
Journal of Graph Algorithms and Applications
http://jgaa.info/ vol. 27, no. 6, pp. 409–431 (2023)
DOI: 10.7155/jgaa.00628

Order Reconfiguration under Width Constraints

Emmanuel Arrighi 1,2 Henning Fernau 2

Mateus de Oliveira Oliveira 1,3 Petra Wolf 1,2

1University of Bergen, Norway
2University of Trier, Germany
3Stockholm University, Sweden

Submitted: March 2022 Reviewed: December 2022 Revised: December 2022

Accepted: April 2023 Final: April 2023 Published: July 2023

Article type: Regular Paper

Communicated by: G. Da Lozzo and P. Kindermann

Abstract. In this work, we consider the following order reconfiguration problem:
Given a graph G together with linear orders ω and ω′ of the vertices of G, can one
transform ω into ω′ by a sequence of swaps of adjacent elements in such a way that,
at each time step, the resulting linear order has cutwidth (pathwidth) at most k?
We show that this problem always has an affirmative answer when the input linear
orders ω and ω′ have cutwidth (pathwidth) of at most k/2. This result also holds in a
weighted setting. Using this result, we establish a connection between two apparently
unrelated problems: the reachability problem for two-letter string rewriting systems
and the graph isomorphism problem for graphs of bounded cutwidth. This opens an
avenue for the study of the famous graph isomorphism problem using techniques from
term rewriting theory.

1 Introduction

In the field of reconfiguration, one is interested in studying relationships among solutions of a
problem instance [30, 41, 44]. Here, by reconfiguration of one solution into another one, we mean a
sequence of steps where each step transforms a feasible solution into another one. In this context,
three fundamental questions are the following ones:

Special Issue on Parameterized and Approximation Algorithms in Graph Drawing

Emmanuel Arrighi acknowledges support from the Research Council of Norway (Grant no. 274526) and from
IS-DAAD (Grant no. 309319). Henning Fernau acknowledges support from DAAD PPP (Grant no. 57525246).
Mateus de Oliveira Oliveira acknowledges support from the Research Council of Norway (Grant no. 288761), IS-
DAAD (Grant no. 309319) and Sigma2 Network (NN9535K). Petra Wolf acknowledges support from DFG project
FE 560/9-1 and DAAD PPP (Grant no. 57525246).

E-mail addresses: emmanuel@arrighi.eu (Emmanuel Arrighi) fernau@uni-trier.de (Henning Fernau)
oliveira@dsv.su.se (Mateus de Oliveira Oliveira) mail@wolfp.net (Petra Wolf)

This work is licensed under the terms of the CC-BY license.

http://dx.doi.org/10.7155/jgaa.00628
https://orcid.org/https://orcid.org/0000-0002-0326-1893
https://orcid.org/https://orcid.org/0000-0002-4444-3220
https://orcid.org/https://orcid.org/0000-0001-7798-7446
https://orcid.org/https://orcid.org/0000-0003-3097-3906
mailto:emmanuel@arrighi.eu
mailto:fernau@uni-trier.de
mailto:oliveira@dsv.su.se
mailto:mail@wolfp.net
https://creativecommons.org/licenses/by/4.0/

410 E. Arrighi et al. Reconfiguring Orders of Small Width

1. Is it the case that any two solutions can be reconfigured into each other?

2. Can any two solutions be reconfigured into each other in a polynomial number of steps?

3. Given two feasible solutions X and Y , can one find in polynomial time a reconfiguration
sequence from X to Y ?

In this paper, we study reconfiguration problems in the context of linear arrangements of the
vertices of a given graph G. The space of feasible solutions is the set of all linear orders of width1 at
most k for some given k ∈ N. We say that a linear order ω can be reconfigured into a linear order ω′

in width k if there is a sequence ω1, . . . , ωm of linear orders of width at most k such that ω1 = ω,
ωm = ω′ and for each i ∈ {2, . . . ,m}, ωi is obtained from ωi−1 by swapping two adjacent vertices.
Our main result (Theorem 1) states that if ω and ω′ are linear orders of cutwidth at most k, then ω
can be reconfigured into ω′ in width at most 2k. Additionally, reconfiguration in width at most 2k
can be done using at most O(n2) swaps. Finally, we show that a reconfiguration sequence can
be found in polynomial time. We also show that these results transfer to pathwidth instead of
cutwidth and to weighted version thereof. Notice that it is known that the mentioned (unweighted)
parameters are quite related, see [8] also concerning fixed-parameter tractability results.

Our results on reconfiguration of linear arrangements can be used to establish an interesting
connection between two apparently unrelated computational problems: reachability for two-letter
string rewriting and graph isomorphism.

A two-letter rewriting rule over a given alphabet Σ is a rewriting rule of the form ab →
cd for letters a, b, c, d ∈ Σ. A two-letter string rewriting system is a collection R of two-letter
string rewriting rules. The reachability problem for such a rewriting system R is the problem of
determining whether a given string x ∈ Σn can be transformed into a given string y ∈ Σn by
the application of a sequence of two-letter rewriting rules of R. On the other hand, in the graph
isomorphism problem, we are given two graphs, G and G′, and the goal is to determine whether
there exists a bijection φ from the vertex set of G to the vertex set of G′ in such a way that an
edge {u, v} belongs to G if and only if the edge {φ(u), φ(v)} belongs to G′.

In order to describe more precisely the connections between two-letter term rewriting and graph
isomorphism, we briefly discuss the notions of slices and unit decompositions. These notions were
originally defined in the study of the partial order theory of concurrency [11] and, later, used to
prove algorithmic results in the realm of directed width measures [12, 13]. In this work, we provide
simplified definitions of slices and unit decompositions that are more adequate to our context.

A slice is a graph S where the vertices are partitioned into a center C and special in-frontier I
and out-frontier O that can be used for composition. A slice S1 can be glued to a slice S2 if the
out-frontier of S1 can be coherently identified with the in-frontier of S2. In this case, the gluing
gives rise to a bigger slice S1 ◦ S2 which is obtained by identifying the out-frontier of S1 with the
in-frontier of S2. A unit slice is a slice with a unique vertex in the center. Any slice S can be
decomposed into a sequence of unit slices. More specifically, a unit decomposition is a sequence
U = S1S2 . . .Sn of unit slices with the property that for each i ∈ [n − 1], Si can be glued to the

slice Si+1. The result of gluing the unit slices in U is a slice U
◦
with n center vertices. Conversely,

any slice S with n center vertices can be written as a unit decomposition U = S1S2 . . .Sn with

the property that U
◦
is isomorphic to S.

An important remark connecting unit decompositions and the notion of cutwidth is that if a
slice S has cutwidth k, then S can be decomposed into a unit decomposition U = S1S2 . . .Sn

1This means, in this paper, always cutwidth or vertex separation number, also known as pathwidth, as formally
defined in Definitions 1 and 2.

JGAA, 27(6) 409–431 (2023) 411

where for each i ∈ [n], Si has at most k vertices in each frontier except for the in-frontier of S1

and the out-frontier of Sn. Therefore, if we let Σ(k) denote the set of all unit slices with frontiers
of size at most k, then any graph G with n vertices of cutwidth at most k can be written as a
word (unit decomposition) of length n over the alphabet Σ(k). In this work, for each k ∈ N,
we introduce a suitable two-letter string rewriting system R(k) over the alphabet Σ(k) with the
following property: ifU andU′ are two unit decompositions overΣ(k) and ifU can be transformed

into U′ using the rewriting rules in R(k), then the graphs U
◦
and U′◦

are isomorphic. Our second
main result is a partial converse for this property. More precisely, we show that given two unit

decompositions U and U′ over Σ(k), if the graphs U
◦
and U′◦

are isomorphic, then each of these
unit decompositions can be transformed into one another by the application of rewriting rules from
the string rewriting system R(2k) (Theorem 2).

The proof of Theorem 2 is heavily based on Theorem 1. An important feature of this proof is

that, given an isomorphism from U
◦
to U′◦

, one can construct a sequence of rewriting steps trans-
forming U into U′. Conversely, given any such a sequence, we are able to construct an isomorphism

from U
◦
to U′◦

. This result, together with the fact that unit decompositions of minimum cutwidth
can be approximated in FPT time, implies that the graph isomorphism problem for graphs of
cutwidth at most k is FPT-equivalent to the reachability problem for R(2k) (Theorem 4).

Related Work. The reachability problem for a given string rewriting system R consists in
determining if a given string x can be transformed into a given string y by applying rewriting
rules from R. Reachability is a central problem in the field of string rewriting [9] and can also be
studied under the light of term rewriting theory [36, 7, 3, 9]. The complexity of the reachability
problem is highly dependent on the rewriting system R. For general rewriting systems, the problem
becomes undecidable [9]. In the case of two-letter rewriting, reachability is in PSPACE, since in
this case, strings never grow in size. It is also not difficult to design two-letter rewriting systems for
which the reachability problem is PSPACE-complete. Nevertheless, our results imply that for each
k ∈ N, the R(2k)-reachability problem for unit decompositions of length n and width at most k
is reducible to the graph isomorphism problem. Therefore, it can be solved in time npolylog(n),
independently of k, using Babai’s quasi-polynomial time algorithm for graph isomorphism [4]. For
a nice historical account and a gentle introduction into the ideas behind this non-trivial algorithm,
we refer to [28]. Further progress in the area of graph isomorphism algorithms is nicely reported
in [24]. An interesting question we leave open is the complexity of R(α · k)-reachability for unit
decompositions of width at most k if α is a rational number with 1 ≤ α < 2; we do not know if
there is such an α for which the reachability problem becomes PSPACE-hard.

In the field of parameterized complexity theory [15, 9], a computational problem is said to be
fixed-parameter tractable (or FPT for short) with respect to a parameter k if it can be solved in
time f(k) · nO(1) on inputs of size n. Here f : N → N is a computable function depending only
on the parameter k, but not on the size n of the input. The Graph Isomorphism problem (GI
for short) has been shown to be solvable in time f(k) · nO(1) (that is, FPT time) whenever the
parameter k stands for eigenvalue multiplicity [5], treewidth [38], feedback vertex-set number [37],
or the size of the largest color class [18, 2] (for colored input graphs). On the other hand, GI can be
solved in time f1(k) · nf2(k) (that is, in XP time), whenever the parameter k stands for genus [40],
rankwidth [27], maximum degree [39], size of an excluded topological subgraph [22], size of an
excluded minor [21], or Weisfeiler-Leman dimension [10], which is in fact related to the mentioned
rankwidth parameterization [23]. We note that, in particular, Babai’s algorithm and techniques
have been recently used to improve the fastest FPT algorithm for graphs of treewidth at most k
from 2O(k5·log k) · nO(1) [38] to 2O(k·polylog(k)) · nO(1) [26], and for graphs of maximum degree d, the

412 E. Arrighi et al. Reconfiguring Orders of Small Width

fastest XP-algorithm has been improved from nO(d/ log d) [6] to npolylog(d) [25]. In particular, it is
worth noting that graphs of cutwidth k have maximum degree at most 2k and treewidth O(k).
Therefore, isomorphism of graphs of cutwidth k can be solved in time 2O(k·polylog(k)) · nO(1) [26].
This implies that R(2k)-reachability can be solved in 2O(k·polylog(k)) · nO(1) time when restricted to
unit decompositions of width at most k. Showing that isomorphism for graphs of cutwidth k can
be solved in time 2O(k) · nO(1) is still an interesting open problem.

Another width parameter for linear orders that has been studied in the context of graph theory
is the vertex separation number of a graph [16]. This parameter may be seen as an order-theoretic
interpretation of the notion of pathwidth. The techniques used to prove Theorem 1 can be gener-
alized to prove that reconfiguration of linear orders of vertex separation number k can always be
achieved in width at most 2k (Theorem 5). While we do not provide a string-rewriting interpre-
tation of this result, we do state it formally in Section 5, since this result may be of independent
interest in the field of reconfiguration.

A conference version of this work was presented at MFCS in 2021; see [1].

2 Preliminaries

Basics. We let N denote the set of natural numbers, including 0, and N+ denote the set of
positive natural numbers. For each n ∈ N+, we let [n] = {1, . . . , n} denote the discrete interval of
the first n positive integers. As a degenerate case, we let [0] = ∅.

Given a finite set S, we let P(S) denote the set of all subsets of S. For each k ∈ N, we let
P(S, k) and P(S,≤ k) denote the sets of subsets of S of size exactly k and at most k, respectively.

Graphs. In this work, graphs are simple and undirected. Given a graph G, we let V (G) denote
the vertex set of G and E(G) denote the edge set of G. Given a subset S ⊆ V (G), we let G[S] be
the subgraph of G induced by S. More precisely, V (G[S]) = S and E(G[S]) = E(G)∩P(S, 2). An
isomorphism from a graph G to a graph G′ is a bijection φ : V (G) → V (G′) such that for each
v, u ∈ V (G), {v, u} ∈ E(G) if and only if {φ(v), φ(u)} ∈ E(G′). If such an isomorphism exists, we
call G isomorphic to G′.

Order. Let V be a set with |V | = n. A linear order on V is a bijection ω : [n] → V . Intuitively,
for each j ∈ [n] and v ∈ V , ω(j) = v indicates that v is the j-th element of ω. If S ⊆ [n], then we
let ω(S) = {ω(j) : j ∈ S} be the image of S under ω. Given linear orders ω, ω′ : [n] → V of V and

a number i ∈ [n−1], we write ω
i−→ ω′ to indicate that ω′ is obtained from ω by swapping the order

of the vertices at positions i and i + 1. More precisely, ω′(j) = ω(j) for every j ∈ [n] \ {i, i + 1},
ω′(i) = ω(i+ 1), and ω′(i+ 1) = ω(i).

Let ω : [n] → V be a linear order on a set V . Let S ⊆ V . We let ωS : [|S|] → S be the
linear order induced by ω on S. More precisely, if we write the elements of S in increasing order
according to ω, then for each i ∈ [|S|], ωS(i) is the i-th element in this sequence.

Order Reconfiguration. We say that ω can be reconfigured into ω′ in one swap, and denote

this fact by ω → ω′, if there exists some i ∈ [n] such that ω
i−→ ω′. We say that ω can be

reconfigured into ω′ in at most r swaps, and denote this fact by ω →r ω
′, if there are numbers

r′ ∈ [r], i1, . . . , ir′ ∈ [n], and linear orders ω0, . . . , ωr′ such that

ω = ω0
i1−→ ω1

i2−→ . . .
ir′−−→ ωr′ = ω′.

JGAA, 27(6) 409–431 (2023) 413

We call this sequence a reconfiguration sequence from ω to ω′. The mere existence of a (possibly
empty) reconfiguration sequence from ω to ω′ is also written as ω →∗ ω′.

Composition of Linear Orders. Let i ∈ {0, . . . , n}, and ω, ω′ : [n] → V . We let ω⊕iω
′ : [n] →

V be the linear order that orders the vertices in the subset ω([i]) ⊆ V according to ω, followed by
the vertices in the subset V \ ω([i]), ordered according to ω′. More precisely, ω ⊕i ω

′ is defined as
follows for each j ∈ [n].

ω ⊕i ω
′(j) =

{
ω(j) if j ≤ i,
ω′V \ω([i])(j − i) if j > i.

(1)

We note that in particular, ω ⊕0 ω
′ = ω′ and ω ⊕n ω

′ = ω.

String Rewriting. A two-letter string rewriting system is a pair (Σ, R) where Σ is a finite,
non-empty set of symbols (an alphabet), and R ⊆ Σ2 × Σ2 is a set of rewriting rules of the form
ab → cd. Let x and y be strings in Σn and i ∈ [n − 1]. We say that x can be transformed into y
by applying a rewriting rule ab → cd at position i if xixi+1 = ab, yiyi+1 = cd and xj = yj for

j /∈ {i, i + 1}. We write x
i−→ y to denote that x can be transformed into y by the application of

some rewriting rule at position i. We write x → y to denote that x can be transformed into y
by the application of some rewriting rule at some position i ∈ [n− 1]. We say that y is reachable
from x if there is a sequence of strings x = x0, x1, . . . , xm = y such that xi−1 → xi for each i ∈ [m].
We write x →∗ y to denote that y is reachable from x. We say that x and y are R-equivalent if
x→∗ y and y →∗ x.

3 Linear Order Reconfiguration

Let G be an n-vertex graph with vertex set V (G) and edge set E(G). Given two disjoint sets S, S′ ⊆
V (G), we let E(G,S, S′) = {{u, v} ∈ E(G) : u ∈ S, v ∈ S′} be the set of edges with one endpoint
in S and the other endpoint in S′. As a special case, we define E(G,S) = E(G,S, V (G) \ S). We
will often make use of the following two properties without explicit mentioning.

• Monotonicity property: If T ⊆ S and T ′ ⊆ S′, then E(G,T, T ′) ⊆ E(G,S, S′).

• Linearity property: If {S1, S2} is a partition of S, then {E(G,S1, S
′), E(G,S2, S

′)} is a
partition of E(G,S, S′).

Let G be an n-vertex undirected graph with vertex set V (G) and edge set E(G). Let ω : [n] →
V (G) be a linear order on the vertices of G. For each p ∈ [n], we let cw(G,ω, p) = |E(G,ω([p−1]))|
be the number of edges that have one endpoint in the first p− 1 vertices of the linear order ω and
the other endpoint in the remaining vertices. E(G,ω([p − 1])) is called the cut at position p and
cw(G,ω, p) is the size of the cut at position p.

Definition 1 (Cutwidth) The cutwidth of the linear order ω on V (G) is defined as

cw(G,ω) = max
p∈[n]

cw(G,ω, p) .

The cutwidth of the graph G is defined as cw(G) = minω cw(G,ω), where ω ranges over all linear
orders on the vertex set V (G).

414 E. Arrighi et al. Reconfiguring Orders of Small Width

v4 v2 v1 v3 v5

cw = 0 cw = 3 cw = 4 cw = 2 cw = 2

p = 1 p = 2 p = 3 p = 4 p = 5

Figure 1: Visual representation of the cutwidth of a graph. ω orders the vertices in the following
way v4, v2, v1, v3, v5. The value at the top give the position of the cut and at the bottom, the value
of this cut. In this example, the cutwidth is 4.

Given a graph G, the cutwidth of a given linear order ω can be intuitively understood by
drawing G in a specific way on the plane. First, the vertices of G are placed on a horizontal line
following the order given by ω. Then, edges are drawn as curves between the point representing
their endpoints. Now, if we draw a vertical line between the (p− 1)-th and p-th vertices in ω, then
the number of edges that intersect this vertical line corresponds to cw(G,ω, p). Figure 1 gives an
example of such a visual representation of the cutwidth.

If G = (V,E) is a graph that comes with edge weights c : E → N+,
2 we let wcw(G, c, ω, p) =

c(E(G,ω([p−1]))), where c(F) =
∑

f∈F c(f) for an edge subset F . Now, we can define the weighted
cutwidth of the linear order ω on V (G) as

wcw(G, c, ω) = max
p∈[n]

wcw(G, c, ω, p) .

The weighted cutwidth of the graph G is defined as wcw(G, c) = minω wcw(G, c, ω), where ω ranges
over all linear orders on the vertex set V (G).

For each k ∈ N, and each n-vertex graph G, we let

CW(G, k) = {ω : [n] → V (G) : cw(G,ω) ≤ k}

be the set of linear orders of V (G) of cutwidth at most k. We say that ω can be reconfigured into ω′

in cutwidth at most k if there is a reconfiguration sequence

ω = ω0
i1−→ ω1

i2−→ · · · ir−→ ωr = ω′

such that for each j ∈ {0, . . . , r}, ωj ∈ CW(G, k). We can again generalize these notions to the
weighted setting by defining

WCW(G, c, k) = {ω : [n] → V (G) : wcw(G, c, ω) ≤ k}

for any edge weight function c : E(G) → N+, so that we can also speak about reconfiguring
ω into ω′ in weighted cutwidth at most k (with respect to an arbitrary but fixed edge weight
function c).

2Other sets of numbers are also possible, but we like to avoid discussions on how to compute with these numbers.

JGAA, 27(6) 409–431 (2023) 415

Given two linear orders ω and ω′ of the vertices of an n-vertex graph, ω can always be recon-
figured into ω′. To see this, notice that the bubble-sort algorithm performs only swaps. Therefore,
running the bubble-sort algorithm to sort ω according to ω′ gives a valid reconfiguration sequence
from ω to ω′. This connection allows us to be more precise.

Lemma 1 A linear order ω can always be reconfigured into another ordering ω′ using a reconfig-
uration sequence of length at most n2.

An interesting question is to ask if ω can be reconfigured into ω′ in such a way that every linear
order appearing in the reconfiguration sequence has bounded (weighted) cutwidth.

Problem 1 (Bounded (Weighted) Cutwidth Order Reconfiguration) Let G be an n-vertex
graph, let c : E(G) → N+ be a weight function, let ω, ω′ : [n] → V (G) be linear orders on the vertex
set of G, and let k ∈ N. Is it true that ω can be reconfigured into ω′ in weighted cutwidth at most k
(with respect to c)?

Given an instance (G, c, ω, ω′, k) of the Bounded Cutwidth Order Reconfiguration
problem, it should be clear that if k is smaller than the cutwidth of the graph G, then the answer
for Problem 1 is trivially no, since in this case neither ω nor ω′ are in WCW(G, c, k). On the other
hand, we will show in Theorem 1 below that the answer is always yes if k is at least twice the
weighted cutwidth of the thickest input linear order.

Theorem 1 Let G be an n-vertex graph, let c : E(G) → N+ be a weight function and let ω, ω′ :
[n] → V (G) be linear orders of V (G) of weighted cutwidth at most k. Then, ω can be reconfigured
into ω′ in weighted cutwidth (with respect to c) which is at most wcw(G, c, ω)+wcw(G, c, ω′) ≤ 2k.

To prove this theorem, we need the following three lemmas. First, we will show that taking induced
linear order does not increase the cutwidth (Lemma 2). Then, we will show that some specific
intermediate linear orders have bounded cutwidth (Lemma 3). Finally, we will show that there
is a reconfiguration sequence of bounded cutwidth between each consecutive pair of intermediate
linear orders (Lemma 4). Extending on the conference version of this paper, we will see that all
these results also hold in the more general setting of edge-weighted graphs.

We start by the monotonicity of the weighted cutwidth by taking induced linear orders.

Lemma 2 Let G be an n-vertex graph, S ⊆ V (G) and ω : [n] → V (G) be a linear order on
V (G). Moreover, let c : E(G) → N+ be a weight function. Then, ωS is a linear order on V (G[S]).
Additionally, wcw(G[S], c, ωS) ≤ wcw(G, c, ω).

Proof: As S = V (G[S]), ωS is a linear order on V (G[S]). Let p ∈ [|S|] and let p′ ∈ [n] be the
unique number such that ωS(p) = ω(p′). Then,

wcw(G[S], c, ωS , p) = c(E(G[S], ωS([p− 1])))

= c(E(G[S], ωS([p− 1]), {ωS(r) : r ≥ p}))
= c(E(G,ωS([p− 1]), {ωS(r) : r ≥ p}))
≤ c(E(G,ω([p′ − 1])))

= wcw(G, c, ω, p′)

≤ wcw(G, c, ω) ,

as ωS([p− 1]) ⊆ ω([p′ − 1]) and {ωS(r) : r ≥ p} ⊆ {ω(r′) : r′ ≥ p′} = V (G) \ ω([p′ − 1]). □

416 E. Arrighi et al. Reconfiguring Orders of Small Width

ω ⊕i ω
′ = ω(1) ω(2) · · · ω(i) ω′′(1) ω′′(2) · · · · · ·

p

Figure 2: Illustration of Equality (a) in Lemma 3, using the unweighted setting for simplicity. In
this figure, ω′′ = ω′V \ω([i]). The red part of the linear order follows the linear order ω for the first i
elements, and the blue part of the linear order follows ω′ for the remaining elements. Then, the
set of edges crossing the cut at position p can be split in two, the set of edges that start from the
red part and the set of edge that start from the blue part. The number of red edges is bounded
by the cutwidth of ω and the number of blue edges is bounded by the cutwidth of ω′.

To prove Theorem 1, we will give a reconfiguration sequence that uses the composition of linear
orders. At a high level, we will go from one linear order ω to the other ω′ by using the composition
of the two linear orders at each position ω′ ⊕i ω. Therefore, we show that the composition of two
linear orders has bounded weighted cutwidth.

Lemma 3 Let G be an n-vertex graph with edge weights c : E(G) → N+ and let ω, ω′ : [n] → V (G)
be linear orders of V (G) with weighted cutwidth of at most k. Then, for each i ∈ [n], ω ⊕i ω

′ has
weighted cutwidth (with respect to c) that is at most wcw(G, c, ω) + wcw(G, c, ω′) ≤ 2k.

Proof: Let i, p ∈ [n]. By definition of the cutwidth, we have that

wcw(G, c, ω ⊕i ω
′, p) = c(E(G,ω ⊕i ω

′([p− 1])))

= c(E(G,ω ⊕i ω
′([p− 1]), V (G) \ ω ⊕i ω

′([p− 1]))) .

There are two cases to be analyzed. First, if p ≤ i, then, by definition of ω ⊕i ω
′ we have

ω ⊕i ω
′([p− 1]) = ω([p− 1]). Therefore,

wcw(G, c, ω ⊕i ω
′, p) = c(E(G,ω([p− 1]), V (G) \ ω([p− 1]))) = wcw(G, c, ω, p) ≤ wcw(G, c, ω) .

Secondly, if p > i, then we have

wcw(G, c, ω ⊕i ω
′, p) = c(E(G,ω ⊕i ω

′([p− 1]), V (G) \ ω ⊕i ω
′([p− 1])))

(a)
= c(E(G,ω([i]), V (G) \ ω ⊕i ω

′([p− 1])))

+ c(E(G, (ω ⊕i ω
′([p− 1])) \ ω([i]), V (G) \ ω ⊕i ω

′([p− 1])))

(b)

≤ wcw(G, c, ω, i+ 1) + wcw(G[V (G) \ ω([i])], c, ω′V (G)\ω([i]), p− i)

≤ wcw(G, c, ω) + wcw(G, c, ω′).

For Equality (a), observe that given two disjoint subsets S and S′ of V (G), and a partition S1, S2

of S, we have c(E(S, S′)) = c(E(S1, S
′)) + c(E(S2, S

′)). Moreover, ω([i]) ⊆ ω ⊕i ω
′([p − 1]),

JGAA, 27(6) 409–431 (2023) 417

ωt = ω(1) ω(2) · · · ω(i) ω′′(1) · · · ω(i+ 1) · · ·

p = j − t+ 1

Figure 3: Illustration of the key part in Lemma 4, using the unweighted setting for simplicity. In
this figure, ω′′ = ω′V \ω([i+1]). The red part of the linear order follows the linear order ω for the
first i + 1 elements, and the blue part of the linear order follows ω′ for the remaining elements.
Then, the set of edges crossing the cut at position p = j− t+1 can be split in two, the set of edges
that start from the red part and the set of edge that start from the blue part. The number of red
edges is bounded by the cutwidth of ω and the number of blue edges is bounded by the cutwidth
of ω′.

therefore, (ω ⊕i ω
′([p− 1]))∩ ω([i]) = ω([i]) and {ω([i]), (ω ⊕i ω

′([p− 1])) \ ω([i])} is a partition of
ω ⊕i ω

′([p − 1]). Figure 2 gives a visual representation of the equality. This proves Equality (a).
To understand Inequality (b), we need two arguments. As ω([i]) ⊆ ω ⊕i ω

′([p− 1]),

E(G,ω([i]), V (G) \ (ω ⊕i ω
′([p− 1]))) ⊆ E(G,ω([i]), V (G) \ ω([i])) ,

which shows that the weight of the first set is upper-bounded by wcw(G,ω, i + 1). As the edges
in E(G, (ω ⊕i ω

′([p − 1])) \ ω([i]), V (G) \ (ω ⊕i ω
′([p − 1]))) only connect vertices with positions

beyond i within ω ⊕i ω
′, after an index shift, we see that only the linear order ω′ really matters,

which explains the inequality

c(E(G, (ω ⊕i ω
′([p− 1])) \ ω([i]), V (G) \ (ω ⊕i ω

′([p− 1]))))

≤ wcw(G[V (G) \ ω([i])], c, ω′V (G)\ω([i]), p− i) .

For the last inequality, apply Lemma 2 to derive

wcw(G[V (G) \ ω([i])], c, ω′V (G)\ω([i])) ≤ wcw(G, c, ω′) .

As p is arbitrary, we have that wcw(G, c, ω ⊕i ω
′) ≤ wcw(G, c, ω) + wcw(G, c, ω′) ≤ 2k follows for

each i ∈ [n]. □

Finally, we show that we can reconfigure the composition of two linear orders at position i,
ω′ ⊕i ω, to the composition at position i+ 1, ω′ ⊕i+1 ω, in bounded weighted cutwidth.

Lemma 4 Let G be an n-vertex graph, let c : E(G) → N+ be an edge weight function and let
ω, ω′ : [n] → V (G) be linear orders on V (G) of weighted cutwidth at most k (with respect to c), and
let i ∈ {0, . . . , n − 1} be an integer. Then, ω ⊕i ω

′ can be reconfigured into ω ⊕i+1 ω
′ in weighted

cutwidth at most wcw(G, c, ω) + wcw(G, c, ω′) ≤ 2k.

Proof: By Lemma 3, ω ⊕i ω
′ and ω ⊕i+1 ω

′ have weighted cutwidth at most

wcw(G, c, ω) + wcw(G, c, ω′) ≤ 2k .

418 E. Arrighi et al. Reconfiguring Orders of Small Width

Let j ∈ [n] such that ω⊕i ω
′(j) = ω(i+1), i.e., j is the position of ω(i+1) in ω⊕i ω

′. As for each
p ∈ [i], ω ⊕i ω

′(p) = ω ⊕i+1 ω
′(p) = ω(p), we have j > i. Let us consider the following sequence of

swaps:

ω ⊕i ω
′ = ω0

j−1−−→ ω1
j−2−−→ · · · i+1−−→ ωj−i−1 = ω ⊕i+1 ω

′.

If j = i + 1, this sequence is empty and ω ⊕i ω
′ = ω ⊕i+1 ω

′. At each step of this sequence, we
swap ω(i + 1) with its left neighbor. This brings ω(i + 1) from position j to position i + 1. By
doing this, we transform ω⊕i ω

′ into ω⊕i+1 ω
′. Observe that, at each step, ω(i+ 1) is moved one

position to the left, therefore, we have ωt(j − t) = ω(i+ 1) for all t ∈ [j − i− 1].
Consider Figure 3 for an illustration of the key part of the following proof by induction. We

are going to inductively show that each element ωt in the sequence has weighted cutwidth upper-
bounded by wcw(G, c, ω) + wcw(G, c, ω′) ≤ 2k. By Lemma 3,

wcw(G, c, ω0) = wcw(G, c, ω ⊕i ω
′) ≤ wcw(G, c, ω) + wcw(G, c, ω′) ≤ 2k ,

which proves the induction basis. Let t ∈ [j − i − 1] and p ∈ [n] be two integers. As induction
hypothesis, we have

wcw(G, c, ωt−1) ≤ wcw(G, c, ω) + wcw(G, c, ω′) ≤ 2k .

If p ≤ j − t or p > j − t+ 1, then we have ωt−1([p− 1]) = ωt([p− 1]), so

wcw(G, c, ωt, p) = wcw(G, c, ωt−1, p) ≤ wcw(G, c, ω) + wcw(G, c, ω′) ≤ 2k

by induction hypothesis. Otherwise, p = j − t+ 1 ∈ {i, . . . , j} (Figure 3) and we have

wcw(G, c, ωt, p) = c(E(G,ωt([p− 1])))

= c(E(G,ωt([p− 1]), {ωt(r) : r ≥ p}))
= c(E(G,ωt([i] ∪ {p− 1}), {ωt(r) : r ≥ p}))

+ c(E(G, {ωt(l) : i < l < p− 1}, {ωt(r) : r ≥ p})) .

By definition of p, we have ωt(p − 1) = ωt(j − t) and by construction of ωt, we have ωt(j − t) =
ω(i+ 1). Therefore, we find

c(E(G,ωt([i] ∪ {p− 1}), {ωt(r) : r ≥ p})) = c(E(G,ω([i+ 1]), {ωt(r) : r ≥ j − t+ 1})) .

As we are swapping ω(i+ 1) leftwards,

{ωt(r) : r ≥ j − t+ 1} ⊆ {ω(r) : r ≥ i+ 2} = V (G) \ ω([i+ 1]) .

Again by definition of ωt and p, the elements in {ωt(l) : i < l < p − 1} are ordered according
to ω′, which is also true for {ωt(r) : r ≥ p}. More formally,

{ωt(l) : i < l < p− 1} = {ω ⊕i ω
′(l) : i+ 1 ≤ l ≤ p− 2} = {ω′V (G)\ω([i+1])(l′) : l′ ≤ p− 2− i}

and
{ωt(r) : r ≥ p} = {ω ⊕i ω

′(r) : r ≥ p} = {ω′V (G)\ω([i+1])(r′) : r′ ≥ p− i− 1} .
Therefore,

wcw(G, c, ωt, p) ≤ wcw(G, c, ω, i+ 2) + wcw(G[V (G) \ ω([i+ 1])], c, ω′V (G)\ω([i+1]), p− i− 1)

≤ wcw(G, c, ω) + wcw(G[V (G) \ ω([i+ 1])], c, ω′V (G)\ω([i+1]))

≤ wcw(G, c, ω) + wcw(G, c, ω′)

≤ 2k.

JGAA, 27(6) 409–431 (2023) 419

To achieve the penultimate inequality, we again apply Lemma 2. □

Now, we are in the position to prove our first main theorem.

Proof: [Proof of Theorem 1] Consider the following sequence: ω = ω′⊕0 ω →∗ ω′⊕1 ω →∗ · · · →∗

ω′⊕n ω = ω′. By Lemma 4, one can realize each step in weighted cutwidth at most wcw(G, c, ω)+
wcw(G, c, ω′) ≤ 2k, which then also upper-bounds the whole reconfiguration sequence. □

We have proved, in Theorem 1, that one can always reconfigure a linear order ω, of weighted
cutwidth at most k, into a linear order ω′, of weighted cutwidth at most k, in weighted cutwidth
at most 2k. Now, we show that for every k ∈ N+, there exists a graph G and two linear orders ω
and ω′ of cutwidth k such that any reconfiguration sequence between ω and ω′ needs linear orders
of cutwidth at least 2k. In other words, the bound given in Theorem 1 is sharp. Here, clearly
considering the unweighted variant (i.e., all weights equal one) suffices.

Proposition 1 For each k ∈ N, there exists a sequence of graphs (Gn)n∈N≥3
where for n ∈ N≥3,

Gn has n ·k vertices, and linear orders ω, ω′ : [n] → V (Gn) such that cw(Gn, ω) = cw(Gn, ω
′) = k,

but any reconfiguration sequence that transforms ω into ω′ will have cutwidth of at least 2k.

Proof: For simplicity, we will start by giving a sequence of multigraphs with this property and we
will see how to build simple graphs from them. Let k, n ∈ N with n ≥ 3. Let V (Gn) = [n] be the
vertex set of a multigraph Gn with k edges between i and i+ 1 for each i ∈ [n− 1]. Furthermore,
let ω : [n] → [n] be the identity and ω′ : [n] → [n] satisfy ω′(i) = n + 1 − i for i ∈ [n], in other
words, ω′ is the reverse of ω. Then, cw(Gn, ω) = cw(Gn, ω

′) = k, but applying a swap to ω at any
position will result in a linear order of cutwidth 2k.

Now, to prove this result in the case of simple graphs, we will turn each graph Gn into a simple
graph by replacing each edge in G with a path of length 2. In other words, we split each edge and
add a new vertex in the middle. This is a simple edge subdivision. We call the vertices from G
the main vertices and the added vertices the dummy vertices. To complete the construction, we
have to extend ω and ω′. For this purpose, we put the dummy vertices on the path from i to i+1
for each i ∈ [n] after (and before, respectively) i and before (and after, respectively) i + 1 in ω
(and ω′, respectively). The order between the dummy vertices does not matter. Now it is easy to
see that the cutwidth of ω and ω′ is k. Any reconfiguration sequence that transforms ω into ω′

needs to swap two main vertices at some point. Let i and i + 1 be the two first main vertices to
be swapped. If i > 1, then there exist k paths from i to i+ 1 and k paths from i to i− 1. Those
2k paths are disjoint, therefore, the cut between i and i+ 1 has a size of at least 2k. If i = 1 then
i+ 1 < n and the same reasoning works for i+ 1 instead of i. □

Our results on weighted cutwidth reconfiguration are in themselves interesting to the community
working on reconfiguration problems, but in the following, we prove a connection of unweighted
cutwidth reconfiguration to the famous Graph Isomorphism problem, which shows a completely
different facet of this particular reconfiguration problem.

4 String Rewriting System and Graph Isomorphism

Now, we use our result on the Bounded Cutwidth Order Reconfiguration problem to make
a connection between two apparently unrelated computational problems, namely, the Reachabil-
ity problem for a two-letter rewriting system and the Graph Isomorphism problem. To do
so, we introduce a notion of graph decomposition based on cutwidth named unit decomposition.

420 E. Arrighi et al. Reconfiguring Orders of Small Width

S

1

2

3

1

2

3

1

2 4

Figure 4: Slices are drawn as tiles. This figure depicts the slice S = (I, C,O,E) where I =
{(0, 1), (0, 2)}, C = {1, 2, 3}, O = {(1, 1), (1, 2), (1, 3), (1, 4)} and E = {{(0, 1), 1}, {(0, 2), 3}, {1, 2},
{2, 3}, {1, (1, 1)}, {2, (1, 2)}, {2, (1, 3)}, {3, (1, 4)}}. We omit the first element of the pair for frontier
vertices and use the following convention. The in-frontier vertices are on the left of the tile and the
out-frontier vertices are on the right of the tile. If the frontier vertices are not explicitly mentioned
in the drawing, we assume that frontier vertices are ordered from top to bottom as in this drawing.
This convention simplifies future drawings.

In a unit decomposition, the graph is split into small pieces called slices. If a graph has bounded
cutwidth, it can be decomposed into a unit decomposition of bounded width. Using the slices as an
alphabet, we can see a graph as a word. Then, we introduce a rewriting system over this alphabet
that preserve isomorphism. Our main result (Theorem 2) of this section states that two graphs
are isomorphic if and only if, their unit decompositions are reachable in this rewriting system.

4.1 Slice Rewriting System

We start by describing the notion of slices and unit decompositions. Intuitively, a slice is a piece
of graphs. Given two compatible slices, we can combine them using an operation called the gluing
operation to build a new bigger slice. After gluing enough slices, we end up with a graph. A unit
decomposition is the representation of a graph as a sequence of compatible slices. Then, using
slices as letters, we define an alphabet and a rewriting system over unit decompositions.

Slices. Let I = {[a] : a ∈ N} denote the set of intervals of the form [a] = {1, . . . , a} for a ∈ N
(recall that [0] = ∅). We let I0 = {{0} × [a] : [a] ∈ I}, and I1 = {{1} × [a] : [a] ∈ I}. A slice
S = (I, C,O,E) is a (multi-)graph where the vertex set V = I ∪̇ C ∪̇ O is partitioned into an
in-frontier I ∈ I0, a center C ∈ I, and an out-frontier O ∈ I1, and E is a multiset of unordered
pairs from I ∪ C ∪ O in such a way that vertices of I ∪ O have degree exactly 1, there is no edge
between any two vertices in I, and no edge between any two vertices in O. We depict slices as in
Figure 4. We define slices using multigraphs, as the gluing operation, defined below, can take slices
which are simple graphs, and create a slice that is a multigraph (see Figure 5). Given a slice S, we
define I(S) as the in-frontier of S, O(S) as the out-frontier of S, and C(S) as the center vertices
of S. The width of a slice S is defined as w(S) = max(|I(S)|, |O(S)|).

Gluing Slices. A slice S1 = (I1, C1, O1, E1) can be glued to S2 = (I2, C2, O2, E2) if for some
interval [a] ∈ I, O1 = {1} × [a] and I2 = {0} × [a]. In this case, the gluing gives rise to the slice
S1 ◦S2 = (I1, C1∪ (|C1|⊕C2), O2, E) where |C1|⊕C2 is a shift of the elements in C2 by |C1|, more

JGAA, 27(6) 409–431 (2023) 421

(a)

S1

1 ◦

S2

1

◦

S3

1 =

U
◦

1

2

3

Figure 5: Slice associated with the unit decomposition U = S1S2S3. The resulting slice does not
have any vertex in its frontier. It can therefore be seen as a multigraph on 3 vertices.

S1

11

2

1

2

3

◦

S2

13 2

2

1 1

=

S1 ◦ S2

11 1

22 2

Figure 6: Gluing of two slices S1 and S2. The gluing operation is a way to merge two slices into
one. In this example, the edge from the center vertex 1 from S1 to the out-frontier vertex (1, 2) is
stitched to the edge from the in-frontier vertex (0, 2) to the center vertex 1 from S2 to form the
edge between the center vertices 1 and 2 in S1 ◦ S2. The stitching of edges is done following the
order of the frontier vertices.

formally |C1| ⊕ C2 = [|C1|+ |C2|] \ [|C1|] = {|C1|+ 1, |C1|+ 2, . . . , |C1|+ |C2|},

E ={{x, y} ∈ E1 : x, y ∈ I1 ∪ C1}
∪ {{x, y + |C1|} : {x, y} ∈ E2 ∧ x ∈ O2 ∧ y ∈ C2}
∪ {{x+ |C1|, y + |C1|} : {x, y} ∈ E2 ∧ x, y ∈ C2}
∪ {{x, y} : ∃i, {x, (1, i)} ∈ E1 ∧ y ∈ O2 ∧ {(0, i), y} ∈ E2}
∪ {{x, y} : ∃i, {x, (1, i)} ∈ E1 ∧ y ∈ |C1| ⊕ C2 ∧ {(0, i), y − |C1|} ∈ E2}.

Note that the gluing operation is associative. Therefore, we will not write parentheses for the
gluing of more than two slices. Figure 6 illustrates the gluing of two slices.

Unit Slices and Unit Decompositions. We say that a slice is a unit slice if it has a unique
vertex in its center. A unit decomposition is a sequence U = S1S2 . . .Sn, where Si are unit slices
and Si ◦ Si+1 is well defined for each i ∈ [n− 1]. The slice associated with a unit decomposition U

is defined as U
◦
= S1 ◦S2 ◦ . . . ◦Sn (see Figure 7 for an example). Note that if the in-frontier of S1

and the out-frontier of Sn are empty, then U
◦
is just a multigraph with vertex set [n] (see Figure 5).

For each k ∈ N, we define the alphabet Σ(k) as the set of all unit slices of width at most k. We
now prove that |Σ(k)| is upper-bounded by a function in k.

Proposition 2 Σ(k) is finite, more precisely, |Σ(k)| = O((k + 1)
2 ·

∑k
i=0

(
k
i

)
k!
i!).

422 E. Arrighi et al. Reconfiguring Orders of Small Width

S1

1

◦

S2

1 ◦

S3

1

=

U
◦

1

2

3

Figure 7: Slice associated with the unit decomposition U = S1S2S3. The gluing operation is
associative, therefore parentheses are not needed.

Proof: In a unit slice of width at most k, the in-frontier and out-frontier can have between 0
and k vertices and there is only one center vertex. Therefore, there are (k + 1)

2
configurations for

the vertices of a slice. By definition, vertices of the in-frontier and the out-frontier have degrees
exactly 1, vertices in the in-frontier can be connected to the center vertex or an out-frontier vertex
and there is no self-loop. Therefore, fixing the connectivity of the in-frontier vertices defines the
full unit slice, because, if an out-frontier vertex is not connected to an in-frontier vertex, then it
must be connected to the center vertex. Once the number of vertices in the frontiers is chosen,
there can be between 0 and k vertices from the in-frontier connected to the center vertex. Let
0 ≤ i ≤ k be the number of such vertices. If i vertices are connected to the center vertex, then the
rest of the vertices must be connected to the out-frontier; there are at most k!

i! ways of doing this.

There are at most
(
k
i

)
subsets of size i in the in-frontier. Hence, there are at most

∑k
i=0

(
k
i

)
k!
i! ways

to connect the vertices in the in-frontier. □

We let Σ(k)
⊛

denote the set of all unit decompositions over Σ(k).
The order of the unit slices in a unit decomposition U = S1S2 . . .Sn induces a linear order

ωU on the center vertices of the slice U
◦
. We extend this linear order to all the vertices of U

◦
by

putting the vertices in the in-frontier first, then the center vertices and, finally, the vertices in the
out-frontier. More formally, the linear order defined by U sets ωU(i) = (0, i) for each (0, i) ∈ I(S1),
ωU(|I(S1)|+ i) = i for each i ∈ {1, . . . , n} and ωU(|I(S1)|+ n+ i) = (1, i) for each (1, i) ∈ O(Sn).

Given a unit decomposition U = S1S2 . . .Sn in Σ(k)
⊛
, we let w(U) = maxi∈[n] w(Si) be the

width of U. Recall that w(Si) = max(|I(Si)|, |O(Si)|).

Equivalence of Slices. Let S1 = (I1, C1, O1, E1) and S2 = (I2, C2, O2, E2) be two slices. We
say that S1 is equivalent to S2, denoted by S1 ∼ S2, if and only if I1 = I2, O1 = O2, C1 = C2,
and there is an isomorphism ϕ from S1 to S2 such that the restriction of ϕ to I1 and O1 is the
identity function. In other words, S1 and S2 are equivalent if they are equal up to the renaming
of the center vertices.

We letR(k) ⊆ Σ(k)
2×Σ(k)

2
be the set of all rewriting rules of the form S1S2 → S′

1S
′
2 such that

S1◦S2 ∼ S′
1◦S′

2. By Proposition 2, R(k) is finite. We call two unit decompositions U,U′ ∈ Σ(k)
⊛

locally R(k)-equivalent, and denote this fact by U
k∼ U′, if there exist W,W′ ∈ Σ(k)

⊛
and

S1,S
′
1,S2,S

′
2 ∈ Σ(k) with S1 ◦ S2 ∼ S′

1 ◦ S′
2 such that U = WS1S2W

′ and U′ = WS′
1S

′
2W

′ (see
Figure 8). In other words, U is locally R(k)-equivalent to U′ if U can be rewritten in one step
into U′ using a rule from R(k).

We let
k≡ ⊆ Σ(k)

⊛ × Σ(k)
⊛

be the equivalence relation defined on unit decompositions by

taking the reflexive, symmetric and transitive closure of
k∼. If U

k≡ U′, then we say that U′

JGAA, 27(6) 409–431 (2023) 423

S1

1

S2

1

∼

S′
1

1

S′
2

1

Figure 8: Local equivalence. S1S2 is (locally) R(4)-equivalent to S′
1S

′
2.

S1

1 ◦
S2

1

◦
S3

1 =

U
◦
= U′◦

1

2

3 =

S′
1

1 ◦

S′
2

1 ◦

S′
3

1

Figure 9: The unit decomposition U = S1S2S3 is a twisting of the unit decomposition U′ =
S′
1S

′
2S

′
3. Note that S2 ◦S3 = S′

2 ◦S′
3. Note that if we let π be the permutation that sets π(1) = 2,

π(2) = 3 and π(3) = 1, then S′
2 is obtained by permuting the out-frontier of S2 according to π and

S′
3 is obtained by permuting the in-frontier of S3 according to π.

is R(k)-equivalent to U. We note that if U is a unit decomposition in Σ(k)
⊛

then any unit
decomposition U′ that is R(k)-equivalent to U is also a unit decomposition in Σ(k)

⊛
. We also

note that there may exist unit decompositions in Σ(k)
⊛
that are not R(k)-equivalent but that are

R(k′)-equivalent for some k′ > k.

Twisting. Let U = S1S2 · · ·Sn and U′ = S′
1S

′
2 · · ·S′

n be two unit decompositions. We say that

U is a twisting of U′ if U
◦
= U′◦

. Note that we are not equating slices up to isomorphism. In other

words, we are really requiring that the slices U
◦
and U′◦

are syntactically identical.

Let S1 and S2 be unit slices in Σ(k) such that the out-frontier of S1 and the in-frontier of
S2 have k′ vertices for some k′ ≤ k. Given a permutation π : [k′] → [k′], let Sπ

1 be the slice
obtained by renaming each vertex (1, i) in the out-frontier of S1 to (1, π(i)), and let πS2 be the
slice obtained by renaming each vertex (0, i) in the in-fronter of S2 to (0, π(i)). Then, it should be
clear that S1 ◦ S2 = Sπ

1 ◦ πS2. In other words, Sπ
1
πS2 is a twisting of S1S2. Additionally, for each

two unit slices S′
1 and S′

2 such that S′
1S

′
2 is a twisting of S1S2 (S1 ◦ S2 = S′

1 ◦ S′
2), it should be

clear that there is some permutation π such that S′
1 = Sπ

1 and S′
2 = πS2. Note also that for every

two such slices S′
1 and S′

2, the rewriting rule S1S2 → S′
1S

′
2 belongs to R(k). This implies that if a

unit decomposition U = S1S2 . . .Sn is a twisting of a unit decomposition U′ = S′
1S

′
2 . . .S

′
n, then

U and U′ are R(k)-equivalent and can be transformed into each other by applying a sequence of
rewriting rules that “twists” for each i ∈ [n − 1] the out-frontier of Si and the in-frontier of Si+1

according to some permutation πi. This process is illustrated in Figure 9.

Proposition 3 (Twisting) Let U = S1S2 · · ·Sn and U′ = S′
1S

′
2 · · ·S′

n be two unit decomposi-
tions in Σ(k)

⊛
such that U is a twisting of U′. Then, U can be transformed into U′ by the

application of n− 1 rewriting rules from R(k).

424 E. Arrighi et al. Reconfiguring Orders of Small Width

4.2 Graph Isomorphism as a Rewriting System

Now, we are ready to see the connection between the Graph Isomorphism problem and the
Reachability problem in R(k). First, we show that a graph G has cutwidth at most k if and
only if it has a unit decompositions of width at most k (Proposition 4 and Proposition 5). Then,
we show that the rewriting system R(k) preserves isomorphism (Lemma 5). Building on those
results, we show the connection between the Reachability problem in R(2k) and the Graph
Isomorphism for graphs of cutwidth at most k.

Intuitively, a unit decomposition U is a decomposition of the graph U
◦
. This decomposition

induces an ordering of the vertices of U
◦
. The size of the common frontier between two neighbouring

slices in U corresponds to the size of the cut at the same position in U
◦

with respect to ωU.

Therefore, U induces an ordering of U
◦
of cutwidth w(U). This idea is formalized by the following

proposition.

Proposition 4 Let k ∈ N, and U = S1S2 . . .Sn be a unit decomposition in Σ(k)
⊛
, and ωU be the

linear order induced by U on U
◦
. Then, cw(U

◦
, ωU) = w(U).

Proof: This follows by noticing that each vertex in I(S1) has degree 1 and there is no edge between

vertices in I(S1), therefore for each position p in {1, . . . , |I(S1)| + 1}, cw(U
◦
, ωU, p) ≤ |I(S1)| and

cw(U
◦
, ωU, |I(S1)|+1) = |I(S1)|, in the same way, we have for each p in {|I(S1)|+n+1, . . . , |I(S1)|+

n + |O(Sn)|}, cw(U
◦
, ωU, p) ≤ |O(Sn)| and cw(U

◦
, ωU, |I(S1)| + n + 1) = |O(Sn)|, and for each

p ∈ {|I(S1)|+ 2, . . . , |I(S1)|+ n}, cw(U
◦
, ωU, p) = |O(Sp−|I(S1)|−1)| = |I(Sp−|I(S1)|)|. □

The relation between cutwidth and unit decomposition is valid in both directions. The following
proposition states the reverse direction compared to Proposition 4.

Proposition 5 Let G be an n-vertex graph and ω be a linear order on the vertices of G of
cutwidth k. Then, we can construct in time O(kn) a unit decomposition U such that ω = ωU.

Proof: We will do this construction by first drawing the graph G in the plane. G does not need
to be planar for this construction to work. First, we will place the vertices of G on a straight
line L isomorphic to R. The i-th vertex of G with respect to the linear order ω is placed at the
coordinate i on the line. Then, edges are drawn as curves between their endpoints. Now, we will
draw n + 1 lines perpendicular to L at coordinates {−0.5, 0.5, 1.5, . . . , n − 0.5, n + 0.5}. We call
these lines cut-lines. The cutwidth of ω is k, therefore each cut-line intersects at most k edges
in the drawing of G. We put a vertex at the intersection of a cut-line and an edge. The graph
between two consecutive cut-lines defines a unit slice of width at most k. Taking all those slices in
the order induced by ω on the line L gives a unit decomposition U of width k such that ω = ωU.
Figure 10 illustrates this construction. □

Now that we have defined the rewriting system, we are ready to show the connection between
the rewriting system R(k) and the graph isomorphism problem. This connection is formalized in
Theorem 2. The next lemma shows one direction in this connection.

Lemma 5 Let k ∈ N and U and U′ be unit decompositions in Σ(k)
⊛
. If U is R(k)-equivalent to

U′, then U
◦
is isomorphic to U′◦

.

Proof: It is enough to show that if U can be transformed into U′ in one R(k)-rewriting step then

U
◦

is isomorphic to U′◦
. Therefore, assume that U → U′. Then, there exist unit decompositions

JGAA, 27(6) 409–431 (2023) 425

(b) 1 2 3 ⇒

S1

1

S2

1

S3

1

Figure 10: Slicing of the graph G on the left into a unit decomposition U on the right.

W,W′ ∈ Σ(k)
⊛

and a rewriting rule S1S2 → S′
1S

′
2 in R(k) such that U = WS1S2W

′ and
U′ = WS′

1S
′
2W

′. Since S1 ◦ S2 ∼ S′
1 ◦ S′

2, we have an isomorphism φ from S1 ◦ S2 to S′
1 ◦ S′

2

that acts as the identity map on frontier vertices. This implies that U
◦

= W
◦

◦ S1 ◦ S2 ◦ W′◦
is

isomorphic to U′◦
= W

◦
◦ S′

1 ◦ S′
2 ◦W′◦

. □

An interesting question is whether, for each k ∈ N, there is some k′ ∈ N such that any two unit

decompositions U and U′ in Σ(k) are R(k′)-equivalent if and only if U
◦
is isomorphic to U′◦

. The
answer turns out to be yes, as shown in Theorem 2 below.

Theorem 2 Let U and U′ be unit decompositions in Σ(k)
⊛
. Then, U

◦
is isomorphic to U′◦

if and
only if U and U′ are R(2k)-equivalent.

Proof: Let U = S1S2 · · ·Sn and U′ = S′
1S

′
2 · · ·S′

n. Suppose that U and U′ are R(2k)-equivalent.

Then, by Lemma 5, U
◦
is isomorphic to U′◦

.

For the converse direction, suppose that U
◦

is isomorphic to U′◦
and let φ be an isomorphism

from U
◦
to U′◦

. We show that U and U′ are R(2k)-equivalent.
Given a position i ∈ [n − 1] in the unit decomposition U, a swap between Si and Si+1 is a

rewriting rule in R(k′) for some k′ that rewrites U into the unit decomposition

Ui = S1S2 · · ·Si−1S
′′
i S

′′
i+1Si+2 · · ·Sn

such that, the function ψ : [n] → [n] that sets ψ(p) = p for all p /∈ {i, i + 1}, ψ(i) = i + 1 and

ψ(i+ 1) = i is an isomorphism from U
◦
to U

◦

i.
Intuitively, we swap the center vertex of Si with the center vertex of Si+1. Note that, because

of the twisting of the frontier, there may be several rewriting rules corresponding to such a swap.
Now, a swap in the unit decomposition U corresponds to a swap in ωU as defined for linear orders
in Section 2. The isomorphism φ defines a transformation of ωU into ωU′ .

By Proposition 4, cw(U
◦
, ωU) ≤ k and cw(U′◦

, ωU′) ≤ k. Now, our result in Section 3 can
be used for the slice rewriting system R(2k). More precisely, it follows from Theorem 1 that we
can transform ωU into ωU′ by a sequence of O(n2) swaps and at each step, the cutwidth is at
most 2k. By using the rewriting rules from R(2k), we can replicate these swaps into the unit
decomposition U, obtaining in this way a unit decomposition U′′ such that ωU′′ = ωU′ . Since

U′′◦
= U′◦

, we have that U′′ is a twisting of U′. Therefore, it follows from Proposition 3 that U′′ can
be further transformed into U′ by applying a sequence of n−1 rewriting rules from R(k) ⊆ R(2k).

Hence, U can be rewritten into U′′ by applying O(n2) rewriting rules from R(2k). □

Theorem 2 allows us to establish connections between the graph isomorphism problem for
graphs of cutwidth at most k and the reachability problem in R(2k).

426 E. Arrighi et al. Reconfiguring Orders of Small Width

Theorem 3 ([20]) Let G be an n-vertex graph of cutwidth k. We can compute a linear order ω

of the vertices of G of cutwidth k in time 2O(k2 log k) · n.

Theorem 4 Graph isomorphism for n-vertex graphs of cutwidth at most k can be reduced in time
2O(k2 log k) · n to R(2k)-reachability.

Proof: Given n-vertex graphs G and G′ of cutwidth at most k, we first compute in time 2O(k2 log k) ·
n linear orders ω and ω′ of the vertex sets of G and G′, respectively, of cutwidth at most k. Then,
from Proposition 5, we construct unit decompositions U and U′ such that ωU = ω, ωU′ = ω′, G

is isomorphic to U
◦

and G′ is isomorphic to U′◦
. By Proposition 5, those decompositions belong

to Σ(k)
⊛
. By Theorem 2, we have that U

◦
and U′◦

are isomorphic if and only if U and U′ are
R(2k)-equivalent. □

5 Order Reconfiguration Parameterized by Vertex Separa-
tion Number

In this section, we show that the techniques employed in Section 3 for total orders of bounded
cutwidth can be generalized to the context of orders of bounded vertex-separation number (The-
orem 5). We consider that this generalization may be of independent interest in the theory of
reconfiguration since vertex separation number is a width measure for graphs that is strictly more
expressive than cutwidth.

Let G be an n-vertex graph with vertex set V (G) and edge set E(G). Given sets S, S′ ⊆ V (G),
we let V (G,S, S′) = {u ∈ S : ∃v ∈ S′ : {u, v} ∈ E(G)} be the set of vertices in S that are adjacent
to some vertex in S′. As a special case, we define V (G,S) = V (G,S, V (G) \ S). We will often
make use of the following two properties without explicit mention.

• Monotonicity property: If T ⊆ S and T ′ ⊆ S′, then V (G,T, T ′) ⊆ V (G,S, S′).

• Linearity property: If {S1, S2} is a partition of S, then {V (G,S1, S
′), V (G,S2, S

′)} is a
partition of V (G,S, S′).

Definition 2 (Vertex Separation Number) Let G be an n-vertex undirected graph with vertex
set V (G) and edge set E(G). Let ω : [n] → V (G) be a linear order on the vertices of G. For each
p ∈ [n], we let

vsn(G,ω, p) = |V (G,ω([p− 1]))| = |{l ∈ [p− 1] : ∃r ≥ p such that {ω(l), ω(r)} ∈ E(G)}|.

The vertex separation number of the linear order ω is defined as vsn(G,ω) = maxp∈[n] vsn(G,ω, p).
Finally, the vertex separation number of G is defined as vsn(G) = minω vsn(G,ω), where ω ranges
over all linear orders on the vertex set V .

By introducing vertex weights c : V (G) → N+, we can again define a weighted variant, called
weighted vertex separation number, or wvsn(G, c, ω). We refrain from giving formal details here,
but the following discussions are also valid in this more general case.

For each k ∈ N and each n-vertex graph G, let VSN(G, k) = {ω : [n] → V (G) : vsn(G,ω) ≤ k}
be the set of linear orders of V (G) of vertex separation number at most k. We say that ω can be
reconfigured into ω′ in vertex separation number at most k if there is a reconfiguration sequence

ω = ω0
i1−→ ω1

i2−→ · · · ir−→ ωr = ω′ such that for each j ∈ [r], ωj ∈ VSN(G, k).

JGAA, 27(6) 409–431 (2023) 427

Problem 2 (Bounded Vertex Separation Number Reconfiguration) Let G be an n-vertex
graph, ω, ω′ : [n] → V (G) be linear orders on the vertex set of G, and k ∈ N. Is it true that ω can
be reconfigured into ω′ in vertex separation number at most k?

The proof of Theorem 5 below is analogous to the proof of Theorem 1. More precisely, this
proof follows by restating Lemma 2, Lemma 3 and Lemma 4 in terms of the vertex separation
number of a graph instead of cutwidth, and then by using this last restated lemma to conclude the
proof, as done in Theorem 1.

Theorem 5 Let G be an n-vertex graph and ω, ω′ : [n] → V (G) be linear orders of V (G) of vertex
separation number at most k. Then, ω can be reconfigured into ω′ in vertex separation number at
most vsn(G,ω) + vsn(G,ω′) ≤ 2k.

As it has been shown by Kinnersley [32], the vertex separation number equals the possibly
nowadays better-known graph parameter pathwidth. Therefore, the previous theorem also speaks
about a reconfiguration problem for pathwidth. From an application point of view, more precisely,
concerning possible applications in the area of VLSI design, the relation to the so-called Gate
Matrix Layout Problem is possibly even more important. We abstain from giving a precise
definition here, but rather refer to articles as [14, 17, 32, 33, 34]. As the optimum value of the
gate matrix layout parameter of a graph G equals the pathwidth of G plus one [32, Corollary 3.2],
we also obtain reconfiguration results for this graph parameter motivated by VLSI. Due to results
of [35], another graph parameter tightly linked to pathwidth is the node search number of a graph;
putting the mentioned results together, it also equals the gate matrix layout parameter. In [35],
the node search number was shown to be equal to the minimum progressive black pebble demand
of a graph. This is interesting, as the black pebble demand of a directed acyclic graph is tightly
related to a model of register allocation for the computation of arithmetic expressions. The black
pebble demand corresponds to the number of registers needed to evaluate an arithmetic expression.
Also more generally, such graphs can be used to model the storage requirements of a program.
Turning to such problems under the umbrella of reconfiguration could be also an interesting avenue.
Again related to register allocation problems are job scheduling problems. We are bringing this
connection up in this context, because traditionally job scheduling problems are linked to graph
coloring, and recoloring problems can be seen as one of the origins of the field of reconfiguration
itself. We only like to draw the reader’s attention to [44], where recoloring problems were studied
for bounded width parameters, this way returning to one of the main topics of this paper.

6 Conclusion

In this work, we have studied the order reconfiguration problem under the framework of the theory
of fixed-parameter tractability. In particular, in our main technical result, we have shown that the
order reconfiguration problem for linear orders of cutwidth at most k can always be achieved in
cutwidth at most 2k (Theorem 1), also in the weighted case. Using this result, we have established
new connections between the graph isomorphism problem and the reachability problem for a special
two-letter string rewriting system operating on unit slices. In particular, we have proven that unit

decompositions U and U′ of width k are R(2k)-equivalent if and only if the graphs U
◦
and U′◦

are
isomorphic (Theorem 2).

Theorem 2 opens up the possibility of studying the graph isomorphism problem under the per-
spective of term rewriting theory. The most immediate question in this direction is the complexity

428 E. Arrighi et al. Reconfiguring Orders of Small Width

of deciding R(2k)-reachability for unit decompositions of width k. By a reduction to isomorphism
of graphs of cutwidth k, this problem can be solved in time 2O(k·polylogk)nO(1) using the results
from [26]. Can techniques that are intrinsic to string/term rewriting theory be used to improve
this running time? Can such techniques be used to obtain algorithms running in time f(k) · nO(1)

for some computable function f : N → N? Note that a positive answer to this question would be
conceptually relevant even if the function f(k) is substantially worse than the current 2O(k·polylog(k)),
since techniques based on rewriting may carry over to contexts where group-theoretic techniques do
not. One interesting line of attack for this question would be to study connections between R(2k)
and techniques related to Knuth-Bendix completion and their generalizations [42, 43, 31, 29]. It is
also interesting to recall that also Wrochna used some relations to string rewriting questions and
graph problems of bounded width in [44].

A natural question that arises in the context of reconfiguration of linear orders is the following:
given two linear orders ω and ω′, what is the minimum cutwidth of a linear order ω′′ occurring
in a reconfiguration sequence from ω to ω′? Is this problem NP-hard, or hard to approximate? Is
it solvable in FPT-time for certain parameters? We thank one of the reviewers of the conference
version [1] for bringing these interesting questions to our attention.

We do hope that the avenue connecting graph isomorphism and term rewriting opens up new
lines of research in both areas. For instance, could this approach help when considering graph
similarity instead of graph isomorphism, as discussed, e.g., in [19]?

References

[1] E. Arrighi, H. Fernau, M. de Oliveira Oliveira, and P. Wolf. Order reconfiguration under
width constraints. In F. Bonchi and S. J. Puglisi, editors, 46th International Symposium on
Mathematical Foundations of Computer Science, MFCS, volume 202 of LIPIcs, pages 8:1–
8:15. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2021. doi:10.4230/LIPIcs.MFCS.
2021.8.

[2] V. Arvind, B. Das, J. Köbler, and S. Toda. Colored hypergraph isomorphism is fixed parameter
tractable. Algorithmica, 71(1):120–138, 2015. doi:10.1007/s00453-013-9787-y.

[3] F. Baader and T. Nipkow. Term Rewriting and All That. Cambridge University Press, 1999.

[4] L. Babai. Graph isomorphism in quasipolynomial time [extended abstract]. In D. Wichs and
Y. Mansour, editors, Proceedings of the 48th Annual ACM SIGACT Symposium on Theory of
Computing, STOC, pages 684–697. ACM, 2016. doi:10.1145/2897518.2897542.

[5] L. Babai, D. Y. Grigoryev, and D. M. Mount. Isomorphism of graphs with bounded eigenvalue
multiplicity. In H. R. Lewis, B. B. Simons, W. A. Burkhard, and L. H. Landweber, editors,
Proceedings of the 14th Annual ACM Symposium on Theory of Computing, STOC, pages
310–324. ACM, 1982. doi:10.1145/800070.802206.

[6] L. Babai, W. M. Kantor, and E. M. Luks. Computational complexity and the classification of
finite simple groups. In 24th Annual Symposium on Foundations of Computer Science, FOCS,
pages 162–171. IEEE Computer Society, 1983. doi:10.1109/SFCS.1983.10.

[7] E. Barendsen. Term Rewriting Systems. Cambridge University Press, 2003.

https://doi.org/10.4230/LIPIcs.MFCS.2021.8
https://doi.org/10.4230/LIPIcs.MFCS.2021.8
https://doi.org/10.1007/s00453-013-9787-y
https://doi.org/10.1145/2897518.2897542
https://doi.org/10.1145/800070.802206
https://doi.org/10.1109/SFCS.1983.10

JGAA, 27(6) 409–431 (2023) 429

[8] H. L. Bodlaender, M. R. Fellows, and D. M. Thilikos. Derivation of algorithms for cutwidth
and related graph layout parameters. Journal of Computer and System Sciences, 75(4):231–
244, 2009. doi:10.1016/j.jcss.2008.10.003.

[9] R. V. Book and F. Otto. String-rewriting systems. In String-Rewriting Systems, Texts
and Monographs in Computer Science, pages 35–64. Springer, 1993. doi:10.1007/

978-1-4613-9771-7.

[10] J. Cai, M. Fürer, and N. Immerman. An optimal lower bound on the number of variables for
graph identification. Combincatorica, 12(4):389–410, 1992. doi:10.1007/BF01305232.

[11] M. de Oliveira Oliveira. Hasse diagram generators and Petri nets. Fundamenta Informaticae,
105(3):263–289, 2010. doi:10.3233/FI-2010-367.

[12] M. de Oliveira Oliveira. Subgraphs satisfying MSO properties on z-topologically orderable
digraphs. In G. Z. Gutin and S. Szeider, editors, Parameterized and Exact Computation - 8th
International Symposium, IPEC, volume 8246 of Lecture Notes in Computer Science, pages
123–136. Springer, 2013. doi:10.1007/978-3-319-03898-8_12.

[13] M. de Oliveira Oliveira. A slice theoretic approach for embedding problems on digraphs.
In E. W. Mayr, editor, Graph-Theoretic Concepts in Computer Science - 41st International
Workshop, WG, volume 9224 of Lecture Notes in Computer Science, pages 360–372. Springer,
2015. doi:10.1007/978-3-662-53174-7_26.

[14] N. Deo, M. S. Krishnamoorthy, and M. A. Langston. Exact and approximate solutions for
the gate matrix layout problem. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst.,
6(1):79–84, 1987. doi:10.1109/TCAD.1987.1270248.

[15] R. G. Downey and M. R. Fellows. Fundamentals of Parameterized Complexity. Texts in
Computer Science. Springer, 2013. doi:10.1007/978-1-4471-5559-1.

[16] J. A. Ellis, I. H. Sudborough, and J. S. Turner. The vertex separation and search number of
a graph. Information and Computation, 113(1):50–79, 1994. doi:10.1006/inco.1994.1064.

[17] M. R. Fellows and M. A. Langston. On well-partial-order theory and its application
to combinatorial problems of VLSI design. SIAM J. Discret. Math., 5(1):117–126, 1992.
doi:10.1137/0405010.

[18] M. L. Furst, J. E. Hopcroft, and E. M. Luks. Polynomial-time algorithms for permutation
groups. In 21st Annual Symposium on Foundations of Computer Science, FOCS, pages 36–41.
IEEE Computer Society, 1980. doi:10.1109/SFCS.1980.34.

[19] T. Gervens and M. Grohe. Graph similarity based on matrix norms. In S. Szeider, R. Ga-
nian, and A. Silva, editors, 47th International Symposium on Mathematical Foundations of
Computer Science, MFCS, volume 241 of LIPIcs, pages 52:1–52:15. Schloss Dagstuhl - Leibniz-
Zentrum für Informatik, 2022. doi:10.4230/LIPIcs.MFCS.2022.52.

[20] A. C. Giannopoulou, M. Pilipczuk, J.-F. Raymond, D. M. Thilikos, and M. Wrochna.
Cutwidth: obstructions and algorithmic aspects. Algorithmica, 81(2):557–588, 2019. doi:

10.1007/s00453-018-0424-7.

https://doi.org/10.1016/j.jcss.2008.10.003
https://doi.org/10.1007/978-1-4613-9771-7
https://doi.org/10.1007/978-1-4613-9771-7
https://doi.org/10.1007/BF01305232
https://doi.org/10.3233/FI-2010-367
https://doi.org/10.1007/978-3-319-03898-8_12
https://doi.org/10.1007/978-3-662-53174-7_26
https://doi.org/10.1109/TCAD.1987.1270248
https://doi.org/10.1007/978-1-4471-5559-1
https://doi.org/10.1006/inco.1994.1064
https://doi.org/10.1137/0405010
https://doi.org/10.1109/SFCS.1980.34
https://doi.org/10.4230/LIPIcs.MFCS.2022.52
https://doi.org/10.1007/s00453-018-0424-7
https://doi.org/10.1007/s00453-018-0424-7

430 E. Arrighi et al. Reconfiguring Orders of Small Width

[21] M. Grohe. Fixed-point definability and polynomial time on graphs with excluded minors.
Journal of the ACM, 59(5):27, 2012. doi:10.1145/2371656.2371662.

[22] M. Grohe and D. Marx. Structure theorem and isomorphism test for graphs with excluded
topological subgraphs. SIAM Journal on Computing, 44(1):114–159, 2015. doi:10.1137/

120892234.

[23] M. Grohe and D. Neuen. Isomorphism, canonization, and definability for graphs of bounded
rank width. Commununications of the ACM, 64(5):98–105, 2021. doi:10.1145/3453943.

[24] M. Grohe and D. Neuen. Recent advances on the graph isomorphism problem. In K. K.
Dabrowski, M. Gadouleau, N. Georgiou, M. Johnson, G. B. Mertzios, and D. Paulusma,
editors, Surveys in Combinatorics, 2021: Invited lectures from the 28th British Combinatorial
Conference, Durham, UK, July 5-9, 2021, pages 187–234. Cambridge University Press, 2021.
doi:10.1017/9781009036214.006.

[25] M. Grohe, D. Neuen, and P. Schweitzer. A faster isomorphism test for graphs of small degree.
In M. Thorup, editor, 59th IEEE Annual Symposium on Foundations of Computer Science,
FOCS, pages 89–100. IEEE Computer Society, 2018. doi:10.1109/FOCS.2018.00018.

[26] M. Grohe, D. Neuen, P. Schweitzer, and D. Wiebking. An improved isomorphism test for
bounded-tree-width graphs. ACM Transactions on Algorithms, 16(3):34:1–34:31, 2020. doi:
10.1145/3382082.

[27] M. Grohe and P. Schweitzer. Isomorphism testing for graphs of bounded rank width. In
V. Guruswami, editor, IEEE 56th Annual Symposium on Foundations of Computer Science,
FOCS, pages 1010–1029. IEEE Computer Society, 2015. doi:10.1109/FOCS.2015.66.

[28] M. Grohe and P. Schweitzer. The graph isomorphism problem. Commun. ACM, 63(11):128–
134, 2020. doi:10.1145/3372123.

[29] N. Hirokawa, A. Middeldorp, C. Sternagel, and S. Winkler. Abstract completion, formalized.
Log. Methods Comput. Sci., 15(3), 2019. doi:10.23638/LMCS-15(3:19)2019.

[30] T. Ito, E. D. Demaine, N. J. A. Harvey, C. H. Papadimitriou, M. Sideri, R. Uehara, and
Y. Uno. On the complexity of reconfiguration problems. Theoretical Computer Science,
412(12-14):1054–1065, 2011. doi:10.1016/j.tcs.2010.12.005.

[31] D. Kapur and P. Narendran. The Knuth-Bendix completion procedure and Thue systems.
SIAM Journal on Computing, 14(4):1052–1072, 1985. doi:10.1137/0214073.

[32] N. G. Kinnersley. The vertex separation number of a graph equals its path-width. Inf. Process.
Lett., 42(6):345–350, 1992. doi:10.1016/0020-0190(92)90234-M.

[33] N. G. Kinnersley and W. M. Kinnersley. An efficient polynomial-time algorithm for three-track
gate matrix layout. Comput. J., 37(5):449–462, 1994. doi:10.1093/comjnl/37.5.449.

[34] N. G. Kinnersley and M. A. Langston. obstruction set isolation for the gate matrix layout
problem. Discret. Appl. Math., 54(2-3):169–213, 1994. doi:10.1016/0166-218X(94)90021-3.

[35] L. M. Kirousis and C. H. Papadimitriou. Searching and pebbling. Theor. Comput. Sci.,
47(3):205–218, 1986. doi:10.1016/0304-3975(86)90146-5.

https://doi.org/10.1145/2371656.2371662
https://doi.org/10.1137/120892234
https://doi.org/10.1137/120892234
https://doi.org/10.1145/3453943
https://doi.org/10.1017/9781009036214.006
https://doi.org/10.1109/FOCS.2018.00018
https://doi.org/10.1145/3382082
https://doi.org/10.1145/3382082
https://doi.org/10.1109/FOCS.2015.66
https://doi.org/10.1145/3372123
https://doi.org/10.23638/LMCS-15(3:19)2019
https://doi.org/10.1016/j.tcs.2010.12.005
https://doi.org/10.1137/0214073
https://doi.org/10.1016/0020-0190(92)90234-M
https://doi.org/10.1093/comjnl/37.5.449
https://doi.org/10.1016/0166-218X(94)90021-3
https://doi.org/10.1016/0304-3975(86)90146-5

JGAA, 27(6) 409–431 (2023) 431

[36] J. W. Klop. Term Rewriting Systems. Centrum voor Wiskunde en Informatica, 1990.

[37] S. Kratsch and P. Schweitzer. Isomorphism for graphs of bounded feedback vertex set num-
ber. In H. Kaplan, editor, Algorithm Theory - SWAT, 12th Scandinavian Symposium and
Workshops on Algorithm Theory, volume 6139 of Lecture Notes in Computer Science, pages
81–92. Springer, 2010. doi:10.1007/978-3-642-13731-0_9.

[38] D. Lokshtanov, M. Pilipczuk, M. Pilipczuk, and S. Saurabh. Fixed-parameter tractable can-
onization and isomorphism test for graphs of bounded treewidth. In 55th IEEE Annual Sym-
posium on Foundations of Computer Science, FOCS, pages 186–195. IEEE Computer Society,
2014. doi:10.1109/FOCS.2014.28.

[39] E. M. Luks. Isomorphism of graphs of bounded valence can be tested in polynomial time.
Journal of Computer and System Sciences, 25(1):42–65, 1982. doi:10.1016/0022-0000(82)
90009-5.

[40] G. Miller. Isomorphism testing for graphs of bounded genus. In R. E. Miller, S. Ginsburg,
W. A. Burkhard, and R. J. Lipton, editors, Proceedings of the 12th Annual ACM Symposium
on Theory of Computing, STOC, pages 225–235. ACM, 1980. doi:10.1145/800141.804670.

[41] N. Nishimura. Introduction to reconfiguration. Algorithms, 11(4):52, 2018. doi:10.3390/

a11040052.

[42] C. Sternagel and R. Thiemann. Formalizing knuth-bendix orders and knuth-bendix com-
pletion. In F. van Raamsdonk, editor, 24th International Conference on Rewriting Tech-
niques and Applications, RTA 2013, June 24-26, 2013, Eindhoven, The Netherlands, vol-
ume 21 of LIPIcs, pages 287–302. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2013.
doi:10.4230/LIPIcs.RTA.2013.287.

[43] I. Wehrman, A. Stump, and E. Westbrook. Slothrop: Knuth-Bendix completion with a modern
termination checker. In F. Pfenning, editor, Term Rewriting and Applications, 17th Interna-
tional Conference, RTA, volume 4098 of Lecture Notes in Computer Science, pages 287–296.
Springer, 2006. doi:10.1007/11805618_22.

[44] M. Wrochna. Reconfiguration in bounded bandwidth and tree-depth. Journal of Computer
and System Sciences, 93:1–10, 2018. doi:10.1016/j.jcss.2017.11.003.

https://doi.org/10.1007/978-3-642-13731-0_9
https://doi.org/10.1109/FOCS.2014.28
https://doi.org/10.1016/0022-0000(82)90009-5
https://doi.org/10.1016/0022-0000(82)90009-5
https://doi.org/10.1145/800141.804670
https://doi.org/10.3390/a11040052
https://doi.org/10.3390/a11040052
https://doi.org/10.4230/LIPIcs.RTA.2013.287
https://doi.org/10.1007/11805618_22
https://doi.org/10.1016/j.jcss.2017.11.003

	Introduction
	Preliminaries
	Linear Order Reconfiguration
	String Rewriting System and Graph Isomorphism
	Slice Rewriting System
	Graph Isomorphism as a Rewriting System

	Order Reconfiguration Parameterized by Vertex Separation Number
	Conclusion

