without
loss of generality that s is the right-hand side of R(v).

mod(s) = 5. If e1 is an outgoing edge of v, assign the mono-directed classes of edges crossing
s from bottom to top in this order to (i) the North port bending three times to the left, (ii) to
the West port bending twice to the left, (iii) to the South port bending once to the left, (iv) to
the East port bending once to the right, and (v) to the North port bending twice to the right.
Route the edges as indicated in blue in Figure 11a to s. By adding zig-zags, it is always possible
to route an edge ei between v and ui in such a way that the parts of ei in R(v) and R(ui) meet in
s. See Figure 11b. Edges crossing other sides of Rv are all outgoing edges of v and are assigned
to the North port, bending once or twice in the direction of the side where they leave Rv. See the
purple edges in Figure 11a. If e1 is an incoming edge, start analogously with the West port. See
Figure 11c.

mod(s) ∈ {1, . . . , 4}. The assignment of edges to ports and the routing of the edges are contained
in the drawing of the case mod(s) = 5. See the blue edges in the second and third row in Figure 11.
We make again sure that an edge to a side of R(v) with modality one has at most two bends in the
interior of R(v). In order to do so, we have to take special care if mod(s) = 4 and the bottommost
edge is an outgoing edge of v. Let st and sb be the top and bottom side, respectively, of R(v). If
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v

sv

su

u

s

(a) proper bend on s

v

sv

su

u

(b) be(v) ≥ 3 implies . . .

v

sv

su

u

(c) . . . be(u) ≤ 2

Figure 12: Eliminating zig-zags to reduce the number of bends per edge to three.

v is incident to an outgoing edge crossing st, we opt for the variant in Figure 11e and otherwise
(including the case that v is incident to an incoming edge crossing sb) for the variant in Figure 11g.
No particular care has to be taken if mod(s) = 2 (Figures 11l and 11m).

Let now e be an edge between two vertices u and v. We consider the number be(u) and be(v)
of bends on e in R(u) and R(v), respectively, after eliminating zig-zags. We assume without loss
of generality that be(u) ≤ be(v). Recall that then 1 ≤ be(u) ≤ be(v) ≤ 3. Let su and sv be the
sides of R(u) and R(v), respectively that contain the intersection s of R(u) and R(v).

We have to show that up to zig-zags there are in total at most three bends on e. This is clear
if be(u) = be(v) = 1. Assume now that be(v) ≥ 2. Since the number of proper bends on e is odd it
follows that the bend on s is proper if and only if be(u) + be(v) is even. In this case the bend on
s bends in opposite direction as the next bend in R(u) and R(v) (otherwise e does not cross s).
Since be(v) ≥ 2, the proper bend of e on s and the next bend of e in R(v) form a zig-zag and can
be eliminated. See Figure 12a. Thus, if be(u) + be(v) ≤ 4 then there are at most three bends on e
after zig-zag elimination.

It remains to consider the case that be(v) = 3 and be(u) ≥ 2. This implies mod(sv) > 1 and
e is in the first or last mono-directed class among the edges crossing sv. We assume without loss
of generality that sv is the right side of Rv and that e is in the bottommost mono-directed class.
See Figure 12b. It follows that e is an outgoing edge of v and thus, an incoming edge of u. Since
be(u) ≥ 2 it follows that e is attached to the East port of u. Assume first that be(u) = 2. Then
the bends of e in R(u) are in opposite direction as the bends of e in R(v). Thus, there is at least
one zig-zag consisting of a bend in R(u) and a bend in R(v). After eliminating this zig-zag there
are only three bends left.

Assume now that be(u) = 3. This is only possible if mod(su) ≥ 2. Hence, R(u) is the topmost
or bottommost rectangle incident to the right of R(v). Since e is in the bottommost class with
respect to sv, it must be the bottommost one. Thus, R(v) is the topmost neighbor to the left
of R(u). Moreover, since mod(su) ≥ 2 there must be a port of u other than the East port that
contains an edge e′ (red edge in Figure 12c) crossing su. But e′ would have to bend at least four
times in the interior of R(u), which never happens according to our construction. □

7 (Quasi-)Upward-Planar Drawings

In this section, we discuss PCODs in which each edge starts with increasing y-coordinates. We
first consider edges with y-monotone curves.

Theorem 6 Every upward-plane digraph admits an upward PCOD with split complexity at most
one. Moreover, for plane st-graphs both the split complexity and the total number of bends can be
minimized simultaneously in linear time.
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v

(a) empty East

v

(b) South to North

v

(c) East/West full

v

(d) East to West

Figure 13: From a planar L-drawing of a 2-modal graph to a quasi-upward PCOD.

Proof: Let G be an upward-plane digraph. Then G can be augmented to a plane st-graph by
adding edges [18, Theorem 4.3]. Subdividing each edge once yields a plane st-graph with a bitonic
st-ordering [22, Lemma 7] and thus with an upward-planar L-drawing [16, Theorem 3]. This
corresponds to an upward PCOD of split complexity one for G.

If G is a plane st-graph, it can be decided in linear time whether G has an upward-planar
L-drawing [16, Theorem 6] and thus an upward PCOD of split complexity zero. Otherwise, the
minimum number of edges that has to be subdivided in order to obtain a digraph that has a bitonic
st-ordering can be computed in linear time [1, Theorem 1]. Thus, a PCOD with the minimum
number of bends among all upward PCODs of G with split complexity one can be computed in
linear time. Observe that the total number of bends cannot be reduced by increasing the split
complexity, since the subdivision of edges is only performed in order to break one of the transitive
edges in a valley. □

With a similar argument as in the proof of the previous theorem, we obtain that it is hard to
decide whether a given directed acyclic graph (DAG) admits an upward-planar L-drawing if it is
not yet known whether it is upward-planar.

Theorem 7 It is NP-complete to decide whether a DAG admits an upward-planar L-drawing, i.e.,
an upward-planar PCOD with split complexity zero.

Proof: If a graph admits an upward-planar L-drawing, then it has one on a quadratic grid. This
implies containment in NP. In order to prove NP-hardness, we use that testing whether a DAG
admits an upward-planar drawing is NP-complete [21]. Let G be a DAG and let G′ be the DAG
that is obtained from G by subdividing each edge exactly once. Then, on one hand, G must
obviously be upward-planar if G′ admits an upward-planar L-drawing. On the other hand, if G
is upward-planar then G can be extended to a planar st-graph Gst [18, Theorem 4.3]. Splitting
each edge of Gst once yields a digraph G′

st with a bitonic st-ordering [1, Theorem 1], and, thus an
upward-planar L-drawing [16, Theorem 3]. Thus, the subgraph G′ of G′

st admits an upward-planar
L-drawing. □

At least in the absence of 2-cycles, we can guarantee split complexity two for PCODs in which
edges start with increasing y-coordinates, even for not necessarily upward-plane 2-modal digraphs.

Theorem 8 Every 2-modal digraph without 2-cycles admits a quasi-upward PCOD with split com-
plexity at most one. Moreover, such a drawing can be computed in linear time.

Proof: Let G be a 2-modal graph without 2-cycles. G has a planar L-drawing [3], say Γ. Process
the vertices v of G top-down in Γ. If there are edges attached to the South port of v, we reroute
them such that they are attached to the North port. Consider first the case that at least one
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among the East or the West port—say the East port—of v does not contain edges; see Figure 13a.
Then we can reroute the edges as indicated in Figure 13b. Edges attached to the South port of v
in Γ are now attached to the North port of v and get two additional bends near their tail.

Assume now that both the East and the West port of v contain edges (Figure 13c). Then, by
2-modality, no edge is attached to the North port of v. Those edges incident to the East port that
bend upward are reattached to the West port without adding any additional bend. This is possible
since these edges have already been rerouted near their other end vertex and two new bends have
been inserted. So there are enough bends for the bend-or-end property. The rotation of the faces
and the angular sum around the vertices are also maintained. The edges incident to the East port
bending downward are rerouted from their original drawing to the West port with two new bends.
See Figure 13d. Now we can reroute the edges attached to the South port as in the first case.

An edge attached to the South port in Γ gets at most two new bends near its tail; an edge
attached to the North port at most two new bends near its head. Thus, in the end each edge has
at most three bends, i.e., split complexity 1. □

8 Experiments using an ILP

In order to support the conjecture that each simple 4-modal digraph admits a PCOD with split
complexity at most one, we conducted some experiments. Based on the definition of a confluent
orthogonal representation and on the fact that each 4-modal graph has a PCOD with split com-
plexity at most two (Theorem 4), we use an ILP in order to find PCODs with minimum split
complexity.

For each entry r in the confluent orthogonal representation, we use the variables s
(1)
r , s

(2)
r , bLr , b

R
r ∈

{0, 1}, ar ∈ {0, 1, 2}, and er ∈ {0, 1} as follows:

• a[r] = ar · π +

{
0 if e[r] and e[rp] is a switch at v[r]
π
2 otherwise

• er = 1 if and only if the number s[r] of left turns on e[r] traversed from v[r] is odd. The

variables s
(i)
r ,s

(i)
r , i = 1, 2 represent a first and a second pair of bends on e[r], where s

(i)
r = 1

if the two bends are left turns on e[r] traversed from v[r]. I.e.,

s[r] = 2(s(1)r + s(2)r ) + er.

Recall that by Theorem 4 there are at most five bends on any edge in a PCOD with minimum
split complexity.

• bLr and bRr together represent b[r], namely bLr = 1 if and only if b[r] = L and bRr = 1 if and
only if b[r] = R.

In order to ensure consistency, we add the following constraints:

s(1)r + s
(1)
r ≤ 1 s(2)r + s

(2)
r ≤ 1 bLr + bRr ≤ 1

Property i and Property ii of feasible confluent orthogonal representations are straightforwardly
formulated as linear constraints. Property iii translates to

s[r]− bLr − bRr ≥ 0.
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Property iv can be formulated as

ar + bRr + bLrp ≥ 1 if e[r] and e[rp] is a switch at v[r].

In order to fulfill Property v, we require

er + er = 1.

The objective function is

min
∑
r

(
s(1)r + |E| · s(2)r

)
.

This way, the number of edges with five bends is minimized first, then that of edges with three
bends.

In a practical implementation, one might fix s
(2)
r = 0 at first to check for a solution with split

complexity one and only allow s
(2)
r ∈ {0, 1} if no such solution exists.

We generated sample graphs as follows. Since each simple 4-modal graph without 2-cycles can
be extended to a triangulated 4-modal graph [3], we first sampled several thousand upward-planar
triangulations for various numbers n ≤ 500 of vertices with two different methods: sampling
(a) undirected triangulations uniformly at random [25] orienting the edges according to an st-
ordering [14] and (b) with an OGDF method [17]. Then we flipped the direction of each edge
with probability 0.5 maintaining 4-modality. Finally, we added as many 2-cycles as 4-modality
allowed. The resulting digraphs contained ( 34 ± 1

4 )n separating triangles, roughly n 2-cycles, but
no separating 2-cycles. All digraphs had split complexity one.

9 Conclusion and Future Work

We examined the split complexity of PCODs of various graph classes. In particular, we have shown
that every 4-modal digraph admits a PCOD with split complexity two even if it contains loops and
parallel edges and that split complexity two is sometimes necessary. For simple digraphs, we made
a first step, by proving that every 4-modal irreducible triangulation admits a PCOD with split
complexity one. It still remains open whether split complexity one suffices for all simple 4-modal
digraphs. Experiments suggest that this could very well be true. It would also be interesting
to know whether the minimum split complexity or the minimum number of bends in a PCOD
or a quasi-upward PCOD can be efficiently determined in the case of a given 4-modal, 2-modal,
or upward-planar embedding, respectively, as well as in the case when no embedding is given.
While we have shown that it is NP-complete to decide whether a directed acyclic graph admits
an upward-planar PCOD with split complexity zero, the complexity of determining the minimum
split complexity or the minimum number of bends in an upward-planar PCOD is still open for
upward-planar DAGs with or without a given upward-planar embedding.
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