
Journal of Graph Algorithms and Applications
http://jgaa.info/ vol. 27, no. 6, pp. 489–522 (2023)
DOI: 10.7155/jgaa.00631

Inserting Multiple Edges into a Planar Graph

Markus Chimani 1 Petr Hliněný 2

1Theoretical Computer Science, University Osnabrück, Germany
2Faculty of Informatics, Masaryk University, Brno, Czech Republic

Submitted: May 2022 Reviewed: October 2022 Revised: December 2022

Accepted: April 2023 Final: April 2023 Published: July 2023

Article type: Regular paper

Communicated by: G. Da Lozzo and P. Kindermann

Abstract. Let G be a connected planar (but not yet embedded) graph and F a set
of edges with ends in V (G) and not belonging to E(G). The multiple edge insertion
problem (MEI) asks for a drawing of G + F with the minimum number of pairwise
edge crossings, such that the subdrawing of G is plane. A solution to this problem
is known to approximate the crossing number of the graph G + F , but unfortunately,
finding an exact solution to MEI is NP-hard for general F . The MEI problem is
linear-time solvable for the special case of |F | = 1 (SODA 01 and Algorithmica), and
there is a polynomial-time solvable extension in which all edges of F are incident to
a common vertex which is newly introduced into G (SODA 09). The complexity for
general F but with constant k = |F | was open, but algorithms both with relative and
absolute approximation guarantees have been presented (SODA 11, ICALP 11 and
JoCO). We present a fixed-parameter algorithm for the MEI problem in the case that
G is biconnected, which is extended to also cover the case of connected G with cut
vertices of bounded degree. These are the first exact algorithms for the general MEI
problem, and they run in time O(|V (G)|) for any constant k.

1 Introduction

The crossing number cr(G) of a graph G is the minimum number of pairwise edge crossings in a
drawing of G in the plane. Finding the crossing number of a graph is one of the most prominent,
difficult optimization problems in graph theory [22] and is NP-hard already in very restricted
cases, e.g., even when considering a planar graph with one additional edge [8] (such graphs are

Special Issue on Parameterized and Approximation Algorithms in Graph Drawing

A short conference version of this research appeared at SoCG 2016; this is the full enhanced version.

E-mail addresses: markus.chimani@uni-osnabrueck.de (Markus Chimani) hlineny@fi.muni.cz (Petr Hliněný)

This work is licensed under the terms of the CC-BY license.

http://dx.doi.org/10.7155/jgaa.00631
https://orcid.org/0000-0002-4681-5550
https://orcid.org/0000-0003-2125-1514
mailto:markus.chimani@uni-osnabrueck.de
mailto:hlineny@fi.muni.cz
https://creativecommons.org/licenses/by/4.0/

490 M. Chimani and P. Hliněný Inserting Multiple Edges into a Planar Graph

called almost-planar or near-planar). The problem has been intensely investigated for over 60
years, but there is still surprisingly little known about it; see e.g. Schaefer [39, 40] for extensive
references. There exists a c > 1 such that cr(G) cannot be approximated within a factor c in
polynomial time [6], but we do not know whether cr(G) is approximable within some constant
ratio for general G.

One notable positive algorithmic aspect is that there are fixed-parameter (FPT) algorithms for
the crossing number problem parameterized by the solution value. Grohe [24] showed that cr(G) ≤
k can be decided in quadratic time for any fixed k, and Kawarabayashi and Reed [33] improved
that to linear time. Neither algorithm is practical, since they rely on parts of the graph-minor
machinery and Courcelle’s theorem. Over time, several involved approximation algorithms have
been found for graphs of bounded maximum degree. There is the (nowadays classical) algorithm
by Even, Guha and Schieber that approximates the quantity n + cr(G) instead of cr(G), giving
an O(log2 n)-approximation [3, 21]. This, however, gives only an Õ(n)-approximation of cr(G) in
the worst case. Algorithms achieving a sublinear approximation ratio have been given in [17, 34],
and this line of research has seen a quite recent major breakthrough in the paper of Chuzhoy
and Tan [19] giving the first randomized algorithm achieving a subpolynomial approximation for
graphs of bounded degree.

Better approximation results can be obtained for more restricted graph classes. We know
polynomial-time constant factor approximations of the crossing number for bounded-degree graphs
that are embeddable in some surface of higher genus [15, 23, 29], and for graphs of bounded path-
width [4]. For graphs of bounded-size vertex cover, we can even compute the crossing number
exactly in FPT time [31]. Another case of polynomial-time constant factor approximations occurs
when we have a small set of graph elements (in general vertices and edges) whose deletion leaves
a planar graph—removing and re-inserting these elements can give strong approximation bounds
such as [7, 14,18,30].

Here we study the Multiple Edge Insertion problem MEI(G,F) (see Definition 2.1). Intuitively,
given a planar graph G we ask for a planar drawing of G such that inserting the edges of F (which
are assumed to have end vertices in V (G)) into the drawing minimizes the number of crossings in
G + F , the combined drawing of G and F . Note that finding a suitable planar drawing of G is a
(nontrivial, in fact) part of the problem solution. It also turns out useful to study the rigid setting
in which we require that the planar drawing of G remains as given.

The MEI problem is linear-time solvable for |F | = 1 [26] (unlike the crossing number problem
of almost-planar graphs), and there is a polynomial-time solvable extension in which all edges of
F are incident to a common vertex which may be newly introduced into G [12]. Note that, with
unrestricted G (namely, G with no edges), the MEI(G,F) problem is obviously at least as hard as
the ordinary crossing number problem.

An exact or at least approximate MEI solution constitutes an approximation for the crossing
number of the graph G+F [14]; see Theorem 2.2. Considering the cardinality k := |F | as a general
integer parameter, there have been two different polynomial-time approximation approaches by
Chuzhoy, Makarychev and Sidiropoulos [18] and by the authors [13]; the former one directly targets
the crossing number and achieves a multiplicative approximation guarantee for MEI; the latter one
first attains an approximation of MEI with only an additive error term, and then uses [14] to deduce
a multiplicative crossing number approximation. Both approaches assume bounded degrees. While
the former is not directly practical, the algorithm from [13] is one of the best choices to obtain strong
upper bounds on the crossing number in practice [11]; this still holds true when combining solving
MEI with a post-processing step based on reinserting edge sets F with a common vertex [16].

In this paper we develop an exact, linear-time algorithm for MEI, for every fixed k, making

JGAA, 27(6) 489–522 (2023) 491

some mild connectivity assumptions. This has been an open problem since [26] even for k = 2.

Theorem 1.1. Let G be a connected planar graph and F a set of k ≥ 1 edges to insert, with ends
in V (G). Assume that all cut vertices of G have degree bounded from above by 2p(k) where p is a
polynomial (in particular, this assumption is void if G is biconnected). Then there is a polynomial
function q such that the problem MEI(G,F) is solvable to optimality in time O(2q(k) · |V (G)|).

In terms of parameterized complexity, we get that the problem MEI(G,F) is linear-time FPT
with the parameter k = |F |.

Our high-level approach to a proof of Theorem 1.1 is a standard idea in this area, using dynamic
programming on a decomposition (known as SP(Q)R-tree) of the planar graph; see Section 4.
Similar ideas have been used, e.g., in [12,13,18,26]. However, this time it turns out that the most
interesting and difficult case is the basic one of rigid components. The corresponding problem Rigid
MEI, i.e., MEI under the restriction that a planar drawing of G is fixed, is NP-hard in general,
even when G is 2-connected [43].

An FPT algorithm for Rigid MEI is given in Section 3. On an informal level, the algorithm
for Rigid MEI simultaneously searches for shortest dual paths corresponding to the edges of F in
rigid G, while keeping track of their mutual crossings. Although this task looks similar, in the
dual, to the difficult problem of shortest disjoint paths in planar graphs [20,36], there is the crucial
difference that our paths may share common subpaths as long as they do not cross. Our algorithm
utilizes the concept of path homotopy in the plane with obstacles, and a special structure which we
call a trinet, to represent and search for shortest dual paths of a given homotopy with the standard
geometric funnel algorithm [9,37].

Closely related to the Rigid MEI problem is the problem recently named partially predrawn
crossing number in [27] (while that problem was first suggested in [38] under yet another name, it
did not receive more attention until recently). In a nutshell, [27] can be seen as solving, again in
FPT time, the Rigid MEI with respect to an arbitrary set F of inserted edges (and vertices), and
G need not be connected. The parameter is cr(G + F) which makes the FPT-algorithm of [27]
incomparable with Theorem 1.1, because cr(G+ F) may be small even with very large F and, on
the other hand, planar G with just one inserted edge may have unbounded crossing number. The
algorithm in [27] is also very different from the one here in Section 3.

Organization. After some basic definitions in Section 2, we show how to solve the Rigid MEI
problem in Section 3, as stated in Theorem 3.16. We use that solution in a dynamic program-
ming procedure for the general MEI problem in Section 4, stated in Theorem 4.3, which proves
Theorem 1.1.

2 Preliminaries

We use the standard terminology of graph theory. By default, we use the term graph to refer to
a multigraph, i.e., we allow parallel edges (self-loops are allowed but they can be safely ignored in
the context of crossing numbers in the plane). If there is no danger of confusion, we denote an
edge with the ends u and v by uv.

A problem featuring an arbitrary integer parameter k as a (separate or implicit) part of the
input is fixed-parameter tractable, or FPT, if it allows an algorithm running in FPT time, meaning
runtime O(f(k) · nc) where n is the input size, c a constant, k the parameter value, and f an
arbitrary computable function.

492 M. Chimani and P. Hliněný Inserting Multiple Edges into a Planar Graph

Drawing a graph. A drawing of a graph G = (V,E) is a mapping of the vertices V to
distinct points on a surface Σ, and of the edges E to simple curves on Σ, connecting their respective
endpoints but not containing any other vertex point. Unless explicitly specified, we will always
assume Σ to be the plane (or, equivalently, the sphere). To keep things simple, we will moreover
assume each curve to be a polygonal curve, which is a union of finitely many line segments (or
circular-arc segments in the case of a sphere). A crossing is a common point of two distinct
edge curves, other than a common endpoint. A drawing is plane if there are no crossings. Plane
embeddings form equivalence classes over plane drawings of connected graphs, in that they only
define the cyclic order of the edges around their incident vertices (and, if desired, the choice of the
outer, infinite face). A planar graph is one that admits a plane embedding. A plane graph is an
embedded graph, i.e., a planar graph together with a plane embedding.

Given a plane embedding G0 of G, we define its geometric dual G∗
0 as the embedded multigraph

that has a (dual) vertex for each face in G0; (dual) vertices are joined by a (dual) edge for each
(primal) edge shared by their respective (primal) faces. The cyclic order of the (dual) edges around
any common incident (dual) vertex v∗, is induced by the cyclic order of the (primal) edges around
the (primal) face corresponding to v∗.

We refer to a path/walk in G∗
0 as a dual path/walk in G0, and we speak about a dual path/walk

π in G0 between vertices u, v if π starts in a face incident to u and ends in a face incident to v. We
shortly say a route from u to v (a u–v route) to refer to a dual walk between vertices u, v (recall
that a walk, unlike a path, may repeat vertices and edges).

Crossing numbers and edge insertion. Given a drawing D of G, let cr(D) denote the
number of pairwise edge crossings in D. The crossing number problem asks for a drawing D◦ of a
given graph G with the least possible number cr(D◦) =: cr(G). By saying “pairwise edge crossings”
we emphasize that we count a crossing point x separately for every pair of edges meeting in x (e.g.,
ℓ edges meeting in x give

(
ℓ
2

)
crossings).

It is well established that the search for optimal solutions to the crossing number problems can
be restricted to so-called good drawings: any pair of edges crosses at most once, adjacent edges do
not cross, and there is no point that is a crossing of three or more edges.

In this paper we especially consider the following variant of the crossing number problem:

Definition 2.1 (Multiple edge insertion, Rigid MEI and MEI).
Consider a planar, connected graph G and a set F of edges with ends in V (G) (a multiset of vertex
pairs, in fact). We denote by G+ F the graph on the vertex set V (G) and the edge set E(G)∪̇F ,
and say that we insert the (new) edges F to G.

Let G0 be a plane embedding of G. The Rigid Multiple Edge Insertion problem r-MEI(G0, F)
is to find a drawing D of the graph G+F with minimal cr(D) such that the restriction of D to G
is the plane embedding G0. The attained number of crossings is denoted by r-ins(G0, F).

The Multiple Edge Insertion problem MEI(G,F) is to find an embedding G1 of G (together
with the subsequent drawing D as above), for which r-MEI(G1, F) attains the minimum number
of crossings. The latter value is denoted by ins(G,F). ⋄

As mentioned above, a solution of a MEI(G,F) instance—which is a trivial upper bound on
cr(G+ F), readily gives an approximate solution of the crossing number problem of G+ F by the
following inequality:

Theorem 2.2 (see [14, Theorem 7]). Consider a planar graph G and a multiset of edges F with

ends in V (G). Then ins(G,F) ≤ |F | ·∆(G) · cr(G+F)+
(|F |

2

)
, where ∆(G) is the maximum degree

in G.

JGAA, 27(6) 489–522 (2023) 493

3 Rigid MEI

We first give an FPT algorithm for solving the rigid version r-MEI(G,F), parameterized by k = |F |.
Throughout this section, G is a plane graph with a fixed embedding. Recall that the r-MEI(G,F)
problem is NP-hard [43] for unrestricted k.

We first illustrate the simple cases. Solving r-MEI(G, {uv}), the fixed embedding edge insertion
problem with k = 1, is trivial. Augment the dual G∗ with edges of length 0 between the terminals
u, v (which are added as new vertices into G∗) and their respective incident faces (vertices in G∗),
to suit the definition of a u–v route in G. Then, simply compute the shortest u–v route in this
graph. Realizing a route for uv means to draw uv along it within G. If the shortest route has
length ℓ, realizing it attains r-ins(G, {vw}) = ℓ, the smallest number of crossings in the Rigid MEI
setting.

For k ≥ 2, the situation starts to be more interesting: not every collection of shortest routes
gives rise to an optimal solution of r-MEI(G,F) since there might arise crossings between edges
of F . While for k = 2, the only question is whether some pair of shortest routes of the two edges
in F can avoid crossing each other, for larger values of k we can encounter situations in which all
the optimal solutions of r-MEI(G,F) draw some edges of F quite far from their individual shortest
routes (in order to avoid crossings with other edges of F), and a more clever approach is needed.

On a very high level, our approach to finding a drawing D of G+F that is an optimal solution
to r-MEI(G,F), can be described as follows:

(I) We guess, for each pair f, f ′ ∈ F , whether f and f ′ will cross each other in D. Since k = |F |
is a parameter, all the possibilities can be enumerated in FPT time.

(II) Let X ⊆
(
F
2

)
be a (guessed) set of pairs of edges of F . We find a collection of shortest routes

for the edges of F in G under the restriction that exactly the pairs in X cross; Drawing DX

is obtained by inserting the edges of F along their computed routes. As we will see, we may
restrict our attention to routes pairwise crossing at most once.

(III) We select D := DX which minimizes the sum of |X| and of the lengths of the routes.

3.1 Handling path homotopy of routes

Obviously, the core task of the scheme (I)–(III) is to solve the point (II) of finding a collection of
shortest routes under the restriction that every route avoids crossing certain other routes (note;
none of these routes are fixed in advance). The key to this is the concept of path homotopy in the
plane with point obstacles.

In a brief and rather informal topological view, consider the sphere with a finite set of point
obstacles. Two simple curves α, α′ with the same endpoints are homotopic if there exists a home-
omorhpism (a continuous deformation) of α to α′ that fixes the endpoints and otherwise avoids all
the obstacles. For example, if α, α′ are disjoint except at the common ends, then they are homo-
topic if and only if one of the two open regions bounded by α∪α′ is obstacle-free. In our case, the
obstacles are the ends V (F) of the edges of F (as given by the fixed embedding of G), where each
endpoint is “blown up” into a small open disc. Then, given the homotopy classes hom(α), hom(β)
of two curves α, β, one can decide whether α and β are “forced to cross”—although, α and β may
cross if they are not forced to, such unforced crossings can be avoided in our case.

Instead of the above classical algebraic-topology setting of homotopies, in this paper we choose
to deal with path homotopy in a combinatorial setting of T -sequences as in Definition 3.2. This

494 M. Chimani and P. Hliněný Inserting Multiple Edges into a Planar Graph

Figure 1: An example of a trinet of a plane graph G (see Definition 3.1): underlying G is in thin
black, the trinodes in red, and the triedges in thick blue with square blue nodes subdividing edges
of G.

new setting is closely inspired by the discrete-geometry view of boundary-triangulated 2-manifolds
by Hershberger and Snoeyink [28]:

First, we “triangulate” the point set V (F) (our obstacles) using transversing paths in the
embedding G. A transversing path between vertices x, y of G is a path whose ends are x, y and
whose internal vertices subdivide some edges of G. Let T be the union of these transversing paths
and G′ denote the corresponding subdivision of G. In order to avoid a terminology clash with graph
triangulations, we will call T in the pair (G′, T) a trinet of G. See Figure 1 for an illustration of a
trinet of a plane graph. We will apply the following formal definition with V (F) = N :

Definition 3.1 (Trinet). Let G be a connected plane graph and N ⊆ V (G), |N | ≥ 4. A plane
graph T such that V (T) ∩ V (G) = N is called a trinet of G if the following holds:

a) T is a subdivision of a 3-connected plane triangulation on the vertex set N (in particular, every
face of T is incident to precisely three distinct vertices of N), and

b) there exists a subdivision G′ of G such that V (G′) \ V (G) = V (T) \N , E(G′)∩E(T) = ∅ and
the union G′ ∪ T is a plane embedding.

The pair (G′, T) is a full trinet of G. The vertices in N(T) := N are called trinodes of T , the
maximal paths in T internally disjoint from N are triedges and their set is denoted by I(T), and
the faces of T are tricells. Note that the triedges of T are transversing paths of G. ⋄

We need to introduce terms related to (and describing) a path homotopy in a full trinet (G′, T)
of a plane graph G. See Figure 2 for an illustration of the definition.

JGAA, 27(6) 489–522 (2023) 495

p

u

v

q

r

s

Figure 2: An illustrating example (see Definition 3.2): the T -sequence of the u–v route depicted in
red is (p, q, r, s) from u to v. It is a proper T -sequence from u to v (Definition 3.6); its corresponding
alley is shaded in light red.

Definition 3.2 (Alley and T -sequence). Let (G′, T) be a full trinet of a plane graph G. Consider
a route π between u, v ∈ V (G) in the graph G′∪T . Then V (π) = {ϕ0, ϕ1, . . . , ϕm} where each dual
vertex ϕi of π is an open face of G′ ∪ T . Let these faces (ϕ0, ϕ1, . . . , ϕm) be ordered along π such
that ϕ0 is incident to u and ϕm incident to v. Let (e1, e2, . . . , em) ⊆ E(G′ ∪ T) be the sequence
of the primal edges of the dual edges of π, ordered from ϕ0 to ϕm. As a point set, each edge ei is
considered without the endpoints.

a) The union {u, v} ∪
⋃m

i=0 ϕi ∪
⋃m

i=1 ei is called the alley of π (or, an alley between u, v).

b) Let (e′1, . . . , e
′
ℓ) ⊆ (e1, e2, . . . , em) be the restriction to E(T), and let (p1, p2, . . . , pℓ) ⊆ I(T) be

the sequence of triedges such that pi contains the edge e′i for i = 1, . . . , ℓ. Then (p1, p2, . . . , pℓ)
is called the T -sequence of π from u to v (or, of the corresponding alley from u to v). ⋄

The purpose of introducing an alley is to describe a topological corridor for all u–v arcs of a
similar kind (and same number of crossings) in the embedding G′∪T . The correspondence is clear:
a route π crosses a triedge p if the alley of π contains at least one of the G′-edges forming p. The
T -sequence of π hence describes the unique order (with repetition) in which π crosses the triedges
of T . Usually, we shall consider only the case of u, v ∈ N(T).

A route may, in general, cross the same triedge many times, but we aim to prove that for
“reasonable” routes there is an explicit upper bound; see Lemma 3.8.

Some situations of multiple crossings of the same triedge are resolved quite easily. This reso-
lution can be formalized by the notion of reducing a T -sequence as follows: if S = (p1, p2, . . . , pℓ)
is a T -sequence such that pi = pi+1 for some 1 ≤ i < ℓ, then the subsequence S′ = (p1, . . . , pi−1,
pi+2, . . . , pℓ) is called a one-step reduction of S. A subsequence S∗ ⊆ S is a reduction of S (or S

496 M. Chimani and P. Hliněný Inserting Multiple Edges into a Planar Graph

reduces to S∗) if S∗ results from a sequence of one-step reductions of S.

It comes as no surprise that our T -sequences are closely related to the path homotopy concept
via reductions:

Remark 3.3. Consider a trinet T in the sphere. One can show that two arcs with the same fixed
endpoints are path-homotopic (in the sphere with the obstacles formed by the trinodes of T) if,
and only if, their T -sequences can be reduced to the same subsequence. However, since we are not
going to directly use this fact, we refrain from giving it as a formal statement in the paper.

3.2 Refined approach to Rigid MEI

We slightly generalize the shortest route setting to allow for a connected plane graph G with integer
edge weights w : E(G) → N+ ∪ {∞}. For a full trinet (G′, T) of G, we define the edge weights of
G′ ∪ T as follows: w′(p) := 0 for all p ∈ E(T) and w′(e′) := w(e) where e′ ∈ E(G′) is obtained by
subdividing e ∈ E(G). We call w′ the weights induced by w in the trinet (G′, T). We give the same
weights w′ also to the edges of the geometric dual of G′ ∪ T . This way we rigorously define the
length of any route π between vertices x, y in G′ ∪ T (recall that a route π between vertices x, y is
a dual path between a face incident to u and a face incident to v), as the sum of the w′-weights of
the dual edges of π. If α is the alley of a route π between vertices x, y in G′ ∪ T , then the length
of α equals the length of π.

For any weighted graph G′ with w : E(G′) → N+∪{∞}, as above, we correspondingly generalize
the notion of a crossing number to the weighted crossing number as follows: a crossing between
two edges e1, e2 ∈ E(G′) contributes the amount of w(e1) · w(e2) to the crossing number cr(G′).
For MEI(G,F) problem variants with weighted G, we shall always assume that the weight of each
edge f ∈ F is w(f) = 1, and so the (sum of) weighted crossings of f in a drawing of G + f are
naturally determined by the weights of the edges crossed by f .

With the help of the framework developed in the previous section, we can now give an (again
informal) high-level refinement of our solution steps of r-MEI(G,F) as follows:

(IV) Consider a trinet T of G on the trinodes V (F). If we fix a (realizable) T -sequence S, then we
can use established tools, namely an adaptation of the idea of the funnel algorithm [9, 37],
to efficiently compute a shortest alley among those having the same T -sequence S. For
uv ∈ F , if we compute an alley α between u, v of length ℓ, then we can easily draw the
inserted edge uv as an arc in α with ℓ weighted crossings in G. This will be handled
precisely in Subsection 3.4.

(V) Suppose that, for i = 1, 2, αi is a shortest alley between xi and yi having the T -sequence Si.
Then, as detailed later in Subsection 3.5, in Lemma 3.15 and Claim 3.18, we can decide
from only S1, S2 whether there exist arcs from x1 to y1 in α1 and from x2 to y2 in α2, which
do not cross (note that α1 ∩ α2 may be nonempty and yet there may exist such a pair of
non-crossing arcs). Moreover, if the two arcs cross then it should be only once.

(VI) Consequently, it will be enough to loop through all “suitable” T -sequences for every edge of
F and independently perform the steps (IV), (V) for each combination of such T -sequences,
in order to get an optimal solution of r-MEI(G,F) as in (III). The point is to bound the
number of considered T -sequences in terms of only the parameter k = |F |. This will be done
next, in Subsection 3.3.

JGAA, 27(6) 489–522 (2023) 497

3.3 T -sequences of potential shortest routes

Considering the outline (IV)–(VI), we first resolve the last point which is a purely mathematical
question. In order to achieve the goal, we shall build a special trinet of G along shortest dual
paths between the trinodes in G (Definition 3.4), and then we will be able to restrict our attention
to special T -sequences (Definition 3.6) of bounded length. The latter is formulated in Lemma 3.8
whose proof presents the main piece of technical work in this paper.

Definition 3.4 (Shortest-spanning trinet). Let (G′, T) be a full trinet of a connected plane
graph G, and let the weights w′ in (G′, T) be induced by weights w in G. For a triedge q ∈ I(T),
every internal vertex t of q is incident with two edges e, e′ of G′ of weight w′(e) = w′(e′) which
we call the weight of t. The transversing weight of q equals the sum of the weights of the internal
vertices of q.

A triedge q ∈ I(T) between trinodes x, y is locally-shortest if the transversing weight of q is
equal to the length of a shortest dual path π in G′ ∪ T between x, y, such that π is contained
in(!) the union of the two tricells incident to q (including the points of q itself). Similarly, q is
globally-shortest if the transversing weight of q is equal to the dual distance between x, y in G′∪T .

We say that T has the shortest-spanning property if every triedge in I(T) is locally-shortest,
and there exists a subset of triedges J ⊆ I(T) forming a connected subgraph of T spanning all the
trinodes such that every triedge in J is globally-shortest. ⋄

The following observation is easy; it constitutes the initial part of Algorithm 1.

Claim 3.5. Let G be a connected plane graph and N ⊆ V (G) be such that |N | ≥ 4. Then there
exists a trinet T of G with N(T) = N , such that the corresponding full trinet (G′, T) has the
shortest-spanning property, and (G′, T) can be computed in linear time assuming constant |N |.

Proof. The claim is a consequence of the following straightforward procedure:

(a) Pick any trinode x ∈ N and compute a shortest-dual-path tree in G from x to all other trinodes
N \ {x}, using a linear-time shortest path algorithm. Shared sections of the computed dual
paths from x can be naturally split into “parallel dual paths” in G as can be seen, e.g., in
Figure 1. This produces a collection of globally-shortest triedges from x to all other trinodes
N \ {x}.

(b) Choose any plane triangulation T0 on the vertex set N such that E(T0) contains all edges from
x to N \ {x}. For each edge yz ∈ E(T0 − x), greedily in any order, compute a shortest dual
path in G from y to z not crossing any of the previously computed dual paths, which is done
by calling a linear-time shortest path algorithm with suitably modified infinite weights. This
step produces the remaining, locally-shortest triedges between the trinodes N \ {x}.

It is obvious that the procedure results in a trinet with the desired shortest-spanning property.
Concerning runtime, we use 1 + 2(|N | − 1) − 3 = 2|N | − 4 calls to a linear-time shortest path
algorithm, and altogether spend time O(|N | · |V (G)|) modifying G into G′ of the trinet. This gives
an easy upper bound of O(|N |2 · |V (G)|) for the total runtime.

Definition 3.6 (Proper T -sequence). Consider a trinet T and trinodes u ̸= v ∈ N(T). A nonempty
sequence S = (p1, p2, . . . , pm) ⊆ I(T) of triedges of T (repetition allowed) is a proper T -sequence
from u to v if the following holds: u is disjoint from p1 but there exists a tricell θ0 incident to both
u and p1, v is disjoint from pm but there exists a tricell θm incident to both v and pm, and each
two consecutive triedges pi, pi+1 are distinct and incident to a common tricell θi for 1 ≤ i < m.

498 M. Chimani and P. Hliněný Inserting Multiple Edges into a Planar Graph

Finally, the empty sequence S = ∅ is considered a proper T -sequence from u to v if u, v are incident
to a common tricell θ0. ⋄

Since T is a subdivision of a graph triangulation and u, v are nodes of this triangulation, we
immediately obtain the following fact complementing Definition 3.6:

Claim 3.7. For every proper nonempty T -sequence S, the sequence of tricells (θ0, θ1, . . . , θm) as in
Definition 3.6 is uniquely determined by T and S. If S = ∅, then uv is a triedge of T and there
are two choices of θ0 incident to uv; we simply make an arbitrary deterministic choice of θ0 among
those two in each case.

Now the main technical finding, necessary for our algorithm, comes in:

Lemma 3.8. Consider an instance r-MEI(G,F) where G is a connected plane graph. Let (G′, T)
be a full trinet of G having the shortest-spanning property. There exists a set {πf : f ∈ F} where
πf for f = uv is a route in G′ ∪ T between the trinodes u, v, such that the following hold:

a) There exists an optimal drawing D of G + F with r-ins(G,F) crossings such that each edge
f ∈ F is drawn in the alley of πf , and no two edges of F cross each other more than once.

b) The T -sequence Sf of each πf is a proper T -sequence, and no triedge occurs in Sf more than
8k4 times where k = |F |.

Before giving the proof, we establish two simple technical claims which restrict how “compli-
cated” drawings of the edges of F may appear in an optimal solution of a MEI(G,F) or r-MEI(G,F)
instance. We also recall that although we allow edge-weighted graphs G in MEI instances, the
weights of the edges of F are always 1. For any drawing D, let crD(X,Y) denote the number of
crossings between edges of X and edges of Y in D, and let crD(X) := crD(X,X).

Claim 3.9. In any optimal solution of an r-MEI(G,F) instance, any two edges of F cross at most
once, and two edges of F have no crossing if they share a common end vertex. Moreover, if there
exists a drawing D of G+ F such that crD(E(G), F) = c, then r-ins(G,F) ≤ c+

(|F |
2

)
. The same

holds also for (non-rigid) MEI(G,F) instances.

Proof. Let D be an optimal solution of r-MEI(G,F) or MEI(G,F). For the first part, we employ
the folklore “arc exchange” argument from crossing numbers theory. If two edges f, f ′ ∈ F are
drawn in D such that they share two points x and y in common (one may be their end vertex),
then we denote by b and b′ the arcs of the drawings of f and f ′ (resp.) between x and y. Up to
symmetry, we may assume that the interior of b carries not more crossings of D that the interior
of b′. We redraw f ′ in the section between x, y closely along b (which is easily possible with
polygonal arcs), and the new drawing D1 saves at least one of the crossings between f and f ′.
This contradicts optimality of the starting solution D.

For the second part, we observe that since the edge weights in F are all 1, we have crD(F, F) ≤(|F |
2

)
.

Claim 3.10. For an instance r-MEI(G,F) and f ∈ F , assume that D1 and D2 are two drawings of

G+F such that D1−f is identical to D2−f , and that crD1
(E(G), {f}) − crD2

(E(G), {f}) >
(|F |

2

)
.

Then cr(D1) > r-ins(G,F), i.e., D1 is not an optimal solution of r-MEI(G,F).

JGAA, 27(6) 489–522 (2023) 499

Proof. Let E = E(G), k = |F | and F ′ = F \ {f}. Using Claim 3.9, we estimate

r-ins(G,F) ≤ crD2
(E,F) +

(
k

2

)
= crD2

(E,F ′) + crD2
(E, {f}) +

(
k

2

)
= [crD1(E,F ′) + crD1(E, {f})]− crD1(E, {f}) + crD2(E, {f}) +

(
k

2

)
< crD1

(E,F) + 0 ≤ cr(D1) .

In the upcoming proof of Lemma 3.8, we shall use the following special terminology and nota-
tion. Let r-MEI(G,F) be an instance and (G′, T) be a full trinet of G. For simplicity, we use the
symbol f both for an edge f ∈ F and for the arc representing f in a specific drawing of G+F (more
generally, of (G′ +F)∪ T). We similarly consider a triedge p ∈ I(T) also as the arc representing p
in G′. If x, y are two points on any arc b, then let b[x, y] denote the section of the arc from x to y.

Proof of Lemma 3.8. Consider the given shortest-spanning trinet and the corresponding plane em-
bedded graph G′∪T with edge weights w′ induced by the given weights w of G. We will implicitly
assume that every arc a drawn in G′ ∪ T avoids vertices and intersects G′ ∪ T in finitely many
points. In particular, the embedding and the arcs may be restricted to polygonal lines. For any
arc b with ends u, v, we define the T -sequence of b from u to v as the sequence (with repetition)
in which b intersects the triedges of T . We define the transversing weight of b, shortly t-weight, as
the sum of the w′-weights of the edges of G′ ∪ T crossed by b, and denote it by tw′(b).

We choose a drawing D among the optimal drawings of G′ + F such that D minimizes the
combined length of the T -sequences of the edges of F , i.e., the number of crossings between F and
the trinet T . Recall from Claim 3.9 that any two edges of F cross at most once, and they have no
crossing if they share a common end vertex. For f ∈ F , let Sf = (p1f , . . . , p

mf

f) be the T -sequence

of f and let x1
f , . . . , x

mf

f , respectively, denote the points at which the arc of f intersects the triedges
of T . The first task is to prove that each Sf is a proper T -sequence.

We prove a stronger technical claim: if, for some f ∈ F and j > i, we have pif = pjf and the

simple loop a := pif [x
i
f , x

j
f] ∪ f [xi

f , x
j
f] is contractible (i.e., with no trinode inside), then we get a

contradiction to the choice of D above. Indeed, we may assume that f and j > i are chosen such
that a encloses minimal area in the drawing D. By the minimality of a, no triedge crosses the
interior of f [xi

f , x
j
f] twice (all pi+1

f , . . . , pj−1
f are distinct). However, since the interior enclosed by

a contains no trinode, the previous implies that no triedge other than pif may intersect a, and so

j = i+1. Consequently, since the triedge pif is locally shortest in T , the t-weights of the considered

section satisfy tw′
(
pif [x

i
f , x

j
f]
)
≤ tw′

(
f [xi

f , x
j
f]
)
. If we re-route f closely along pif [x

i
f , x

j
f] (without

crossing pif), then this change does not increase the crossing number by the inequality of t-weights,
but the T -sequence of f gets shorter (see in Figure 3). Hence, it contradicts our choice of D.

We return to Sf being a proper T -sequence. If Sf is empty, then the statement is trivial. If Sf

contained a consecutive repeated triedge pif = pi+1
f for some 1 ≤ i < mf , then the loop a from the

previous paragraph is always contractible, and so we would get the claimed contradiction to our
choice of D. Assume that f = uv and the triedge p1f would be incident to the starting trinode u.

Then we again have the contractible loop a := p1f [u, x
1
f] ∪ f [u, x1

f], and we would again obtain
the same contradiction to our choice of D. The remaining properties of proper T -sequences follow
trivially.

500 M. Chimani and P. Hliněný Inserting Multiple Edges into a Planar Graph

p

u v

Figure 3: Two consecutive crossings of the arc of f = uv with a triedge p (which is locally-shortest)
determine a contractible loop, and so f can be re-routed partly along p without inducing more
crossings with G or with other edges of F .

The last and most difficult step is to prove that no triedge repeats in Sf too many times,

for each f ∈ F . If pif = pjf = p′ for i ̸= j, then the simple loop a′ := p′[xi
f , x

j
f] ∪ f [xi

f , x
j
f] is

non-contractible, so it separates some pair of trinodes of T . Since G′ is connected, this implies
that tw′(a′) ≥ 1. Since at most 2k − 1 globally-shortest triedges of T span all the trinodes by
Definition 3.4, a′ (and consequently f [xi

f , x
j
f]) must cross at least one of them. Therefore, if a

triedge p′ repeats in Sf at least 8k4 times, then there is a globally-shortest triedge p of T such
that p repeats in Sf at least ℓ ≥ 8k4/(2k − 1) > 4k3 times.

Let Y = (y1, . . . , yℓ) (a subsequence of (x1
f , . . . , x

mf

f)) be the ordered sequence of points in
which the arc of f intersects the arc of the triedge p. We say that an index i ∈ {2, . . . , ℓ − 1} is
a switchback of Y if yi−1, yi+1 both lie on the same side of yi on p (see Figure 4 for an example).
Up to symmetry, let the points on p be ordered such that yi+1 lies between yi−1, yi. Since p is
globally-shortest in T , we get (now regardless of contractibility of the induced loops)

tw′
(
p[yi−1, yi]

)
≤ tw′

(
f [yi−1, yi]

)
,

and then

tw′
(
f [yi−1, yi+1]

)
≥ tw′

(
p[yi−1, yi]

)
+ tw′

(
f [yi, yi+1]

)
= tw′

(
p[yi−1, yi+1]

)
+ tw′

(
p[yi+1, yi]

)
+ tw′

(
f [yi, yi+1]

)
≥ tw′

(
p[yi−1, yi+1]

)
+ 1.

Hence, if we locally re-route f along p[yi−1, yi+1], then we save the amount of at least 1 in the
crossings of f with E(G). Note that this is not a contradiction to our choice of optimal drawing
D yet since the change may introduce many new crossings of f with the rest of F . However, we
cannot have more than

(
k
2

)
switchbacks in Y or we get a contradiction using Claim 3.10.

Since ℓ ≥ 4k3, there is a consecutive subsequence Y ′ ⊆ Y of length ℓ′ ≥ ℓ/
(
k
2

)
− 1 > 8k without

switchbacks. Without loss of generality, we assume Y ′ = (y1, . . . , yℓ′). Let gi := f [yi, yi+1] and
g◦i := gi ∪ p[yi, yi+1], for i ∈ {1, . . . , ℓ′ − 1} (see Figure 5). As argued before, each g◦i is a simple
loop separating some pair of trinodes of T . Since no two edges of F cross more than once, there
are at most k − 1 indices i ∈ {1, . . . , ℓ′ − 1} such that gi is crossed by another edge(s) of F .

Let x, y be the ends of the triedge p. Assume that we have i ̸= j ∈ {1, . . . , ℓ′ − 1} such that
neither of g◦i , g

◦
j separates x from y. Let Zi ̸= ∅ denote the set of trinodes of T that are separated

by g◦i from x, y, and let Zj be defined analogously. We claim that Zi ∩ Zj = ∅. If not, then—
up to symmetry—g◦j is separated from x, y by g◦i , except a possibly shared section of p[yi, yi+1].

JGAA, 27(6) 489–522 (2023) 501

p

u

v

Figure 4: Example of a switchback. The blue edges are the trinet. The red arc f = uv crosses
the thick triedge p multiple times, with a switchback at point yi. The green line depicts a local
rerouting for f .

The former is impossible by the Jordan curve theorem and the latter would mean that there is a
switchback between i and j, which is again a contradiction. Since there are at most 2k−2 pairwise
disjoint nonempty possibilities (e.g., singleton trinodes other than x, y) for the sets Zi, Zj , there
are at most 2k − 2 indices i ∈ {1, . . . , ℓ′ − 1} such that g◦i does not separate x from y.

Since ℓ′ ≥ 8k, there exists a set of indices J ⊆ {1, . . . , ℓ′−2}, |J | ≥ ℓ′−2(k−1+2k−2)−2 > 2k,
such that for every j ∈ J both the arcs gj , gj+1 are not crossed by other edges of F and both
g◦j , g

◦
j+1 separate x from y. Let f0 := f [y1, yℓ′] and p0 := p[y1, yℓ′]; we get Y ′ ⊆ p0 since there

are no switchbacks in Y ′. Observe also that g◦j ∩ g◦j+1 = {yj+1} since f is not self-intersecting
and there is no switchback in Y ′. Hence, up to symmetry, g◦j separates x from g◦j+1, and g◦j+1

separates g◦j from y. It easily follows that g◦j ∪ g◦j+1 forms the boundary of an arc-connected region

of R2 \ (f0 ∪ p0) (a face of f0 ∪ p0). Since at most 2k − 2 of the faces of f0 ∪ p0 may contain a
trinode of T other than x, y, there exists j ∈ J such that, in addition to the above properties of J ,
the face σ bounded by g◦j ∪ g◦j+1 contains no trinode (see in Figure 6).

Our goal now is to re-route f along p[yj , yj+1] (i.e., “replacing” the part gj ⊂ f). Again, since
p is globally-shortest in T , this move does not increase the number of crossings of f with E(G),
and the T -sequence of f gets shorter. It remains to argue that we can avoid new crossings of f
with F \ {f}. If any f ′ ∈ F crosses p[yj , yj+1] then, since σ contains no trinode, f ′ has to leave σ
as well, and the only possibility is across p[yj+1, yj+2] by the previous assumptions. Consequently,
such f ′ can be re-routed along p[yj , yj+2], similarly to f , and no crossing with f is required (see
again in Figure 6). Note, moreover, that even if two such edges f ′, f ′′ ∈ F cross each other in
σ, there is no problem and they will cross in their new routing in the same way. We have again
reached a contradiction to our choice of D.

3.4 Shortest routes in a sleeve

Next, we consider point (IV) of the outline in Subsection 3.2. To recapitulate, for trinodes u, v
of a trinet T of G and a given proper T -sequence S from u to v, the task is to find a shortest
route from u to v among those having the same T -sequence S (and independently of other routes
considered in the problem). Since we cannot, in general, avoid repeating triedges in S and tricells

502 M. Chimani and P. Hliněný Inserting Multiple Edges into a Planar Graph

p

u

v

x
y

Figure 5: The blue edges are the trinet and the thick triedge p (which connects x and y) is crossed
by the red arc f = uv multiple times without switchbacks. The segment gi of f between a crossing
at yi and its succeeding crossing is depicted in dark green, and gives rise to the loop g◦i in light
green, which separates the (green) trinodes Zi from x, y. Similarly, we have gj , g

◦
j and Zj in violet,

and argue that Zi ∩ Zj = ∅.

in the sequence (θ0, θ1, . . . , θm) in Definition 3.6, we use a similar workaround as in [28]; “lifting”
the respective sequence of tricells into a universal cover as follows.

Definition 3.11 (Sleeve of a T -sequence). Let (G′, T) be a full trinet of a plane graph G, and
consider a proper T -sequence S = (p1, p2, . . . , pm) from u to v determining the sequence of tricells
(θ0, θ1, . . . , θm) by Claim 3.7. For i = 0, 1, . . . ,m, let Li be a disjoint copy of the embedded
subgraph of G′ ∪ T induced by θi. Construct a plane graph L from the union L0 ∪ · · · ∪ Lm by
identifying, for j = 1, . . . ,m, the copy of the triedge pj in Lj−1 with the copy of pj in Lj . We call
L the sleeve of S in the trinet (G′, T), and we identify u and v with their copies in L0 and Lm,
respectively. We make the unique face of L that is not covered by a copy of any tricell of T the
outer face of L. ⋄

Observe that every route from u to v in G′ ∪ T having its T -sequence equal to S can be easily
lifted into a corresponding u–v route in the sleeve L of S. Conversely, any u–v route in L avoiding
the outer face and crossing the copies of triedges in L at most once each, can be obviously projected
down to G′ ∪ T to make a route with the T -sequence equal to S. In fact, we can routinely prove
that some shortest u–v route in L must be of the latter kind, under the shortest-spanning property
(cf. Definition 3.4).

Lemma 3.12. Let (G′, T) be a shortest-spanning full trinet of an edge-weighted plane graph G,
S a proper T -sequence between trinodes u, v of T , and let L be the sleeve of S. Let ℓ be the length
of a shortest route from u to v among those having the T -sequence S. Then, ℓ is equal to the dual
distance from u to v in L without the outer face, and at least one of the u–v routes of length ℓ in
L crosses the copy of each triedge from S in L exactly once.

Proof. Let π be any shortest route from u to v in G′ ∪ T with the given T -sequence S. The copies
of the faces and dual edges of π lifted into the sleeve L give a route πL from u to v which avoids
the outer face of L. Obviously, the length of πL equals the length of π.

JGAA, 27(6) 489–522 (2023) 503

y
px

Figure 6: The face σ bounded by g◦j ∪ g◦j+1 (⊆ f ∪ p) depicted in green: since there is no trinode
in this face and neither gj , gj+1 are crossed by other edges of F , it is possible to re-route f partly
along p such that it avoids gj . Other possible F -edges entering the green face through a section of
p must leave at the other end, and hence can be re-routed similarly to f .

Conversely, we aim to show that some shortest u–v route crosses the copy of each triedge of S
in L exactly once. Assume a shortest route π1 of length ℓ from u to v in L without the outer face.
Recall from Definition 3.11 that L = L0 ∪ · · · ∪ Lm. For S = (p1, p2, . . . , pm), let (p′1, p

′
2, . . . , p

′
m)

be the sequence of corresponding copies of the triedges of S in L, and let p′0 := u, p′m+1 := v.
Note that each p′i, i ∈ {1, . . . ,m}, connects two vertices of the outer face of L, and so p′i separates
p′i−1 from p′i+1. In particular, every u–v route in L which avoids the outer face must cross each of
p′1, . . . , p

′
m.

Let i be the maximum index such that p′i is crossed by π1 more than once. Then there is a
subpath σ1 ⊆ π1 stretching between two consecutive crossings of π1 with p′i and contained in Li.
We turn π1 into π2 by re-routing the subpath σ1 along the boundary p′i in Li−1. Since pi is locally-
shortest in the trinet T , the length of π2 equals the length of π1. By induction on the number of
excess crossings of π2 with copies of the triedges, we can then get a u–v route π0 of length ℓ such
that π0 crosses the copy of each triedge from S in L exactly once.

Finally, the route π0 projects down to a route of length ℓ from u to v in G′ ∪ T having the
T -sequence S.

Corollary 3.13. Let (G′, T) be a shortest-spanning full trinet of a plane graph G with integer edge
weights, and S a proper T -sequence between trinodes u, v of T . A shortest u–v route among those
having the T -sequence S can be found in O(|S| · |N(T)| · |V (G)|) time.

Observe that in our case, by Lemma 3.8, we have |S| · |N(T)| ≤ (6k · 8k4) · 2k = 96k6.

Proof. By Definition 3.1, the size of the full trinet (G′, T) is O(|N(T)| · |V (G)|), and the sleeve is
composed of |S| copies of subgraphs of G′ ∪ T , and so O(|S| · |N(T)| · |V (G)|) bounds the size of
the sleeve L. Therefore, any linear time shortest path algorithm applicable in our situation, such
as the algorithm of Klein et al. [35] since L is planar, or Thorup’s algorithm [41] since we have
integral weights, suffices.

We also remark that, as we are going to use Corollary 3.13 in the subsequent proofs, we are fine
with edge weights of G given in unary. More precisely, every unit of finite weight on the edges of

504 M. Chimani and P. Hliněný Inserting Multiple Edges into a Planar Graph

G could be counted towards some edge of the full input graph from Section 4 without repetition,
and so a simple adaptation of BFS (treating infinite weights separately) in Corollary 3.13 suffices
for our purposes.

3.5 Crossing of routes

Finally, it remains to address point (V). Consider a 4-tuple of distinct trinodes u, v, u′, v′. Let π
be a u–v route and π′ be a u′–v′ route. We say that an arc b follows the route π if b is contained
in the alley of π and b intersects the faces forming the alley exactly in the order given by π (recall
that a route is technically a dual walk and hence, possibly, some face might repeat in π). We say
that the pair of routes π, π′ is non-crossing, if there exist a u–v arc b following π and a u′–v′ arc
b′ following π′ such that b ∩ b′ = ∅. In order to characterize possible non-crossing pairs of routes
in terms of their T -sequences, we introduce the notion of a crossing certificate (see also Figure 7):

Definition 3.14 (Crossing certificate). Let (G′, T) be a full trinet of a plane graph G, and let
π be a route from u to v and π′ be a route from u′ to v′ in G′ ∪ T , where u, v, u′, v′ are distinct
trinodes of T . Assume the T -sequences S = (p1, . . . , pn) of π and S′ = (p′1, . . . , p

′
ℓ) of π

′ are proper
and let (θ0, . . . , θn) and (θ′0, . . . , θ

′
ℓ) be their tricell sequences (unique by Claim 3.7). For technical

reasons, let p0 := u, pn+1 := v and p′0 := u′, p′ℓ+1 := v′.
A crossing certificate for S, S′ is a triple of indices (c, d,m) where c, d,m ≥ 0, c + m ≤ n,

d+m ≤ ℓ, such that the following holds:

a) θc+j = θ′d+j for 0 ≤ j ≤ m, but pc ̸= p′d and pc+m+1 ̸= p′d+m+1,

b) the triple pc, p
′
d, pc+1 occurs around the tricell θc = θ′d in the same cyclic orientation as the

triple pc+m+1, p
′
d+m+1, pc+m occurs around θc+m = θ′d+m.

Referring to point a), we call the tricells θc+j = θ′d+j for 0 ≤ j ≤ m the central tricells of the
crossing certificate (c, d,m).

Furthermore, a crossing certificate for the same sequence S and the reversal of S′ from v′ to u′

is also called a crossing certificate for S, S′. ⋄

Definition 3.14 deserves a closer explanation. Assume that a crossing certificate satisfies 0 <
c < n and 0 < d < ℓ. Then all four elements pc, p

′
d, pc+1, p

′
d+1 are triedges of the same tricell

θc = θ′d, and since pc+1 ̸= pc ̸= p′d ̸= p′d+1, we get pc+1 = p′d+1. Hence m > 0 and the situation
is such that S and S′ “merge” at θc where (up to symmetry) S comes on the right of S′, and
they again “split” at θc+m where S leaves on the left of S′, thereby “crossing it”. This is the
case illustrated in Figure 7. The full definition, though, covers also the boundary cases of crossing
certificates for which c ∈ {0, n} or d ∈ {0, ℓ} (or both), and when S and S′ may have no triedge in
common; those can be easily examined case by case.

Lemma 3.15. Let (G′, T) be a full trinet of an edge-weighted plane graph G, and ui, vi, i = 1, 2,
be four distinct trinodes. Assume that Si from ui to vi are proper T -sequences. In G′ ∪ T , for
i = 1, 2, there exist routes πi from ui to vi having the the T -sequence Si, such that π1, π2 are
non-crossing, if and only if there exists no crossing certificate for S1, S2.

Proof. Let Li, i = 1, 2, be the sleeves of Si in (G′, T). Assume that (c, d,m) is a crossing certificate
for S1, S2, and let R = (θc, . . . , θc+m) be the sequence of the central tricells of this certificate. Let
Ki ⊆ Li, i = 1, 2, be the plane subgraphs consisting of the copies of the tricells from R in the sleeve
Li. Note that R may repeat the same tricell several times, but in Li we have got independent

JGAA, 27(6) 489–522 (2023) 505

Figure 7: An example illustrating a crossing certificate (see Definition 3.14): The blue graph
depicts a trinet T . In green, we depict the route π (with n = 7) from u = p0 to v = p8 with
T -sequence S = (p1, ..., p7) and tricell sequence (θ0, ..., θ7). In red, we depict the route π′ (with
ℓ = 7) from u′ = p′0 to v′ = p7 with T -sequence S′ = (p′1, ..., p

′
6) and tricell sequence (θ′0, ..., θ

′
6).

Both routes overlap at three tricells θ1 = θ′2, θ2 = θ′3, and θ3 = θ′4 (depicted in gray) in such a way
that a crossing between the two routes is forced. We thus have a crossing certificate (c, d,m) with
c = 1, d = 2, m = 3: both the triple p1, p

′
2, p2 = p′3 (in θ1 = θ′2) and the triple p4, p

′
5, p3 = p′4 (in

θ3 = θ′4) appear in the same orientation, namely, clockwise.

copies of the possibly repeated tricells. We may also assume that K1 = K2 since they are both
made of copies of the same sequence R of tricells.

In the above view, Definition 3.14 says that (c, d,m) is a crossing certificate iff the elements
pc, p

′
d, pc+m+1, p

′
d+m+1 appear on the outer face of K1 = K2 in this cyclic order. Hence, by Jordan’s

curve theorem, if there is a crossing certificate for S1, S2, then π1, π2 cannot be non-crossing.

Conversely, we show how to build non-crossing π1, π2 if there is no crossing certificate for
S1, S2. For each tricell θ of T , bounded by triedges q1, q2, q3, we choose three arbitrary edges ej
from qj , j = 1, 2, 3, and three arbitrary internally disjoint dual paths σ1,2, σ1,3, σ2,3 contained in
θ such that σi,j is a dual path in G′ ∪ T connecting the face incident to ei to the face incident
to ej . Furthermore, we denote by xj the trinode of θ opposite to qj and we choose another three
arbitrary dual paths ρ1, ρ2, ρ3 contained in θ such that ρj is a dual path in G′∪T connecting a face
incident to xj to the face incident to ej . We call chosen σ1,2, σ1,3, σ2,3, ρ1, ρ2, ρ3 the representative
dual paths of the tricell θ.

For the proper T -sequence Si, i = 1, 2, we simply compose the route πi of the appropriate
representative dual paths of the tricells determined by Si. It is routine to verify that these π1, π2

are non-crossing, if and only if there exists no crossing certificate for S1, S2.

506 M. Chimani and P. Hliněný Inserting Multiple Edges into a Planar Graph

In: a plane graph G, edge weights w : E(G) → N+ ∪{∞}, an edge set F to insert, s.t. w(f) = 1
for f ∈ F .

Out: an optimal solution to (w-weighted) r-MEI(G,F).

(1) Compute a full trinet (G′, T), N(T) := V (F),with the shortest-spanning property of T , as
given by Claim 3.5.

(2) For each f = uv ∈ F :

(a) Compute Sf as the set of all its possible and relevant proper T -sequences from u to v.
The size of Sf is bounded due to Lemma 3.8(b) by 2s(|F |) where s(k) = O(k5 log k).

(b) For each S ∈ Sf , compute a shortest u–v route πS in G′ ∪ T among those having the
T -sequence S (where the length function is induced by w), using Corollary 3.13.

(3) For each possible system of representatives P = {Sf}f∈F with Sf ∈ Sf :

(a) Check, for each pair f, f ′ ∈ F , whether there exists a crossing certificate for Sf , Sf ′

(e.g., using brute force by Def. 3.14).
Let XP be the set of pairs {f, f ′} for which such a certificate has been found.

(b) If any pair {f, f ′} ∈ XP requires more than a single crossing (which can be found by
checking again for two “independent” crossing certificates of Sf , Sf ′), let crP := ∞.

(c) Otherwise, let crP := |XP| +
∑

f∈F lenw(πSf), where πSf is the shortest route for f
and Sf computed in step (2) and lenw(πSf) is the length.

(4) Among all P considered in (3), pick one with smallest crP < ∞. Let this be P◦ = {S◦
f}f∈F .

(5) In the plane graph G, realize each edge f ∈ F following its respective route πS◦
f
, such that

the overall resulting weighted number of crossings is crP◦ :

(a) By the minimality setup in (4), no πS◦
f
is self-intersecting.

(b) A standard postprocessing argument—removing consecutive crossings between any pair
f, f ′ (within a section of S◦

f ∩S◦
f ′) by re-routing f ′ partially along f —prevents multiple

crossings in the pairs from XP and makes the pairs of F not in XP crossing-free.

Algorithm 1: Algorithm to solve the (weighted) Rigid MEI problem.

3.6 Summary of the r-MEI algorithm

We can now summarize the overall algorithm to solve Rigid MEI, see Algorithm 1. Based thereon,
together with Lemmas 3.8, 3.12, Corollary 3.13, and Lemma 3.15 we obtain:

Theorem 3.16. Let G be a connected plane graph with edge weights w : E(G) → N+ ∪ {∞}, and
F a set of k ≥ 1 edges to insert, such that w(f) = 1 for all f ∈ F . Algorithm 1 finds an optimal
solution to the w-weighted r-MEI(G,F) problem, or determines that there is no finite solution, in
time O

(
2p(k) · |V (G)|

)
, where p(k) is a polynomial function in k. In fact, p(k) = O(k6 log k).

Before giving the proof, we need to develop a deeper understanding of the concept of non-
crossing routes and crossing certificates, and a detailed specification of step (3b) of Algorithm 1.
By adapting the arguments of Lemma 3.15, one can actually get the following slight strengthening:

Claim 3.17. Let (G′, T) be a full trinet of an edge-weighted plane graph G, and ui, vi, i = 1, 2,
be four distinct trinodes. Let πi, i = 1, 2, be a ui–vi route in G′ ∪ T . If there exist simple ui–vi
arcs bi, i = 1, 2, following the route πi, such that b1 intersects b2 in exactly one point x and they
properly cross in x, then there exists a crossing certificate for the T -sequences of π1 and π2.

JGAA, 27(6) 489–522 (2023) 507

We say that there exist two independent crossing certificates for the T -sequences S, S′ if there
are crossing certificates (c, d,m) and (c′, d′,m′) for S, S′ (each one up to possible reversal of S′ as
in Definition 3.14), such that the set of central tricells of (c, d,m) is disjoint from the set of central
tricells of (c′, d′,m′). The following can then be straightforwardly obtained from Lemma 3.15:

Claim 3.18. Let (G′, T) be a full trinet of an edge-weighted plane graph G, and ui, vi, i = 1, 2, be
four distinct trinodes. Assume that Si from ui to vi are proper T -sequences. In G′ ∪T , there exist
simple arcs bi from ui to vi such that, for i = 1, 2,

– bi is contained in the alley of a ui–vi route having the T -sequence Si, and

– b1 intersects b2 in at most one point,

if and only if there exists no two independent crossing certificates for S1, S2.

The implementation of step (3b), using Claim 3.18, hence simply checks by brute force for the
existence of two independent crossing certificates for Sf , Sf ′ .

Proof of Theorem 3.16. In this proof, we will use some of the terminology and notation from the
proof of Lemma 3.8, and refer to the notation of Algorithm 1.

Consider arbitrary P = {Sf}f∈F as in step (3). The value of crP computed in step (3c),
provided that crP◦ < ∞, is a lower bound on the number of crossings of any feasible solution of
r-MEI(G,F) such that, for each f ∈ F , the T -sequence of the arc f is exactly Sf . This fact follows
directly from Lemma 3.15 (for the part |XP|) and from Lemma 3.12 (for the part

∑
f∈F lenw(πSf

)).

By Lemma 3.8, there is an optimal feasible solution D to r-MEI(G,F) such that, for every
f ∈ F , the arc of f in D has its T -sequence (with respect to the trinet T from step (1)) equal
to some proper Sf ∈ Sf as computed in (2), and step (3b) does not apply to these values by
Claim 3.18. Consequently, crP◦ ≤ r-ins(G,F) by the lower-bound argument from the previous
paragraph. Hence if we can prove that step (5) can compute a drawing D◦ of G + F with crP◦

weighted crossings, provided crP◦ < ∞, then we complete the proof of Theorem 3.16.

For f ∈ F , let bf denote a realization of the edge f as an arc following the route of πS◦
f

(such that the T -sequence of bf is S◦
f), before the postprocessing step (5b). By the minimality

choice in step (4), we can be sure that bf does not cross itself: the self-crossing would induce
a non-contractible loop with at least one crossing over G′, but then there exists a T -sequence
S′
f ⊂ S◦

f—the sequence S◦
f without the triedges forcing the loop. Replacing these two sequences

in P◦ results in a smaller number of crossings on f while not increasing the number of crossings at
any term in the summation considered in step (3c).

LetD1 denote the drawing of G+F made of G and {bf : f ∈ F}. Observe that crD1
(E(G), F) =∑

f∈F lenw(πS◦
f
).

Fix some f, f ′ ∈ F , f = uv and f ′ = u′v′, such that bf , bf ′ cross each other (properly) more
than once. Consider the point set p := bf ∪bf ′ with the outer face incident to, say, the trinode u. If
any of the bounded faces of p contained a trinode (which cannot be u) of T , then we could “split”
the T -sequences S◦

f and S◦
f ′ into S1

f , S
2
f and S1

f ′ , S2
f ′ each, such that for each of the pairs S1

f , S
1
f ′

and S2
f , S

2
f ′ there would exist a crossing certificate by Claim 3.17. This would, in turn, provide two

independent crossing certificates for the T -sequences S◦
f , S

◦
f ′ ∈ P◦ and by the step (3b), it would

contradict crP◦ < ∞.
Consequently, all the bounded faces of p = bf ∪bf ′ are free of trinodes of T . This, in particular,

means that if we construct b1f from bf by re-routing it along a section of bf ′ between two consecutive

shared points of bf ∩bf ′ , then the T -sequence of b1f would again be S◦
f . Moreover, since bf , bf ′ have

508 M. Chimani and P. Hliněný Inserting Multiple Edges into a Planar Graph

been chosen from their respective shortest routes, the t-weight of b1f would be equal to lenw(πS◦
f
)

(which is the t-weight of the original bf). Iterating the process, we arrive at a drawing D2 of G+F
satisfying the following:

i. no two edges of F in D2 cross more than once,

ii. crD2(E(G), F) ≤ crD1(E(G), F).

What remains is to observe that two edges f, f ′ ∈ F properly cross each other in D2 only if
{f, f ′} ∈ XP◦ . Indeed, if f, f ′ properly cross in D2, then the crossing of f, f ′ is the only one and
there exists a crossing certificate for πS◦

f
, πS◦

f′ by Claim 3.17, and then {f, f ′} ∈ XP◦ due to step

(3a).
To summarize, we get

crP◦ ≤ r-ins(G,F) ≤ cr(D2) = crD2(E(G), F) + crD2(F, F)

≤ crD1(E(G), F) + |XP◦ | = crP◦

which proves optimality of the solution computed by Algorithm 1.

Finally, we discuss the runtime bound of Algorithm 1. Let k = |F |. Step (1) is performed in time

O(k2 · |V (G)|) by Claim 3.5. By Lemma 3.8, |Sf | ≤ 2s(k) where s(k) ≤ log
(
(6k)48k

5)
= 48k5 log 6k.

Step (2) hence takes time O(k · 2s(k) · k6 · |V (G)|) < O(2s(k)·k · |V (G)|) by Corollary 3.13. Step (3)
is iterated O(2s(k)·k) times, and each iteration takes time polynomial in k (independently of G)
even by brute force. Step (4) takes only time O(2s(k)·k). Finally, step (5) performs k computations
in O(|V (G)|) time, to realize each f ∈ F in G, and then a number of concurrent re-routings which
can be bounded by an amortized analysis: each of the k routes is of length O(|V (G)|) and each
element of it could be re-routed at most once towards each of the k−1 remaining routes, summing
to O(k2 · |V (G)|).

The above analysis sums up to overall O
(
2s(k)·k · |V (G)|

)
= O

(
2p(k) · |V (G)|

)
time where

p(k) = O(k6 log k).

4 General MEI

Now, we turn our attention to the general MEI(G,F) problem, in which the embedding of the
planar graph G is not pre-specified. Recall that triconnected planar graphs have a unique em-
bedding (up to mirroring), but already biconnected graphs can have an exponential number of
embeddings in general. As it is commonly done in insertion problems since [26], we will use the
SPR-tree datastructure (sometimes also known as SPQR-tree) to encode and work with all these
possible embeddings. The structure was first defined in a slightly different form in [2], based on
prior work of [5, 42]. It can be constructed in linear time [25,32] and only requires linear space.

Definition 4.1 (SPR-tree, based on [10]). Let G be a biconnected graph with at least three
vertices. The SPR-tree T of G is the unique smallest tree satisfying the following properties:

a) Each node ν in T holds a specific graph Sν = (Vν , Eν), with Vν ⊆ V (G), called a skeleton.
Each edge e of Eν is either a real edge e ∈ E(G), or a virtual edge e = xy ̸∈ E(G) (while still,
x, y ∈ V (G)).

b) T has three different node types with the following skeleton structures: (S) Sν is a simple cycle;
(P) Sν consists of two vertices and at least three multiple edges between them; (R) Sν is a
simple triconnected graph on at least four vertices.

JGAA, 27(6) 489–522 (2023) 509

c) For every edge νµ in T we have |Vν ∩ Vµ| = 2. These two common vertices, say x, y, form a
vertex 2-cut in G. The skeleton Sν contains a specific virtual edge eµ ∈ E(Sν) that represents
the node µ and, symmetrically, some specific eν ∈ E(Sµ) represents ν. Both eν , eµ have the
ends x, y, and each one of eν , eµ is called the twin of the other.

d) For an edge νµ ∈ E(T), let eµ ∈ Eν , eν ∈ Eµ be the pair of virtual edges as in (c) connecting
the same x, y. The operation of merging at νµ creates a graph (Sν ∪ Sµ)− {eµ, eν} obtained
by gluing the two skeletons Sν , Sµ at x, y and removing eµ, eν .

Consider the tree T rooted at any node. For ν ∈ V (T) we define the pertinent graph Pν of ν by
recursively merging the skeletons at every tree-edge of the subtree rooted at ν, and removing
the parent virtual edge of ν (if not the root itself). Then the pertinent graph of the root of T
is G. ⋄

4.1 High-level procedure for general MEI

We again start with an illustration of the “simple” case of |F | = 1. The central theorem of [26]
states that an optimal solution of MEI(G, {uv}) for biconnected G can be obtained by looking
only at the shortest path in the SPR-tree T of G between a node whose skeleton contains u and a
node whose skeleton contains v. For each skeleton Sν along this path, one simply finds an optimal
embedding and a shortest partial route in this embedding between the virtual edge representing
u (or u itself) and the virtual edge representing v (or v itself). In the case of S- and P-nodes this
route requires no crossings. For an R-node ν, one needs a shortest route in the rigid setting. To
this end, for each edge νµ in T, the virtual edge eµ in Sν with ends x, y is assigned its pertinent
weight w(eµ): the size of a minimum x–y edge-cut in the pertinent graph Pµ. See [26] for more
details.

Biconnected case. We turn to the general MEI problem for biconnected planar graphs G.
Considering an arbitrarily rooted SPR-tree T of G, we devise a dynamic programming procedure
to solve MEI bottom-up over T. The core of the procedure is to describe which subproblems
we are going to solve at each node ν of T, assuming we know the solutions of the corresponding
subproblems at the child nodes of ν. For better understanding, this task is illustrated and described
in Figure 8. We say a virtual edge eµ in Sν representing a child node µ of ν, is dirty if its pertinent
graph Pµ contains an end vertex of f ∈ F which is not one of the ends of the twin eν .

At a high level, we describe our procedure as follows:

(A) We compute the pertinent weights w(eµ) for all non-dirty virtual edges that appear in skeletons
used in the following step (B).

(B) For each dirty child virtual edge eµ in the skeleton Sν , we assume to know the optimal number
of crossings for every “reasonable” scheme of routing edges of F to, from, or across eµ (we stress
that we speak about all edges of F , including those not having an end in Pµ). We exhaustively
process, over all possible embeddings of Sν in case of a P-node, all the subproblems stated by
every admissible combination of routing schemes for the dirty child virtual edges in Sν and
for the parent virtual edge of Sν . For each “reasonable” routing scheme of the parent virtual
edge, we then select and store the best obtained solution in terms of minimal overall crossing
number.

(C) Each particular subproblem of the exhaustive processing in (B) can be formulated as a
weighted r-MEI(H,F ′′) instance. The plane graph H is constructed from Sν by inserting

510 M. Chimani and P. Hliněný Inserting Multiple Edges into a Planar Graph

special gadgets at the dirty virtual edges (see the colored digons in Figure 8), and the new
edges F ′′ are suitable segments of the edges of F (their ends are either an end of the original
F -edge or a vertex on such a gadget). All non-virtual edges of Sν and all of F ′′ have weight
1. Each non-dirty virtual edge eµ gets weight w(eµ), computed in (A), and all dirty virtual
edges get weight ∞. See Figure 8 for closer details.
This r-MEI(H,F ′′) instance can then be solved using Theorem 3.16.

(D) If ν is the root node of T, then there is no parent virtual edge and the exhaustive processing in
(B) selects a single optimal solution. Realizing this solution, together with the corresponding
subsolutions at the descendants, gives an optimal solution to the original MEI(G,F) instance.
⋄

We first give a more precise definition regarding step (B). For a dirty virtual edge eµ = xy
in the skeleton Sν with its pertinent graph Pµ, let M be the set of those ends of the edges of F
that belong to V (Pµ) \ {x, y}. A routing scheme of eµ is an arbitrary pair of disjoint sequences
Q1, Q2, where (Q1 ∪ Q2) ∩ V (G) = ∅, together with a perfect matching on the set M ∪ Q1 ∪ Q2

(the cardinality of which must be even). The matching edges are meant to represent segments of
edges of F drawn across the pertinent graph Pµ, but on this level we do not need to distinguish
which segment belongs to which of the F -edges.

If φ is the parent node of ν then a routing scheme of eφ in Sν , as dealt with in step (B), is
formally not the same as the corresponding routing scheme of the twin virtual edge eν in Sφ; these
two are of course actually “complementary”. We neglect this technical difference in a high-level
description of our dynamic programming scheme.

Second, we informally outline three claims which make the above high-level procedure run in
FPT time:

• A skeleton Sν may contain more than k virtual edges, but only at most 2k of them may be
dirty (containing an end vertex of F). The computation of the pertinent weights of non-dirty
virtual edges can be done in linear overall time.

• A P-node skeleton Sν may have an unbounded number of inequivalent embeddings (precisely
(q−1)! where q is the number of parallel edges in Sν). However, if two non-dirty edges e1, e2
appear non-consecutively within the embedding of Sν , there exists an alternative solution
with the same number of crossings where e2 is rerouted alongside e1 (by optimality, both
edges encounter the same number of crossings either way). Thus we can restrict our attention
to only those at most (2k)! embeddings in which all non-dirty virtual edges are consecutive
(in any internal order) within the embedding of Sν .

• In contrast to the single edge insertion, an edge of F may easily be forced to cross the same
virtual edge eµ multiple times (a number depending only on k). However, the complexity of
any “reasonable” routing of the edges of F across eµ is bounded by a function of k = |F |, as
shown in Lemma 3.8.

As a corollary we see that the number of subproblems generated in step (B), as well as the amount
of information stored at any SPR-tree node, is bounded by a function of k.

The solution of each single subproblem in step (C) can be obtained using the algorithm for
r-MEI in Theorem 3.16 in linear time for constant k, and there are at most O(|V (G)|) nodes in
the tree T. Instead of the näıve quadratic runtime bound, we even achieve a linear overall runtime
bound by observing that the union of all skeletons is still only of O(|V (G)|) size. We thus obtain,
as given in the introduction:

JGAA, 27(6) 489–522 (2023) 511

e'

e

e

e
e

1

2

3

4

e00

e0

Figure 8: One of the possible r-MEI instances considered at a rigid R-node ν in step (C). The
mostly black graph shows the skeleton Sν , whereby the red virtual edge eφ corresponds to ν’s
parent, the blue virtual edges e1, . . . , e4 to ν’s dirty children, and the thick black edges to the
non-dirty children with their implicit pertinent weights. The inserted edges of F are depicted in
green.

For each dirty virtual edge ei, including eφ, we consider a fixed (by the processing in step (B))
routing scheme that externally encodes at which points segments of edges of F enter and leave the
pertinent subgraph of ei. This is depicted with a blue or red digon of ei and solid green segments of
the F -edges within it. Consequently, we do not have to care for internal details of the digonal parts
(they are, in fact, not part of our r-MEI instance and only visualized for the reader’s context), as
they are either already resolved in the subproblems of the children or are going to be resolved in
the ancestor nodes. Likewise, for an r-MEI instance at ν, the only relevant information for any
non-dirty virtual edge is its pertinent weight and no subembedding details are necessary.

The gadget (see step (C)) used to enforce the aforementioned routing schemes at every dirty
virtual edge ei, is composed of the edge ei itself (solid blue or red), and two new edges e′i, e

′′
i

parallel to ei (dotted) which are subdivided by the prescribed entry/exit terminals (green dots) of
the segments of F -edges. The gadget edges are weighted ∞ and their embedding is rigid. Possible
end vertices of F -edges in V (Sν) are also counted as the terminals. By a combination of the routing
schemes we mean an arbitrary perfect matching (the green dashed segments) on these terminals.
It is an admissible combination (cf. step (B)) if the union of the prescribed solid green and the
matching dashed green segments forms an actual “realization” of the inserted edges of F .

An admissible combination then gives rise to the depicted r-MEI instance, as described in step
(C), which can be solved using Theorem 3.16.

512 M. Chimani and P. Hliněný Inserting Multiple Edges into a Planar Graph

Theorem 4.2 (The biconnected case of Theorem 1.1). Let G be a planar biconnected graph and
F a set of k ≥ 1 edges to insert. An optimal solution of the problem MEI(G,F) can be found in
O(2q(k) · |V (G)|) time, where q(k) is a polynomial function in k. In fact, q(k) = O(k30 log k).

Connected case. For essentially all known insertion algorithms (in particular the single edge
insertion [26], the vertex insertion [12], and the MEI approximation [13]), one typically first resolves
the case of biconnected graphs (using SPR-trees as above). Then, it is relatively straightforward
to lift the algorithms to connected graphs, by considering BC-trees (see below). Interestingly, this
step seems much more complicated in the case of exact MEI.

Consider the well-known block-cut tree (BC-tree) decomposing any connected graph into its
blocks (biconnected components). Using analogous techniques as in [13], we extend our dynamic
programming approach by amalgamating the BC-tree of G with respective SPR-trees of the blocks,
to obtain a linear-sized combined tree (called con-tree in [13])—with an additional node type C,
for the cut vertices. The procedure outline (A)–(D) from the previous case is completed, for the
non-biconnected case, with the following:

(B+) If ν is a C-node representing a cut vertex c of G, then we exhaustively process all possibilities
to combine the dirty blocks of G incident to c (while non-dirty blocks can be safely ignored).

Unfortunately, although we can again bound the number of dirty blocks by 2k, there is now
no easy “external description of routing” with respect to a cut vertex available (analogous to a
routing scheme of a virtual edge). Consequently, the number of possibilities to consider in (B+)
depends on k and the degree of the cut vertex c. We conclude:

Theorem 4.3 (The connected case of Theorem 1.1). Let G be a planar connected graph and F
a set of k ≥ 1 edges to insert. Let ∆c be the maximum degree over cut vertices of G. Then an
optimal solution of the problem MEI(G,F) can be found in O

(
2q

′(k) ·∆ k
c · |V (G)|

)
time, where q′(k)

is a polynomial function in k.

4.2 Decomposing into subproblems

We start with formally defining the subproblems to be solved and stored at each dirty non-root
decomposition node. Let ν be such a node and let e = xy ∈ E(Sν) be the virtual edge in the
skeleton of ν corresponding to its parent node φ. Recall that the pertinent graph Pν arises from
Sν by merging the skeletons of the subtree rooted at ν and removing the sole remaining virtual
edge e. We consider the 3-partition of F into F0, F1, F2, where F0 are the edges without an end in
V (Pν) \ {x, y}, F1 are the edges with one end in V (Pν) \ {x, y} and the other not in V (Pν), and
F2 are the edges with one end in V (Pν) \ {x, y} and the other in V (Pν).

By definition, the graph P+ := Pν+e is planar, and e represents the “rest of the graph” disjoint
from Pν . We are, intuitively, interested in the best embedding P ◦

+ of P+ to

(a) route the edges of F1 from a “side of e” to its end in V (Pν) \ {x, y}; observe that we may care
from which side of e the new edge emanates.

But these are not the only routes to consider in an optimal solution:

(b) edges uv ∈ F2 may be routed completely within Pν , or drawn partially from u to some side of
e (to the “rest of the graph”) and from some side of e (from the “rest of the graph”; either
from the other or even the same side!) to v;

JGAA, 27(6) 489–522 (2023) 513

(c) a segment of any edge of F may be routed through Pν , i.e., from one side of e to the other
side.

The task is illustrated in Figure 9.
Formally, we can define a single routing query (at the node ν) as a pair (s, t), where s and t

are each either referencing a specific side of e or a vertex in V (Pν) \ {x, y}. We will use e′, e′′ to
denote the two different sides of e. In such a routing query, we ask for a routing of a new edge
between s and t in P+, without crossing over e. Note that, with respect to the informal notation
of Subsection 4.1, a combination of appropriate routing queries at ν forms a routing scheme of the
virtual edge eν at the parent of ν, and vice versa.

Lemma 3.8 (which holds for every fixed embedding, and hence for each possible embedding)
shows that a triedge of the trinet T of G is crossed by any given edge f ∈ F at most 8k4 = O(k4)
times. When computing a shortest route (w.r.t. some T -sequence) between two succeeding triedges,
we clearly have the property that any edge within the corresponding tricell is crossed at most once.
Hence:

Corollary 4.4. In an optimal solution to MEI(G,F), each edge f ∈ F crosses any edge of G at
most ξ = O(k4) times.

Since this corollary also holds for virtual edges in a skeleton, we have the same upper bound
for crossings through a biconnected component Pν .

1

In our dynamic programming scheme, we will hence—for each possible set of (reasonable)
routing queries—store the minimum number of crossings necessary over all embeddings of P+. A
specific set of routing queries (to be described in details below) is called a subproblem, and the
corresponding number of crossings (together with the embedding of P+ and the corresponding
routings, if desired) is called a subsolution. It remains to discuss the number of subproblems for ν.

Lemma 4.5. Each subproblem specifies at most r := O(k5) routing queries. The total number of

subproblems to consider at any node ν is bounded by χ := 2O(k5 log k).

Proof. Consider the routing query types (a)–(c) as above:

(a) For each edge f = uv ∈ F1 with u ∈ V (Pν) \ {x, y}, we have to pick one of the two routing
queries (e′, u), (e′′, u).

(b) For each edge f = uv ∈ F2, we have to pick one out of five options: (i) a single routing query
(u, v); (ii)–(v) two routing queries (u, e(1)), (e(2), v), with e(1), e(2) ∈ {e′, e′′}.

(c) Finally, for each f ∈ F—except for those F2-edges that picked option (i)—we have additional
up to ξ− 1 (Corollary 4.4) routing queries. Each such additional query is of one of four types:
(e(1), e(2)), with e(1), e(2) ∈ {e′, e′′}.

Overall, this sums up to |F1|+ 2|F2|+ ξ|F | = O(k5) =: r routing queries.

The number of choices for such a set of routing queries is at most 2|F1| ·5|F2| ·(4ξ)|F | = O(2O(k5)).
However, up to now we did not consider a crucial interplay of these individual routing queries—we
need to take all possible orderings of the edges emanating from a side of e into account. Sides of
e arise at most 2r times over all queries, and we hence have at most (2r)! orderings to consider.

Thus, we overall obtain at most 2O(k5) · 2O(k5 log k) subproblems.

1Note that we can derive an even stronger quadratic bound here, directly using Claim 3.10, but that would not
stregthen the overall runtime analysis.

514 M. Chimani and P. Hliněný Inserting Multiple Edges into a Planar Graph

f
0

0
P

GnPº

º
f

f

f
f

f1

1

2

0

2

0

f
0

00

Consider a drawing of G, where
the pertinent subgraph Pν (gray
lense-shaped region) of some
virtual edge eν is crossed as
shown. The “rest of the graph”
is visualized as the rectangu-
lar gray region. The inserted
edges F are drawn as solid-
and-dashed edges: we have
f0, f

′
0, f

′′
0 ∈ F0, f1, f

′
1 ∈ F1, and

f2, f
′
2 ∈ F2.

Pº

e'

e e 000
One part of the above situation
is described as a subproblem
at node ν. The subproblem is
characterized by the order (and
number) in which the edges of
F enter (leave) Pν . Its opti-
mal solution is computed within
P+ = Pν + eφ. Thereby, eϕ
(thick edge) is the virtual edge
representing ν’s parent φ = ϱ.
We set its weight to ∞ and
add subdivided edges e′, e′′ left
and right of e. The subdivision
vertices (grey circles) are con-
structed according to the sub-
problem characterization.

eº

e 00

e 0

If the above subproblem is
solved, we can solve the problem
on G without explicitly requir-
ing Pν : we replace Pν in G by
its virtual edge enu (of weight
∞) and add side edges e′, e′′,
that correspond to the consid-
ered subsolution.
If we perform this operation on
all subsolutions at ν, we find the
overall optimum solution in G.

Figure 9: Conceptual sketch of a subproblem at a node ν. For simplicity, assume that the SPR-tree
consists of only two nodes: the root ϱ and ν.

JGAA, 27(6) 489–522 (2023) 515

4.3 Dynamic programming

Finally, we have to describe how to use these subproblems to efficiently compute MEI. The validity
of this approach for non-dirty pertinent graphs was already established in [26]. As mentioned, we
consider dirty nodes bottom-up.

Let ν be the considered SPR-tree node with skeleton Sν . Let eφ ∈ E(Sν) be the virtual edge
corresponding to ν’s parent φ (if it exists), and e1, . . . , eℓ (e

′
1, . . . , e

′
ℓ′) the dirty (non-dirty) virtual

edges in Sν corresponding to the children µ1, . . . , µℓ (µ′
1, . . . , µ

′
ℓ′ , respectively). We need to show

that we can solve each subproblem at ν purely using Sν and the solutions to the subproblems of
the dirty children. In particular, we may not expand the skeleton to the pertinent graph (for which
the subproblems at ν are actually defined).

Subproblems, embeddings, and the root. Assume, ν is a non-root node, then we have
to solve up to χ many subproblems as claimed by Lemma 4.5. For each subproblem, we are given
a set of up to r routing queries, and want to find the optimal solution over all embeddings of P+.
Recall that there are only a bounded number of embeddings for Sν : 1, 2, and (2k)! in case of
an S-, R-, and P-node, respectively. Let χ′ := (2k)! = 2O(k log k). We hence can enumerate each
embedding explicitly.

The routing queries of the considered subproblem give rise to the following gadget: Set the
weight of eφ to ∞, and introduce two edges e′ and e′′ parallel to eφ, one directly to its left, one
directly to its right. (We use the same identifiers e′, e′′ as for the sides of e, as they are their
representatives within the gadget.) Now subdivide these two edges such that there is a vertex on
e′ (e′′) if a routing query specifies the edge side e′ (e′′). Furthermore, these vertices are ordered
according to the specification of the subproblem. Let S′

ν denote the embedded graph arising from
this construction; we do not consider eφ as a virtual edge in the following any more. Instead of
considering the original edge set F , we will now consider the routing queries (s, t) as edges st ∈ F ′

(a new set F ′) to be inserted.
If ν is the root node, we also have to consider all its skeleton’s possible embeddings S′

ν indi-
vidually, but there is no specific subproblem to consider and we simply set F ′ := F without any
gadget construction. From now on, we do the same steps, independent of whether considering the
root node, or a specific subproblem at a non-root node.

Virtual edges. For each non-dirty virtual edge e′i = ab, 1 ≤ i ≤ ℓ′, we set the weight of e′i
to the minimum-ab-cut in the pertinent graph of µ′

i. Note that these values can be computed in
overall linear time in a preprocessing step.

Now, for each dirty virtual edge ei, 1 ≤ i ≤ ℓ (ℓ ≤ 2k), we construct a gadget analogous to the
gadget for eφ: Edge ei gets weight ∞, we add two edges e′i, e

′′
i left and right of ei, and subdivide

them according to a subproblem at µi. To do this, we have to enumerate all possible choices of
subproblems at all virtual edges. So this construction yields up to χ′′ := χ2k = 2O(k6 log k) different
choices, each of which we consider individually. Observe: If, for some edge f ′ ∈ F that resides
within some Pµj , we chose a routing query of type (b)(i), we do not consider subsolutions at any
virtual edge where there are type (c) queries w.r.t. f ′. We call such an edge f ′ a local edge.

We denote the so-modified plane graph by S′′
µ, and now have to decide what happens to our

new edge set F ′. Each edge in F ′ corresponds to some edge in F . Furthermore, we add each
non-local edge f ∈ F to F ′ if it has no corresponding edge in F ′. We observe that for each vertex
w ∈ Pν \ Sν that is an end in F ′, there is a unique replacement vertex r(w) in Sν—it arises from
a query (r, r(w)) (unoriented) within a subproblem at some dirty virtual edge.

516 M. Chimani and P. Hliněný Inserting Multiple Edges into a Planar Graph

For each original edge f = uv ∈ F , we hence get a partial order of routing queries corresponding
to it: either u (v) or its replacement vertex r(u) (r(v), respectively) is in S′

ν , so we start (end) there.
There may or may not be a routing query starting at u (ending at v), which we would update to use
r(u) (r(v)) instead of u (v). Now, between this start and end, f may have to “visit” former queries
of type (c) (whose ends are now represented by subdivision vertices at edges e′j , e

′′
j , 1 ≤ j ≤ ℓ).

While these former queries are totally ordered for each individual dirty virtual edge, it is unclear in
which order f visits the different virtual edges. We will enumerate all possible orders to visit each

of the O(k) dirty virtual edges up to O(ξ) times; there are hence χ′′′ := O
(

(k ξ)!
k ξ!

)
= O(2O(k5 log k))

different visit orderings for each edge of f ∈ F . Every visit order induces an unambiguous set Tf

of (new) routing queries to draw part of f within Sν : from f ’s start to the vertex representing the
beginning of a former query, from the vertex representing the end of the last former query to the
beginning of the next former query, and so on, until finally from the vertex representing the end
of the last former query to f ’s end. Such a set Tf hence has size at most τ := O(kξ) = O(k5).

Finally, we obtain an instance r-MEI(S′
ν , F

′′), where |V (S′
ν)| = O(|Sν | · kξ) = O(|Sν | · k5)

and F ′′ is the set of all routing queries (interpreted as unordered new edges) obtained from F ′

by considering each Tf (for all f ∈ F). We have |F ′′| = O(k · τ) = O(k6). The total cost of
the considered subsolution (and also for the solution at the root node) is the minimum number
of crossings over all possible r-MEI instances constructed as above plus the numbers of crossings
given by the corresponding individual subsolutions realized at the dirty virtual edges. We have
got:

Claim 4.6. Algorithm 2 settles the root node—and each specific subproblem at a non-root node—
with O

(
χ′ ·χ′′ · (χ′′′)k

)
calls to r-MEI. Each of the dirty non-root nodes is done with O

(
χ ·χ′ ·χ′′ ·

(χ′′′)k
)
calls to r-MEI.

4.4 Proving Theorem 4.2 (biconnected case of Theorem 1.1)

Proof. We refer to Algorithm 2. Let n the number of vertices in G, and let p be the polynomial
function in k from the r-MEI runtime described in Theorem 3.16. In each of our subproblems,
we have at most O(k5) routing queries (Lemma 4.5), and thus consider an r-MEI instance for
k′ = O(k5) inserted edges. Similarly, each of our O(k) gadgets in this instance has size at most
k · ξ = O(k5) (Lemma 4.4). Hence, each individual r-MEI instance in our setting can be computed

within O
(
|V (Sν)| · k6 · 2p(k

5)
)
= O(|V (Sν)|) · 2O(p′(k)) time, for a polynomial function p′.

Furthermore, the sum of the amounts |V (Sν)| over all recursively considered SPR-tree skeletons
Sν in the algorithm is still linear in n, as it follows from Definition 4.1. We hence obtain an upper
bound on the overall runtime

O
(
χ · χ′ · χ′′ · (χ′′′)k

)
· O(n) · 2O(p′(k)) =

= O(n) · 2O(p′(k)) · 2O(k5 log k) · 2O(k log k) · 2O(k6 log k) · 2O(k6 log k) =

= O(n · 2q(k)) ,

where q is a polynomial function in k. In fact, q(k) = O(k30 log k).

We note in passing that the presented runtime bound can be improved to nearly match that
of Theorem 3.16, by observing that Lemma 3.8 can be used to upper-bound the joint length of all
the T -sequences of those edges of F ′′ which belong to the same edge of F . A suitable combined
runtime analysis of Theorems 3.16 and 4.2 would then give a stronger upper bound on q(k) above.
Though, we skip the lengthy technical details here.

JGAA, 27(6) 489–522 (2023) 517

In: a planar biconnected graph G, an edge set F to insert.

Out: an optimal solution to MEI(G,F).

(1) Compute an SPR-tree T of G in linear time.

(2) Root T at an arbitrary (root) node ϱ ∈ V (T)

(3) Compute the pertinent weights of non-dirty virtual edges that are going to be considered
later in the algorithm: Traverse T top-down, not descending into subtrees of non-dirty
nodes. For each visited non-dirty node ν:

– Let a, b be the end vertices of the virtual edge representing ν’s parent φ in Sν . Compute
the value cab of the minimum-ab-cut in Pν .

a In the following, ignore ν and its subtree;
instead consider the edge representing ν in φ to be an original edge of weight cab.

(4) Traverse T bottom-up, except for the root ϱ. Let ν be the current node and φ its parent.
All the children µ1, . . . , µℓ of ν are dirty and already processed by the algorithm. They
correspond to the virtual edges e1, . . . , eℓ in Sν , while φ corresponds to a virtual edge eφ.

– For each feasible set of routing queries R at ν (these are the subproblems at ν, and we

have χ = 2O(k5 log k) many of them by Lemma 4.5):

(a) Consider all combinations of:

i. every non-equivalent embedding S′
ν of Sν (χ′ = 2O(k log k) many),

ii. each combination of subsolutions for all children µi, i = 1, . . . , ℓ, consistent

with R (χ′′ = 2O(k6 log k) many possibilities),

iii. each combination (over all f ∈ F) of the orders in which each f visits the virtual

edges of Sν , including multiple visits (χ′′′ for each f , and so (χ′′′)k = 2O(k6 log k)

possibilities overall)

(b) Fix the embedding S′
ν .

(c) Replace eφ with the gadget representing R.

(d) For i = 1, . . . , ℓ; replace each ei with the gadget representing the currently consid-
ered subsolution at µi.

(e) For j = 1, . . . , k; deduce the set F ′′ from R, all Si, and the visit orders.

(f) Let G′ be the so-constructed plane graph (we have |V (G′)| = O(|Sν | · k5) and
|F ′′| = O(k6)). Solve x := r-MEI(G′, F ′′). The solution value for the considered
combination is x+

∑ℓ
i=1 x(Si), where x(Si) is the solution value of Si.

(g) Store the minimum observed solution value over all cases described in (a) as the
solution x(R) for subproblem R at ν.

(5) Solve the root node ϱ. (It has no parent and thus needs no specific R as in step (4) above.)
Perform the substeps (a), (b), (d)–(f) from above.
Return the thereby minimum observed solution (over all the cases described in (a)) as the
overall optimum solution to MEI(G,F).

aFor unweighted G, this can be done in linear time using BFS in the dual of any plane embedding of Pν +ab.

Algorithm 2: The dynamic programming to solve MEI (biconnected case).

518 M. Chimani and P. Hliněný Inserting Multiple Edges into a Planar Graph

4.5 Proving Theorem 4.3 (connected case of Theorem 1.1)

Proof. Until now, the proofs only considered biconnected G. If G is only connected, we can first
decompose (in linear time) G into its biconnected components (blocks), and establish a BC-tree B.
The tree B has two types of nodes: For each block of G, we have a node of type (B); for each cut
vertex in G, we have a node of type (C). We have an edge βγ in B if, and only if, β is a B-node,
γ is a C-node, and the block of β contains the cut vertex of γ. We may root B arbitrarily at any
dirty block; we say a block is dirty if it contains at least one end of F (other than possibly its
parent cut vertex). Clearly, we can iteratively prune non-dirty B-leaves.

Now, we can construct a combined tree C: For each block B in G, we construct (and root)
its SPR-tree TB . In B, we replace each B-node with the root vertex of the block’s corresponding
SPR-tree. Now, we can run the dynamic programming algorithm over C instead of a single SPR-
tree.

Let ν be a non-C-node whose parent is a C-node γ corresponding to cut vertex c ∈ Sν . We need
to redefine the subproblems considered at ν: instead of considering routing queries that attach to
one of the two sides of the parent virtual edge, our routing queries may now attach to c in a
specified order and through specified faces incident to c. We therefore introduce the gadget—for
each considered embedding S′

ν of Sν—obtained by planarly replacing c by a simple cycle C. The
c-incident edges are attached to C such that the contraction of C again gives S′

ν . When considering
the routing queries, instead of the two choices of the side of the parent virtual edge, we now hence
have a δ(c) = O(∆c)-fold choice over the segment of C where to attach to, where ∆c denotes the
maximum degree over all cut vertices.

In our dynamic programming, we will perform no operation at C-nodes, but let ν now be a
node with a C-child γ corresponding to cut vertex c ∈ Sν . Analogous to above—in each considered
embedding S′

ν of Sν—we planarly replace c by a cycle C. On C, we realize all subsolutions of
all (at most 2k) children of γ, in all possible combinations. Except for these modifications, the
algorithm remains unchanged.

5 Conclusion

In this paper, we have affirmatively answered the long-standing open question, floating around
ever since [1, 26], whether there is a polynomial-time algorithm to insert a constant-sized set of
edges into a planar graph in a crossing-minimal way. Previously, this has only been known for
single edges; the problem with multiple edges could only be approximated. Our result also gives a
slightly improved approximation algorithm (compared to [13]) for the general crossing number of
graphs with bounded number of edges beyond planarity; we use the computed optimal solution to
MEI(G,F) both as an upper bound on the crossing number, and for a lower bound on the crossing
number via Theorem 2.2. However, the improvement is not very significant since we also trade
polynomial runtime of [13] for FPT runtime.

While the original MEI problem was defined over unweighted graphs, we considered weighted
graphs in our subproblems but only to a limited extent. It is thus natural to ask:

Open Problem 5.1. Is MEI fixed-parameter tractable if both G and F are weighted?

In fact, we can straightforwardly answer this question affirmatively for weighted G and un-
weighted F , as should be clear from the above proofs. We may also assume weighted F , if the
weights are bounded by k, by simply adding multiple copies of an edge to F . For generally weighted

JGAA, 27(6) 489–522 (2023) 519

F , we observe that the dynamic programming part of solving MEI would be capable of achiev-
ing this feat. However, the required r-MEI subproblems are not, due to the technical rerouting
argument in the proof of Lemma 3.8. It is not easy to circumvent this argument and the prob-
lem seems surprisingly related to that of decidability of string graphs—a connection that deserves
future investigation.

Another, probably most interesting open question related to this paper is about the MEI prob-
lem in case of a generally disconnected planar graph G. In an extreme subcase, G has no edges
and the problem MEI(G,F) becomes an ordinary crossing-number problem parameterized by the
number of edges, which has a trivial brute-force solution. However, considering G with “many”
non-trivial components adds another level of difficulty, to which our decomposition-based brute-
force handling of all possible embeddings of G does not have an answer in FPT time. Similar
difficulties with disconnected predrawn skeletons have been faced in the setting of partially pre-
drawn crossing number, and a significant and complex part of the new contribution of [27] lies in
allowing disconnected skeletons (unfortunately, as the approaches of [27] are not comparable with
ours, we cannot make use of that solution here).

As a perhaps easier subcase of the previous question we suggest:

Open Problem 5.2. Is MEI fixed-parameter tractable for simply-connected graphs G with the
parameter independent of ∆c (unlike in Theorem 4.3)?

Such a dependency on ∆c does not show up when inserting a single edge or a star into planar G
[12, 26]. On the other hand, even more restrictive degree dependencies are very common and
seemingly unavoidable in the known general crossing number approximations.

Acknowledgments. We thank Sergio Cabello and Carsten Gutwenger for helpful discussions.

References

[1] C. Batini, M. Talamo, and R. Tamassia. Computer aided layout of entity relationship dia-
grams. J. Syst. Softw., 4(2-3):163–173, 1984. doi:10.1016/0164-1212(84)90006-2.

[2] G. D. Battista and R. Tamassia. On-line planarity testing. SIAM J. Comput., 25(5):956–997,
1996. doi:10.1137/S0097539794280736.

[3] S. N. Bhatt and F. T. Leighton. A framework for solving VLSI graph layout problems. J.
Comput. Syst. Sci., 28(2):300–343, 1984. doi:10.1016/0022-0000(84)90071-0.

[4] T. Biedl, M. Chimani, M. Derka, and P. Mutzel. Crossing number for graphs with bounded
pathwidth. Algorithmica, 82(2):355–384, 2020. doi:10.1007/s00453-019-00653-x.

[5] D. Bienstock and C. L. Monma. On the complexity of embedding planar graphs to minimize
certain distance measures. Algorithmica, 5(1):93–109, 1990. doi:10.1007/BF01840379.

[6] S. Cabello. Hardness of approximation for crossing number. Discrete & Computational Ge-
ometry, 49(2):348–358, 2013. doi:10.1007/s00454-012-9440-6.

[7] S. Cabello and B. Mohar. Crossing number and weighted crossing number of near-planar
graphs. Algorithmica, 60(3):484–504, 2011. doi:10.1007/s00453-009-9357-5.

https://doi.org/10.1016/0164-1212(84)90006-2
https://doi.org/10.1137/S0097539794280736
https://doi.org/10.1016/0022-0000(84)90071-0
https://doi.org/10.1007/s00453-019-00653-x
https://doi.org/10.1007/BF01840379
https://doi.org/10.1007/s00454-012-9440-6
https://doi.org/10.1007/s00453-009-9357-5

520 M. Chimani and P. Hliněný Inserting Multiple Edges into a Planar Graph

[8] S. Cabello and B. Mohar. Adding one edge to planar graphs makes crossing number and
1-planarity hard. SIAM J. Comput., 42(5):1803–1829, 2013. doi:10.1137/120872310.

[9] B. Chazelle. A theorem on polygon cutting with applications. In Proc. FOCS ’82, pages
339–349. IEEE Computer Society, 1982. doi:10.1109/SFCS.1982.58.

[10] M. Chimani. Computing Crossing Numbers. PhD thesis, TU Dortmund, Germany, 2008.
http://hdl.handle.net/2003/25955.

[11] M. Chimani and C. Gutwenger. Advances in the planarization method: Effective multiple
edge insertions. J. Graph Algorithms Appl., 16(3):729–757, 2012. doi:10.7155/jgaa.00264.

[12] M. Chimani, C. Gutwenger, P. Mutzel, and C. Wolf. Inserting a vertex into a planar graph. In
C. Mathieu, editor, Proceedings of the Twentieth Annual ACM-SIAM Symposium on Discrete
Algorithms, SODA 2009, New York, NY, USA, January 4-6, 2009, pages 375–383. SIAM,
2009. URL: http://dl.acm.org/citation.cfm?id=1496770.1496812.

[13] M. Chimani and P. Hliněný. A tighter insertion-based approximation of the crossing number.
In L. Aceto, M. Henzinger, and J. Sgall, editors, Automata, Languages and Programming -
38th International Colloquium, ICALP 2011, Zurich, Switzerland, July 4-8, 2011, Proceedings,
Part I, volume 6755 of Lecture Notes in Computer Science, pages 122–134. Springer, 2011.
doi:10.1007/978-3-642-22006-7_11.

[14] M. Chimani, P. Hliněný, and P. Mutzel. Vertex insertion approximates the crossing number
of apex graphs. Eur. J. Comb., 33(3):326–335, 2012. doi:10.1016/j.ejc.2011.09.009.

[15] M. Chimani, P. Hliněný, and G. Salazar. Toroidal grid minors and stretch in embedded graphs.
J. Comb. Theory, Ser. B, 140:323–371, 2020. doi:10.1016/j.jctb.2019.05.009.

[16] M. Chimani, M. Ilsen, and T. Wiedera. Star-struck by fixed embeddings: Modern crossing
number heuristics. In Proc. GD ’21, volume 12868 of LNCS, pages 41–56. Springer, 2021.
doi:10.1007/978-3-030-92931-2_3.

[17] J. Chuzhoy. An algorithm for the graph crossing number problem. In L. Fortnow and
S. P. Vadhan, editors, Proceedings of the 43rd ACM Symposium on Theory of Comput-
ing, STOC 2011, San Jose, CA, USA, 6-8 June 2011, pages 303–312. ACM, 2011. doi:

10.1145/1993636.1993678.

[18] J. Chuzhoy, Y. Makarychev, and A. Sidiropoulos. On graph crossing number and edge pla-
narization. In D. Randall, editor, Proceedings of the Twenty-Second Annual ACM-SIAM
Symposium on Discrete Algorithms, SODA 2011, San Francisco, California, USA, January
23-25, 2011, pages 1050–1069. SIAM, 2011. doi:10.1137/1.9781611973082.80.

[19] J. Chuzhoy and Z. Tan. A subpolynomial approximation algorithm for graph crossing number
in low-degree graphs. In S. Leonardi and A. Gupta, editors, STOC ’22: 54th Annual ACM
SIGACT Symposium on Theory of Computing, Rome, Italy, June 20 - 24, 2022, pages 303–
316. ACM, 2022. doi:10.1145/3519935.3519984.

[20] É. Colin de Verdière and A. Schrijver. Shortest vertex-disjoint two-face paths in planar graphs.
ACM Transactions on Algorithms, 7(2):19:1–19:12, 2011. doi:10.1145/1921659.1921665.

https://doi.org/10.1137/120872310
https://doi.org/10.1109/SFCS.1982.58
http://hdl.handle.net/2003/25955
https://doi.org/10.7155/jgaa.00264
http://dl.acm.org/citation.cfm?id=1496770.1496812
https://doi.org/10.1007/978-3-642-22006-7_11
https://doi.org/10.1016/j.ejc.2011.09.009
https://doi.org/10.1016/j.jctb.2019.05.009
https://doi.org/10.1007/978-3-030-92931-2_3
https://doi.org/10.1145/1993636.1993678
https://doi.org/10.1145/1993636.1993678
https://doi.org/10.1137/1.9781611973082.80
https://doi.org/10.1145/3519935.3519984
https://doi.org/10.1145/1921659.1921665

JGAA, 27(6) 489–522 (2023) 521

[21] G. Even, S. Guha, and B. Schieber. Improved approximations of crossings in graph draw-
ings and VLSI layout areas. SIAM J. Comput., 32(1):231–252, 2002. doi:10.1137/

S0097539700373520.

[22] M. R. Garey and D. S. Johnson. Crossing number is NP-complete. SIAM J. Alg. Discr. Meth.,
4:312–316, 1983.

[23] I. Gitler, P. Hliněný, J. Leaños, and G. Salazar. The crossing number of a projective
graph is quadratic in the face-width. Electron. J. Comb., 15(1), 2008. URL: http:

//www.combinatorics.org/Volume_15/Abstracts/v15i1r46.html.

[24] M. Grohe. Computing crossing numbers in quadratic time. J. Comput. Syst. Sci., 68(2):285–
302, 2004. doi:10.1016/j.jcss.2003.07.008.

[25] C. Gutwenger and P. Mutzel. A linear time implementation of SPQR-trees. In J. Marks,
editor, Graph Drawing, 8th International Symposium, GD 2000, Colonial Williamsburg, VA,
USA, September 20-23, 2000, Proceedings, volume 1984 of Lecture Notes in Computer Science,
pages 77–90. Springer, 2000. doi:10.1007/3-540-44541-2_8.

[26] C. Gutwenger, P. Mutzel, and R. Weiskircher. Inserting an edge into a planar graph. Algo-
rithmica, 41(4):289–308, 2005. doi:10.1007/s00453-004-1128-8.

[27] T. Hamm and P. Hliněný. Parameterised partially-predrawn crossing number. In X. Goaoc
and M. Kerber, editors, 38th International Symposium on Computational Geometry, SoCG
2022, June 7-10, 2022, Berlin, Germany, volume 224 of LIPIcs, pages 46:1–46:15. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik, 2022. doi:10.4230/LIPIcs.SoCG.2022.46.

[28] J. Hershberger and J. Snoeyink. Computing minimum length paths of a given homotopy class.
Comput. Geom., 4:63–97, 1994. doi:10.1016/0925-7721(94)90010-8.

[29] P. Hliněný and M. Chimani. Approximating the crossing number of graphs embeddable in
any orientable surface. In M. Charikar, editor, Proceedings of the Twenty-First Annual ACM-
SIAM Symposium on Discrete Algorithms, SODA 2010, Austin, Texas, USA, January 17-19,
2010, pages 918–927. SIAM, 2010. doi:10.1137/1.9781611973075.74.

[30] P. Hliněný and G. Salazar. On the crossing number of almost planar graphs. In M. Kaufmann
and D. Wagner, editors, Graph Drawing, 14th International Symposium, GD 2006, Karlsruhe,
Germany, September 18-20, 2006. Revised Papers, volume 4372 of Lecture Notes in Computer
Science, pages 162–173. Springer, 2006. doi:10.1007/978-3-540-70904-6_17.

[31] P. Hliněný and A. Sankaran. Exact crossing number parameterized by vertex cover. In
D. Archambault and C. D. Tóth, editors, Graph Drawing and Network Visualization - 27th
International Symposium, GD 2019, Prague, Czech Republic, September 17-20, 2019, Pro-
ceedings, volume 11904 of Lecture Notes in Computer Science, pages 307–319. Springer, 2019.
doi:10.1007/978-3-030-35802-0_24.

[32] J. E. Hopcroft and R. E. Tarjan. Dividing a graph into triconnected components. SIAM J.
Comput., 2(3):135–158, 1973. doi:10.1137/0202012.

[33] K. Kawarabayashi and B. A. Reed. Computing crossing number in linear time. In D. S.
Johnson and U. Feige, editors, Proceedings of the 39th Annual ACM Symposium on Theory
of Computing, San Diego, California, USA, June 11-13, 2007, pages 382–390. ACM, 2007.
doi:10.1145/1250790.1250848.

https://doi.org/10.1137/S0097539700373520
https://doi.org/10.1137/S0097539700373520
http://www.combinatorics.org/Volume_15/Abstracts/v15i1r46.html
http://www.combinatorics.org/Volume_15/Abstracts/v15i1r46.html
https://doi.org/10.1016/j.jcss.2003.07.008
https://doi.org/10.1007/3-540-44541-2_8
https://doi.org/10.1007/s00453-004-1128-8
https://doi.org/10.4230/LIPIcs.SoCG.2022.46
https://doi.org/10.1016/0925-7721(94)90010-8
https://doi.org/10.1137/1.9781611973075.74
https://doi.org/10.1007/978-3-540-70904-6_17
https://doi.org/10.1007/978-3-030-35802-0_24
https://doi.org/10.1137/0202012
https://doi.org/10.1145/1250790.1250848

522 M. Chimani and P. Hliněný Inserting Multiple Edges into a Planar Graph

[34] K. Kawarabayashi and A. Sidiropoulos. Polylogarithmic approximation for minimum pla-
narization (almost). In C. Umans, editor, 58th IEEE Annual Symposium on Foundations of
Computer Science, FOCS 2017, Berkeley, CA, USA, October 15-17, 2017, pages 779–788.
IEEE Computer Society, 2017. doi:10.1109/FOCS.2017.77.

[35] P. N. Klein, S. Rao, M. R. Henzinger, and S. Subramanian. Faster shortest-path algorithms
for planar graphs. In F. T. Leighton and M. T. Goodrich, editors, Proceedings of the Twenty-
Sixth Annual ACM Symposium on Theory of Computing, 23-25 May 1994, Montréal, Québec,
Canada, pages 27–37. ACM, 1994. doi:10.1145/195058.195092.

[36] Y. Kobayashi and C. Sommer. On shortest disjoint paths in planar graphs. Discrete Opti-
mization, 7(4):234–245, 2010. doi:10.1016/j.disopt.2010.05.002.

[37] D. Lee and F. P. Preparata. Euclidean shortest paths in the presence of rectilinear barriers.
Networks, 14(3):393–410, 1984. doi:10.1002/net.3230140304.

[38] P. Mutzel and T. Ziegler. The constrained crossing minimization problem. In J. Kratochv́ıl,
editor, Graph Drawing, 7th International Symposium, GD’99, Stiŕın Castle, Czech Republic,
September 1999, Proceedings, volume 1731 of Lecture Notes in Computer Science, pages 175–
185. Springer, 1999. doi:10.1007/3-540-46648-7_18.

[39] M. Schaefer. The graph crossing number and its variants: A survey. Electron. J. Comb.,
Dynamic Surveys (DS21), 2013–2022. Accessed in April 2022. doi:10.37236/2713.

[40] M. Schaefer. Crossing Numbers of Graphs. Discrete mathematics and its applications.
CRC Press, Taylor & Francis Group, 2017. URL: https://books.google.de/books?id=
suBMtAEACAAJ.

[41] M. Thorup. Undirected single-source shortest paths with positive integer weights in linear
time. J. ACM, 46(3):362–394, 1999. doi:10.1145/316542.316548.

[42] W. T. Tutte. Connectivity in graphs, volume 15 of Mathematical Expositions. University of
Toronto Press, 1966.

[43] T. Ziegler. Crossing Minimization in Automatic Graph Drawing. PhD thesis, Saarland Uni-
versity, Germany, 2001.

https://doi.org/10.1109/FOCS.2017.77
https://doi.org/10.1145/195058.195092
https://doi.org/10.1016/j.disopt.2010.05.002
https://doi.org/10.1002/net.3230140304
https://doi.org/10.1007/3-540-46648-7_18
https://doi.org/10.37236/2713
https://books.google.de/books?id=suBMtAEACAAJ
https://books.google.de/books?id=suBMtAEACAAJ
https://doi.org/10.1145/316542.316548

	Introduction
	Preliminaries
	Rigid MEI
	Handling path homotopy of routes
	Refined approach to Rigid MEI
	T-sequences of potential shortest routes
	Shortest routes in a sleeve
	Crossing of routes
	Summary of the r-MEI algorithm

	General MEI
	High-level procedure for general MEI
	Decomposing into subproblems
	Dynamic programming
	Proving Theorem 4.2 (biconnected case of Theorem 1.1)
	Proving Theorem 4.3 (connected case of Theorem 1.1)

	Conclusion

