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Abstract. This paper proposes a network-visualization metric, connected-closeness,
designed to provide a quantified statement about the mediation of the topology by the
node placement. It allows stating the percentage of connected nodes that are closer
than a certain characteristic distance, computed on the basis of the layout, and pic-
tured in the visualization. This statement, and others it provides, are intended to help
non-experts interpreting network visualizations visually. Connected-closeness allows
assessing a layout’s validity from the specific angle of bringing connected nodes closer.
A benchmark finds that force-directed layouts are indeed good at bringing connected
nodes closer, but the metric also detects situations and layouts where it fails. It allows
comparing different layouts for a given network and different networks for a given lay-
out, and provides quantified evidence that force-driven placements consistently capture
an aspect of the topological structure of networks. The calculations allow assessing vi-
sual distances as a statistical measure of edge presence in terms or precision and recall,
and show that in practice, layout algorithms prioritize recall over precision. The paper
provides the definition of different indicators, their underlying rationale, visual exam-
ples, a simple optimization, implementation remarks, and a benchmark of 14 network
generators and 7 node-placement algorithms rendered 100 times each, for a total of
9800 network visualizations.

1 Introduction

Network maps are a popular graph visualization technique [5, 12] and force-driven layouts are a
common node placement technique [10, 39] notably for large graphs [13]. The images produced
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by force-driven layouts or similar approaches (e.g., stress-majorization techniques [9, 16]) are gen-
erally assessed on the basis of aesthetic criteria (e.g., minimizing edge crossings) [2, 31, 32] and
experimental settings where specific tasks are performed (e.g., finding shortest paths) [30, 34] but
rarely on the basis of explicit statements such as “the closer two nodes, the higher their chances
to be connected”. Network maps are notoriously difficult to interpret [20, 22, 38] and explicit
statements about how the image mediates the network’s topology would help contextualize them
and prevent misinterpretations.

This paper proposes the “maximum connected-closeness”, a metric providing a contextual
statement about a given network map, i.e. a graph drawing where nodes are represented as dots
and placed by a force-directed or similar algorithm, and edges are represented as lines. It aims at
quantifying the intuition that “most connected nodes are very close”. It defines a distance (∆max)
that captures the best this notion (figure 1).

Most connected nodes are very close

76% of connected nodes are closer than Δmax

Δmax
Drawing
the distance
on the visualization

How to find Δmax?

Quantification QuantificationQuantification Quantification

Figure 1: The goal is to quantify an intuitive statement about network maps. The distance ∆max

is computed by maximizing connected-closeness, a metric presented below. The “76%” number
corresponds to the case of figure 5.

The connected-closeness C is the metric used to find a special distance ∆max that relates to how
close the connected nodes are in the layout. In other words, it characterizes overall edge shortness.
More precisely, C accounts for how many edges are shorter than a given distance ∆, discounting
the number of edges that would be shorter anyways (i.e., if all edges were redistributed at ran-
dom). When the function C(∆) reaches its maximum, we define ∆max and Cmax = C(∆max) the
maximum connected-closeness. By definition ∆max is the distance for which the layout captures
the most unexpectedly close connected pairs; here “close” means closer than ∆max, and “unex-
pectedly” means compared to a random rewiring of the same network (cf. the dedicated section
for a formal definition).

In this paper I contend that Cmax is relevant to characterizing layouts as well as networks.
Beyond helping scholars to interpret network maps, it can be used as a quality metric to compare
different layouts. After the related works section I will expose my motivation, formalize the problem
of finding the maximum connected-closeness, and provide formal definitions. Then I will propose
a graphic design for network maps and the rationale for my choices. I will present a practical
implementation of the metric, and highlight the main takeaways of a benchmark I conducted on
various networks and layouts, also presented in detail as an appendix. Finally, I will discuss the
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flaws of the metric and argue that despite those, it takes us one step closer to formalizing a stable
ground for visual network interpretation.

2 Related Work

The work presented here is novel in that it is designed to be embedded in a network map: connected-
closeness is at the same time a visualization technique and a statistical metric, and either part
needs the other to help the person interpreting their network visually. As a visualization technique,
it relates to the evaluation of graph drawing, and as a statistical metric it relates to neighborhood
preservation. These two issues being generally considered separately in the literature, I will look
at them one after the other.

The evaluation of graph drawing, as a field, features two distinct approaches that one can refer
to as “diagrammatic” and “topological” [14, 38]. The diagrammatic mode of interpretation is
the most often cited, and focuses on the legibility of relatively small networks, evaluating tasks
like path retrieval [31, 32, 40]. It offers quality metrics often called “aesthetic criteria” such as
minimizing edge crossings or getting homogeneous edge lengths. The work presented here departs
from this approach and relates instead to the topological mode of interpretation, where the node
placement mediates the topology of the network [28, 34, 35]. In this context, graph drawing
evaluation measures the cognitive ability to infer information about the graph structure by looking
at the layout, for instance retrieving clusters visually [19], which is critical to understanding large
graphs [10]. It is worth noting that, as Andreas Noack remarks [25], “layouts that group densely
connected nodes and separate sparsely connected nodes ... often violate aesthetic criteria like small
edge lengths or uniformly distributed nodes,” hence the incompatibility between the two approaches
to evaluating layouts. Connected-closeness aims at assessing the mediation of the topology, that is
the correlation between the layout (visually close nodes, notably visual groupings) and the graph
structure (connected nodes, notably clusters); and it does it with a statistical metric.

Statistical metrics are often used to compare the node placement to the graph structure, but
typically as a benchmark or as an optimization goal for new visualization techniques, and not
as a way to inform a network map reader. For instance, stress functions that some layout algo-
rithms aim to minimize [3] or majorize [8, 16], structural embeddedness [24, 27], or neighborhood
preservation [1, 36]. These can be seen as layout faithfulness measures, as they compare a node
placement to a given feature of the graph structure. However, contrary to connected-closeness,
these metrics are not designed to be understandable to an audience untrained in graph theory, like
most humanities scholars or data journalists. That being said, connected-closeness is similar to
neighborhood preservation: while stress functions compare the layout distances between all pairs
of nodes to a chosen graph distance (e.g., shortest path length), neighborhood preservation only
compares a small subset of node pairs (neighborhoods in the graph space or the layout space).
Connected-closeness similarly looks for neighborhoods in the layout space, although it compares it
to the simplest graph distance: being connected or not. Like neighborhood preservation, it quan-
tifies the general public’s expectation that visual neighborhoods indicate structural clusters [19],
but it pushes the logic further by finding the visual distance where the correlation is the strongest,
and displaying it visually.

This focus on neighborhoods is also at the core of nonlinear projection methods [7, 18, 36],
where it is hypothesized that “pure distance preservation might not be the ideal aim of a good
graph layout method. Rather, having groups of nodes topologically close in the graph be also
geometrically close in the layout allows reading the drawing well” [18]. Connected-closeness is
nonlinear in the exact same way, ignoring the structure beyond neighborhoods. I will return to
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this question with more insights after I have exposed the details of the metric.

3 Motivation

Most node-placement (embedding) techniques use edge length as a criterion. Stress majorization
strategies aim at specially defined distances [9, 16], while force-driven algorithms aim at the shortest
distances possible [6, 11, 15, 25]. From the standpoint of a scholar interpreting the layout visually,
this suggests that node distances can be interpreted directly, following the intuition that visually
close nodes are topology close ; unfortunately this assumption is most often false, which leads to
misinterpretations: visual distances correlate poorly with graph distances such as shortest path
length or mean commuting time [38].

Even though a force-driven placement algorithm tries to minimize edge lengths, the constraints
are generally too strong for it to succeed. Some edges have to remain long, while many disconnected
nodes have to be packed together. This is for instance the case of large star networks in two
dimensions (figure 2). Complex networks having a heavy-tailed degree distribution are subject to
the same constraints: their highly-connected nodes raise the same issue as the star of figure 2.

Figure 2: A star network with
100 nodes. Layout: Force At-
las 2 [15]. Connected node pairs
are less close than many discon-
nected pairs.

As a consequence, the simple interpretations that come to
mind are not necessarily true. It is not true in general that all
connected nodes are close, or that disconnected nodes are distant.
Two close nodes are not necessarily connected, and two distant
nodes are not necessarily disconnected. Yet we expect connected
nodes to be closer, on average, than disconnected nodes. Can we
build a quantifiable (and true) statement that captures the effect
of the layout?

This work aims at providing a quantified and explicit state-
ment about node distances and network topology, in order to
help scholars formulate reproducible interpretations. I do not
claim that it is the only possible interpretation, let alone the
best, but at least it is quantified and fits most force-directed
placements. This statement is, in short, “most connected nodes
are very close.” The “most” and the “very close” are quantified,
and the validity of the statement is precisely assessed (figure 1).
It is a visual statement insofar as “very close” is expressed as a
distance that must be plotted. The quantification depends on
the layout and has to be computed.

As we will see, this statement captures two features of force-
driven placement algorithms: the nonlinearity of their neighborhood preservation, and their prior-
ization of recall (minimizing the number of long edges) over precision (minimizing the number of
close but disconnected node pairs).

4 Problem formulation

The goal of this endeavor is to find a quantified version of the statement “most connected nodes
are very close” for a given network and layout. Let us have a network and a node placement in 2
dimensions. I refer to the distances in this arbitrary space as “Euclidean distances” to differentiate
them from other distances such as the geodesic distance (length of a shortest path). For a given
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Euclidean distance ∆, we can find the exact set of edges (or node pairs) whose Euclidean distance
is shorter (figure 3).

15.64 %
of edges

45.39 %
of edges

82.77 %
of edges

Figure 3: Network: C. Elegans [41]. Layout: LinLog [25] (Force Atlas 2 implementation [15]).
A given part of edges are smaller than a given selection distance ∆. The diameter of the circle
represents the selection distance ∆. Shorter edges are in green, longer edges in red.

We compute different indicators for each selection distance ∆ (see figure 4), from zero to the
size of the network map, or if you prefer, the layout distance separating the most distant nodes.
The percentage of edges shorter than ∆ is noted E%(∆) and plotted in black. It ranges from 0%
(unless some nodes perfectly overlap) to 100% (because at some point ∆ is bigger than the whole
layout). The percentage of node pairs closer than ∆ (including the disconnected ones) is noted
p%(∆) and plotted in blue. By definition both quantities are strictly increasing, and in practice
E%(∆) is always higher than p%(∆) (black over blue) because force-driven algorithms try to make
edges shorter (but we could build an anti-force-driven layout that aims at making edges longer
and the black curve would be under the blue curve). In other terms, an expected effect of the
node placement algorithm (but not guaranteed) is to overrepresent connected pairs captured at
any selection distance ∆, due to the attraction force between connected nodes.

Δ
Δmax

E %
(Δ) p%

(Δ)

C(Δ)

C(Δ)

%

Figure 4: Indicators computed over the selection distance ∆ for the network and layout of figure
3. Black curve: E%(∆) the percentage of edges shorter than ∆. Blue curve: p%(∆) the percentage
of node pairs closer than ∆. Green area: C(∆) = E%(∆)− p%(∆) the connected-closeness. Green
curve: idem. Green bar: ∆max the distance of maximum connected-closeness.

If the edges had no influence on the node placement (e.g., if the network was rewired randomly
after the node placement) then the blue curve p%(∆) and the black curve E%(∆) would resemble
each other, because the distance of connected pairs (in black) would have nothing special compared
to any pair (in blue). As p%(∆) (in blue) is a natural point of comparison, the situation presents an
opportunity. Indeed, the share of node pairs p%(∆) can be understood as the share of edges if they
were distributed at random, if the network were rewired at random after the layout was computed.
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Let us call this the “expected share of edges shorter than ∆”, where “expected” means “in a
randomly rewired network” (for the same layout). We can then compare the actual proportion
of edges (in black) to the expected proportion (in blue). The difference between the black and
the blue curve, highlighted as a greenish area and also plotted as the green curve, is therefore an
important metric: the proportion of edges shorter than ∆ above expectations (a formal definition
is given in the next section).

The green curve is null at both ends (because E% and p% both range from 0% to 100%), so it has
to reach a maximum in between (plotted as a vertical green line). This point is remarkable. First,
the higher the green curve, the more “unexpected” edges are captured by the layout (this is the
most dramatic statement we can make); “unexpected” meaning here “compared to the same layout
but with edges rewired at random”. Second, it provides the precise distance where the layout is the
most efficient, which is precious practical information about the visualization. Identifying this point
allows forging a quantitative and informative statement such as “X% of edges are unexpectedly
shorter than ∆”, where X is as high as possible. I propose to call the quantity represented by
the green curve “connected-closeness” and turn its maximum into a network layout metric. In
practice, the curve may have a plateau, which challenges the existence of a single maximum. I
address this issue in section 6 “Implementation”.

5 Definitions

5.1 Naming

• C(∆) is called the connected-closeness for a given Euclidean distance ∆. It measures the
percentage of unexpectedly-close connected nodes, where close means closer than ∆, and con-
nected means adjacent.

• ∆max is called the distance of maximum connected-closeness.

• Cmax = C(∆max) is called the maximum connected-closeness.

5.2 Definition of connected-closeness

C(∆) =
E(∆)− Eexpected(∆)

E(∞)
(1)

• E(∆) is the number of edges shorter than the Euclidean distance ∆

• E(∞) = e is the total number of edges (i.e., the graph size e)

• Eexpected(∆) = E(∞)× p(∆)

p(∞)
is the number of expected edges shorter than ∆

• p(∆) is the number of node pairs closer than the Euclidean distance ∆

• p(∞) = n × (n − 1) is the total number of node pairs (n is the graph order, its number of
nodes)

Remark that by definition p(∆)
p(∞) represents the probability that a node pair picked at random

gets placed closer than ∆, but also the probability that an edge redistributed at random gets placed
closer than ∆. Indeed, edges redistributed at random have the same probability to appear for all
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node pairs. As a consequence, Eexpected(∆) represents the average number of edges that would be
placed closer than ∆ if all edges were redistributed at random. This is what “expected” means in
this context.

5.3 Other useful quantities

• E%(∆) =
E(∆)

E(∞)
is the share of edges shorter than ∆.

• p%(∆) =
p(∆)

p(∞)
is the share of node pairs placed closer than ∆

• Pedge(∆) =
E(∆)

p(∆)
is the probability for two nodes closer than ∆ to have an edge.

Using these quantities we can rewrite connected-closeness as follows:

C(∆) =
E(∆)

E(∞)
− p(∆)

p(∞)
= E%(∆)− p%(∆) (2)

The two characterizations of connected-closeness (1) and (2) are trivially equivalent (by defi-
nition of Eexpected) but they do not read the same. The first reads as “the unexpected number of
edges divided by the total number of edges” which corresponds to the intuition we aim at quanti-
fying, while the second reads as “the black curve minus the blue curve” which corresponds to how
the indicators behave in figure 4.

5.4 Definition of the maximum connected-closeness

Cmax is defined as the maximum of C(∆) for all ∆. ∆max is the Euclidean distance where C(∆)
is maximum. In case of ties, the smallest ∆ is retained (see section 6 for additional details).

Note: C(∆) is better when it is higher, while ∆ is better when it is smaller. The “max” in
∆max corresponds to the maximization of C (the connected closeness).

5.5 Quantified mediation

Our target intuition (figure 1) is quantified by E%(∆max). The resulting statement “E%(∆max) of
connected nodes are closer than ∆max” quantifies how the layout mediates the topology under a
number of assumptions. It assumes that we compute E%(∆max) in practice, which requires finding
∆max in the first place. It also assumes that ∆max is represented visually or rendered meaningful
another way. And it assumes that Cmax is significantly greater than zero, else its C is basically
flat and the indicators are degenerate. I address the questions raised by these assumptions in the
next two sections.

It is worth noting that all the metrics defined above, including Cmax and ∆max, are fully
determined by the node placement. They cannot be different for the same set of node coordinates.
However, the optimization proposed below introduces a non-deterministic element via random
sampling, as a trade-off for a better performance. In this situation, Cmax will better preserve its
true value than ∆max, for the reasons that I will develop when it comes to degenerate cases. In
short, notwithstanding optimization, the layout distance ∆max characterizes the node placement.
Furthermore, as the benchmark will show, it is also remarkably stable through multiple re-runs
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of the same non-deterministic layout algorithm: in that sense it also characterizes the application
of a given algorithm to a given network. In other words, connected-closeness quantifies an aspect
of how the layout mediates the graph structure, that is by containing a certain amount of edges
(E%(∆max)) under a certain visual distance (∆max).

6 Design and visualization

Figure 5: C. Elegans [41] (Layout: LinLog [25]) visualized using ∆max as a grid. The legend
provides some necessary context.

As the quantification is in part visual (∆max directly relates to the visualization) the graphic
design matters. I offer a few recommendations to make the most out of connected-closeness. These
guidelines are implemented in figure 5.

• ∆max should be represented visually. I suggest using a grid, as the repetitiveness of the cells
makes it easier to estimate visually whether a given pair of nodes is shorter than ∆max.

• The most directly useful statement with connected-closeness is E%(∆max) because it quan-
tifies the intuition about the layout as a mediation. It should be prioritized as the first
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information to communicate (along with ∆max). In the context of figure 5 it reads as “76%
of connected nodes are ∆max or closer”.

• The readers of the network map cannot be expected to know about connected-closeness,
thus the meaning of the indicators should be stated in plain English (or any language). The
formalism is meaningless to most readers and should be dropped, but as ∆max has to be
mentioned, its original notation may be retained. I made that choice in figure 5 but an
explicit name such as “characteristic distance” might be more efficient at communicating the
idea.

• The second priority is to provide a justification about the choice of ∆max. The reader cannot
infer from E%(∆max) what makes ∆max special, because ∆max does not maximize E% but
the connected-closeness C. Thus the second priority is to state the meaning of Cmax in plain
English to provide a ground for the choice of ∆max; for instance, in the context of figure 5:
“54% of connected nodes are closer than ∆max due to the effect of the layout”.

• Once C has been stated, it is possible to provide a meaning for ∆max. For instance “∆max

is the distance at which the effect of the layout is maximum”. In figure 5 I did not state
the meaning of ∆max explicitly because it is less informative, but that choice is debatable.
I chose instead to clarify the meaning of connected-closeness with a pie chart featuring
Eexpected(∆max)/E(∞) and Cmax, and I hinted at the connection between Cmax and ∆max

by using the same color for the grid and the slice of the pie chart. In the context of a
publication, the most complicated details should probably feature in the caption of the main
text.

• Last but not least, a common but regrettable misunderstanding should be prevented. The
probability of A given B is often confused with the probability of B given A. We should make
it clear that the probability for two connected nodes to be close does NOT equate with the
probability for two close nodes to be connected. Even in cases where the layout succeeded
at making most edges quite short, one expects most close nodes to be disconnected. We
should avoid the misunderstanding that closeness implies connection. To address this issue
I propose to simply state the probability Pedge in plain English for the sake of clarity, even
though it is rarely informative in practice. In the context of figure 5: “two nodes closer than
∆max have 9% chances of being connected”. Remark that it is much lower than the 54% of
Cmax.

6.1 Resistance to misuses

Beginners and non-experts might be inclined to put too much trust into indicators whose validity
conditions they do not fully master [20]. It is thus important to push back against docility and
proactively implement protections against the most preventable misinterpretations.

The statement proposed by connected-closeness only makes sense insofar as ∆max captures a
significant share of edges. When C remains too low its curve is basically flat and finding ∆max

and its related indicators face a degeneracy issue. In addition, ∆max is not really characteristic of
the layout because connected-closeness fails to capture any effect of the layout. For instance in the
case of the random layout, ∆ never captures more edges than if they were redistributed at random
(see the benchmark in the appendix). Displaying ∆max while Cmax is close to zero would imply
that the layout has a characteristic distance while it has not, even though we can always compute
∆max in practice.
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For this reason, as a protection against misuses, I propose to display ∆max if Cmax is above a
threshold that I fixed at 10% because it provided satisfying results in my limited testing (it can
be adapted and should be debated). Below that threshold, ∆max and all indicators except Cmax

are declared not applicable, in plain English (figure 6).

∆max is not applicable

Figure 6: C. Elegans [41], random layout, visualized using ∆max. As Cmax is below 10%, ∆max is
declared non-applicable.

7 Implementation

7.1 Fixing degenerate cases

Certain realizations of C(∆) have a plateau on top, which makes finding Cmax problematic (figure
7). This does not happen only when C is very low. It may also happen when it is very high and
thus, intuitively, meaningful (degeneracy is discussed in subsection 9.1). In such cases we should
use the smallest ∆ as a tie-breaker, as smaller distances are more informative (a smaller ∆max is
more selective, see figure 3). However, in some cases the plateau has tiny fluctuations that do not
provide the expected solution (what appears to be the leftmost point of the flat part).

Figure 7: A planted partition model with Pin = 99%. Layout: Force Atlas 2 [15]. The function
C(∆) (green) has a plateau, corresponding to the gap between the two clusters. The smallest
distance is preferred, as it is the most informative.
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I propose as a basic solution to use a tolerance parameter ϵ. The definition of connected-
closeness is adapted to allow picking the smallest distance that fits the maximum of C(∆) within
a tolerance of ϵ. In my limited testing I settled on a value of ϵ = 0.03 (i.e., 3%).

7.2 Optimization

The steps of a naive implementation are:

1. Compute the distances of all pairs of nodes

2. Sample the distances to filter out those that are too similar

3. Compute indicators for each remaining distance

4. Pick the max of C(∆) to define ∆max and relevant indicators

Computing and storing the distances between all node pairs is expensive. Then the sampling
of distances is relatively straightforward, for instance using regular intervals up to the longest
distance between node pairs. Yet if the network is sparse, the necessary precision may require
small intervals. Both aspects can be optimized.

The distribution of E%(∆) and p%(∆) can be estimated by a simple random sampling of node
pairs. I found a 10% sampling satisfying and lower percentages remained acceptable. As the
connected-closeness curve itself is less important than its maximum, the errors on Cmax and ∆max

are lower than the average error on C(∆). But there is another easy improvement: adding the list
of edges to the sampling. Indeed, many networks are sparse and edge lengths need to be computed
anyway. To keep it simple, I propose to sample as many pairs as there are edges. In the case of
C. Elegans [41], it means a sampling of 2.7% node pairs, which leads to an error of 3.7% on Cmax

and 3.3% on ∆max.
Finding Cmax can be optimized by a grid search strategy. We split the range of distances into a

number of equal parts, and we pick the part that is the most promising (where C(∆) is the highest).
Then we iterate until the precision is satisfying. We leverage here the empirical observation that
C(∆) is a relatively smooth curve. The steps are as follows:

1. Initialize the search with a range from 0 to the largest distance ∆, and set a grid size s.

2. Compute C(∆) in s equally separated distances across the whole range.

3. Pick the highest C(∆) among the data points, and use the range from the previous to the
next data point for the next iteration.

4. Iterate over 2. and 3. until Cmax is not improved significantly (or at all).

A reference implementation of this optimized algorithm, including the ϵ tolerance modification,
is available online in a public Javascript notebook1.

7.3 Running time

On a consumer laptop, for the network of figure 5, the optimized implementation computes in 10 ms
to 20 ms, versus 350 ms to 400 ms for the naive implementation. As the number of edges exceeds
10,000, the optimized implementation takes seconds to compute, while the naive implementation
takes minutes. The table below shows how the computation time scales for square lattices.

1https://observablehq.com/@jacomyma/efficient-implementation-of-connected-closeness

https://observablehq.com/@jacomyma/efficient-implementation-of-connected-closeness
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Network # nodes # edges Time OPTIM. Time NAIVE

Square lattice 2x2 4 4 1 ms 1 ms
Square lattice 4x4 16 24 1 ms 2 ms
Square lattice 8x8 64 112 2 ms 16 ms
Square lattice 16x16 256 480 5 ms 238 ms
Square lattice 32x32 1,024 1,984 27 ms 8,238 ms
Square lattice 64x64 4,096 8,064 326 ms 259,645 ms
Square lattice 128x128 16,384 32,512 4,542 ms

Table 1: Computation time for the optimized and naive implementations of connected-closeness
on square lattices of various sizes, on a consumer laptop.

8 Benchmark (highlights)

I conducted a benchmark on connected-closeness using 14 network generators (e.g., stochastic block
model with different settings) and 7 node-placement algorithms available in Javascript libraries
(Javascript is popular for online data visualizations). For each (generator, layout) pair I generated
and visualized 100 networks of 100 nodes, and computed the main indicators on the resulting layout:
∆max, Cmax, E%(∆max), p%(∆max), and Pedge(∆max). The benchmark data and visualizations
are detailed in appendices. Here I only highlight the main takeaways.

Connected-closeness is a remarkably stable metric. Force-directed placement algorithms
are non-deterministic, and resulting node coordinates have a high variance. Yet we know that the
patterns produced (e.g., clusters, center-periphery relations) can be stable. Connected-closeness
captures this aspect very well.

Perhaps not so surprisingly, the Cmax of a same network with a community structure (e.g., two
cliques linked by a bridge) visualized by a force-directed layout (e.g., LinLog [25]) has a standard
variation as low as 0.00819% for an average Cmax (over multiple renderings of that same layout)
of 50.5%.

More surprisingly, Cmax is also stable for different networks with similar properties. For instance
a stochastic block model with two blocks, an internal link probability of 90% and an external link
probability of 10%. 100 different networks rendered with LinLog give an average Cmax of 40%
with a standard deviation of 0.49%. The benchmark shows consistently similar results for other
network models and other force-directed layout algorithms.

Force-directed layouts perform well in the presence of a community structure. This
is expected considering that, as Noack wrote, “Modularity clustering is force-directed layout” [26].
Connected-closeness confirms it: Cmax is consistently high for such networks (figure 8).

As the community structure decreases, so does connected-closeness. A stochastic block
model allows quantifying the influence of the community structure (figure 9). As the internal link
probability Pin drops closer to 50%, the community structure disappears. Cmax drops accordingly
(figures 9 and 10).

Connected-closeness is low for random layouts, as expected. Indeed, by definition they
do not even try to bring connected nodes closer; they put all nodes randomly close regardless of
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Layout Cmax Avg. Cmax S.D.

Force Atlas 2 39% 0.70%
Lin Log 40% 0.49%
d3 Force Simulation 32% 2.90%

Figure 8: Cmax for 100 renditions of a stochastic block model with Pin = 90% (probability of
an edge between two nodes of the same block) and Pout = 10% (between two nodes of different
blocks), for three different force-directed layouts. The dots represent the average, the error bars
the standard deviation.

whether or not they are connected. Their connected-closeness is close to zero (figure 11).
In the same perspective, “bad” layouts perform worse than “good” layouts on the same network.

The benchmark features a “bad” parametrization of Force Atlas 2: the strong gravity and the low
resolution of the simulation introduce randomness, and the layout is stopped after too few steps.
The resulting layouts are visibly glitchy (figure 12 at the center). Following intuition, this layout
performs half-way between the default settings of Force Atlas 2 [15], and a random layout (figure
13). Remark that even for bad and random layouts, the standard deviation of Cmax is very low.

Force-directed layouts perform better on sparse networks. Bringing connected nodes
closer is less constrained in networks with a low density. Force-directed algorithms are very good
at producing a high Cmax in this context (figures 14 and 15).

Layouts are pointless on cliques. This follows intuition: as every node is connected to every
other node, all are topologically equivalent, and the node placement is meaningless unless all nodes
are stacked on the same coordinates. By definition Cmax is always null for cliques, as rewiring
edges makes no difference whatsoever. The same argument is true for stables (networks with no
links).

The denser the network, the lower Cmax is achieved by force-directed layouts. This
intuitively follows the case of cliques. We can see it experimentally by comparing random networks
with different densities (figure 16).

More communities increases Cmax. Indeed, a higher count of dense clusters sensibly decreases
p%(∆max), the share of node pairs closer than ∆max, without decreasing much E%(∆max), the
share of edges shorter than ∆max. Let us compare networks of 100 nodes with groups internally
connected with a 99.9% chance against 0.01% from one group to another, and using the Force Atlas
2 layout. For 5 groups we obtain Cmax = 81% (figure 20 in appendix), against Cmax = 50% for only
2 groups (figure 21 in appendix). E%(∆max) is essentially the same (97% and 99% respectively)
while p%(∆max) is very different (16% and 49% respectively).
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Figure 9: Samples of stochastic block model networks with a decreasing community structure.
Layout: Force Atlas 2 [15]. Pin in reading order: 99.9%; 99%; 90%; 80%, 70% and 60%. Cmax in
reading order: 50%, 50%, 40%, 25%, 18% and 12%
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Network Cmax Avg. Cmax S.D.

Two blocks connected at 99.9% 50% 0.06%
Two blocks connected at 99% 49% 0.21%
Two blocks connected at 90% 39% 0.70%
Two blocks connected at 80% 27% 0.92%
Two blocks connected at 70% 17% 0.70%
Two blocks connected at 60% 12% 0.67%

Figure 10: Cmax for 100 renditions of stochastic block models with decreasing Pin. With force-
driven layouts, Cmax is high in presence of a strong community structure. Layout: Force Atlas 2.
The dots represent the average, the error bars the standard deviation.

Layout Cmax Avg. Cmax S.D.

Random (disc) 1% 0.50%
Random (square) 1% 0.54%

Figure 11: Cmax for 100 renditions of a network with a community structure with random layouts.
Cmax is close to zero for random layouts regardless of the network. The dots represent the average,
the error bars the standard deviation.
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Figure 12: The same network with a community structure, rendered with three layouts. Left to
right: Force Atlas 2 with default settings, Force Atlas 2 with intentionally bad settings, random
layout.

Layout Cmax Avg. Cmax S.D.

Force Atlas 2 39% 0.70%
Force Atlas 2 BAD 19% 2.12%
Random (disc) 1% 0.50%

Figure 13: Cmax for 100 renditions of a network with a community structure with three layouts,
from “good” to “bad”. Cmax is only as high as the layout is “good” (in presence of a strong
community structure). The dots represent the average, the error bars the standard deviation.
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Layout Cmax Avg. Cmax S.D.

Force Atlas 2 100% 0.04%
Lin Log 100% 0.05%
d3 Force Simulation 97% 0.28%

Figure 14: Cmax for 100 renditions of a sparse random network (link probability 0.1%) with three
different force-directed networks. Cmax is high for sparse networks visualized with any force-driven
layout. The dots represent the average, the error bars the standard deviation.

Network Cmax Avg. Cmax S.D.

Random network connected at 0.1% 100% 0.04%
Chain 97% 0.52%
Square lattice 94% 3.19%
Star 59% 0.47%

Figure 15: Cmax for 100 renditions of a chain network with three different force-directed networks.
Cmax is high for most but not all sparse networks (it is lower for star-shaped networks) with force-
driven layouts. The dots represent the average, the error bars the standard deviation.

Network Cmax Avg. Cmax S.D.

Random network connected at 0.1% 100% 0.04%
Random network connected at 5% 56% 2.72%
Random network connected at 50% 10% 0.52%

Figure 16: Cmax for 100 renditions of a random networks with three different densities. Sparse
random network visualized with a force-driven layout achieve a high Cmax. Layout: Force Atlas
2 [15]. The dots represent the average, the error bars the standard deviation.
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9 Discussion

9.1 Degenerate cases

I encountered only three distinct cases of degeneracy.
Case 1: the network consists of well-delineated clusters (figures 7, 19-22(a)(c) and 23(c)). The

nodeless spaces between the clusters generate plateaux in C(∆), because any distance bigger than
one cluster but smaller than the inter-cluster gap is evaluated the same.

Case 2: the layout adds no information, either because it is random (figures 19-32(d)(e)), or
because the network is too random and dense (figure 25), a clique (figure 18) or a stable. In this
case, E% ≈ p% and C ≈ 0. C is pointless, ∆max has no relevant meaning, and the assumption
that distances mediate connectedness is wrong.

Case 3: the C curve is low but not quite null, and flat but not totally. In such case the
degeneracy is low but still present in the sense that ∆max gets into chaotic regime: minor changes
in node positions have a low impact on Cmax but a big impact on ∆max. This happens either
because the layout is bad and adds randomness (figures 19-32(b)), or because the clusters are too
close and entangled (figures 25-26(a)(c)).

9.2 Design space

My rationale for design being stated, let me acknowledge that my recommendation should now
be tested. There are alternatives to the grid (hexagons, circles...). It might be more productive
to color edges depending on how their length compares to ∆max. The metric might be better
understood to certain publics framed as a confusion matrix with precision and recall (see next
subsection), etc. Trying and assessing these options is beyond the scope of this paper.

9.3 How connected-closeness relates to precision and recall

Precision and recall are performance metrics commonly used in pattern recognition, information
retrieval and machine learning. They come up when testing the accuracy of a retrieval task, where
one tries to find which elements of a given set have a certain feature. Precision measures how many
retrieved elements have the feature, while recall measures how many elements with the feature were
retrieved. False positives lower precision, while false negatives lower recall.

If we assume that the visualization carries out the task of retrieving connected nodes by selecting
the node pairs closer than ∆max, then by definition:

• precision is Pedge(∆max), the probability for two nodes closer than ∆max to be connected;

• recall is E%(∆max), the share of edges shorter than ∆max.

I argued in section 6 that the recall E%(∆max) is directly useful to the reader, while, on
the contrary, the precision Pedge(∆max) only serves as a protection against misinterpretation.
Indeed, as figure 2 illustrates, even simple networks may be impossible to arrange so that only
connected nodes are close. This effect is particularly severe in networks with a heavy-tailed degree
distribution, and for many empirical networks, a high precision is unattainable in practice. In that
case, maximizing recall is more productive. Force-driven node placement algorithms typically do
so, as in their design, edges influence the attraction force but not the repulsion force [15, 25].
They aim to bring connected nodes closer even if it also brings disconnected nodes closer; they
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minimize false negative and ignore the production of false positives, they seek recall and disregard
precision.

The literature about dimensionality reduction calls precision “trustworthiness” and recall “con-
tinuity”, and identifies the aforementioned tradeoff between them [37]. Networks are not strictly
equivalent to multidimensional datasets but the similarity is sufficient to make the connection. We
can then say network maps do not offer a trustworthy neighborhood preservation in general, even
when it has a good continuity.

For a star-shaped network of 100 nodes, force-driven layouts typically obtain a recall above
95% for a precision below 10% (data in appendix A.7). Yet high precision can be attained for
certain networks. For two cliques bridged by a single edge, force-driven layouts find a recall and a
precision above 90% (see appendices A.4 and A.6). However, such extreme community structures
are rare in practice, as empirical networks often feature a heavy-tailed degree distribution, like the
network from figure 5, with a recall of 76% for a precision of 9%.

When facing a network map, one should not expect that distances mediate connectedness with
a good precision, although recall could be good. In general, one should expect many disconnected
nodes to be close. Network layouts are flawed as neighborhood preservation techniques; but who
said it was their goal?

The precision issue is not relative to the layout per se, but to the assumption that distances
directly measure connectedness. We have at least three reasons to consider this assumption wrong.
First, as a methodological commitment, such assumption should be considered wrong by default,
until we have a reason to hold it for true. Second, the precision issue precisely tells us that this
interpretation is not always appropriate. Third, the graph drawing literature does not explicitly
support this interpretation. Noack, for instance, argues that force-driven layouts make the com-
munity structure visible, which is a sensibly different question [26]. The precision issue tells us that
we cannot take for granted that distances accurately mediate connections, but it may sometimes
have a good recall and a bad precision, and in rare situations, a good recall and a good precision.
Connected-closeness tells us how valid is this interpretation for a given network map; and as we
have seen, it does not work in every situation.

9.4 Beyond the assumption that distances measure connectedness

If the assumption that distances measure connectedness is wrong in general, then why not pick a
better one? My answer is twofold. First, although it is not true in general, it can be true, and
when it is, it is useful. Second, I did not find a simple enough and truer alternative. Simple,
because interpretations are only as useful as the audience understands them; and at least true in
more situations: more solid, more grounded. The geodesic distance is a candidate, by it poorly
correlates with the Euclidean distance [38], and the interpretation is less straightforward, more
technical. Mean commuting time is another candidate, but it does not correlate at all [38]. As it is
even more complicated to explain than the geodesic distance, there is little hope to obtain a useful
result in practice. Other distances could make candidates (e.g., resistance distance [17]), but we
have no reason to believe that they correlate with layout distance.

However, we do have reasons to consider the assumptions suggested by graph drawing algo-
rithms. Considering that force-driven [6, 11, 15, 25] and stress majorization [9, 16] algorithms
explicitly aim at minimizing edge length, the first assumption we should test is that connected
nodes are close, which is precisely the assumption of connected-closeness. But another ambition
is frequently stated: manifesting the community structure. Following Noack [26] we may consider
the assumption that layout distances measure the belonging to a same community. Noack refers
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to modularity clustering [23], but there are other approaches to community detection [33]. These
techniques share an operationalization problem: as all community detection methods “exhibit at
least some degree of degeneracy” [29], they do not offer a stable ground to build a practical mea-
sure. There are multiple, equally valid ways to partition a given network in communities. As a
result, the measure would not only depend on the layout, but also on the partition found. This
added dependency causes two major issues: for a given network, the value would not be character-
istic of the layout, and the interpretation would now require understanding the topic of community
detection (which is far from simple).

I acknowledge, however, the intuition that force-driven layouts are better at putting groups
together than producing short edges. I hypothesize that a continuous distance that reproduces the
community structure without requiring to compute well-demarcated communities would correlate
with the Euclidean distance and provide a better assumption for interpreting network maps in
favorable cases. This endeavor is for a future work, and I hope that connected-closeness can bring
us one step closer to an more grounded interpretation framework for network maps despite its
limitations.

9.5 The nonlinear problem

The nonlinearity of neighborhood preservation in networks roots in two unrelated issues. The first
is the lack of space in the Euclidean plane, which prevents high-degree nodes from having all their
neighbors close, as seen in the star of figure 2. Hyperbolic spaces, nonlinear, can be used to solve
this issue [21].

The second issue is the empirical criterion of cluster separation, the goal to “group densely
connected nodes and separate sparsely connected nodes” [25]. To achieve this separation, a layout
must necessarily make the bridging edges long (see figure 17). Manifesting the community structure
is not the only possible goal for a layout, but it is common in practice, and it is incompatible with
homogeneous edge lengths, which prevents linearity.

Link probability
in same group: 95%

Link probability
in same group: 95%

Link probability across
different groups: 5%

“Bridges”“Cluster” “Cluster”

Figure 17: Neighborhood preservation in network layouts has to be nonlinear because cluster
separation requires long edges (the bridges).

Connected-closeness is nonlinear in at least two ways because these two roots are reflected in
its design. The first issue is reflected in the highlighting the recall E%(∆max) and the downplaying
the precision Pedge(∆max). The overrepresentation of false positives (close but disconnected nodes)
captures this nonlinearity. The second issue is reflected in the use of a threshold distance (∆max)
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for quantification. Not all edges can be short because of cluster separability, and intuitively, ∆max

relates to the size of communities.
Any alternative to connected-closeness will have to deal with the two same sources of nonlin-

earity.

10 Conclusion

In this paper I presented the connected-closeness, a metric consisting of two distinct parts: the
maximum connected-closeness Cmax = C(∆max) and the distance of maximum connected-closeness
∆max. ∆max is characteristic of the layout, and is intended to be drawn on the visualization as a
contextual element. Cmax is characteristic of both the network and the layout, and is only high
when, intuitively, the distances in the layout can be interpreted meaningfully. It allows a quantified
statement about how the node placement mediates the topology of the network, such as “76% of
connected nodes are ∆max or closer”. In practice, as the benchmark illustrates, connected-closeness
offers us different opportunities:

1. It allows quantitative statements about the placement of nodes in the visualization.
Different indicators provide different statements, some being simple enough to be directly useful
to a non-expert audience.

2. Maximum connected-closeness Cmax assesses the layout’s validity (from a specific
angle). Different layouts have different goals, and this metric accounts for one of them (bringing
connected nodes closer). It states a game at which the layout is presumably good (following the
arguments of algorithm designers [6, 11, 15, 25]), and checks that it actually is. The benchmark
shows that force-directed layouts are indeed good at the game of bringing connected nodes closer,
but also detects situations and layouts that are bad at it.

3. It allows comparability. As Cmax is comparable on different layouts for a given network,
it can be used as a layout quality metric to determine which algorithm performs better. It even
allows comparability across network generators and across multiple renditions of the same non-
deterministic layout. Optimization aside, the metric is deterministic and the benchmark has shown
that its standard deviation is, in most situations, very low.

4. It shows that layouts capture something of the topological structure of networks.
As force-driven placement algorithms are non-deterministic, one might conclude that they are not
reliable. Practice tells otherwise, but it is not easy to quantify how similar are two renderings of
the same network, by the same layout algorithm, while all node positions are different. Maximum
connected-closeness Cmax, as a highly consistent measure of network layouts, proves that some of
them (e.g., force-directed algorithms) consistently capture an aspect of the topological structure
of the network they represent.

5. It shows that interpreting layout distances as a proxy for connectedness cannot
be taken for granted. The calculations provide the precision and recall of visual distances as
a statistical measure of edge presence. Our empirical results show that even though this measure
may have a good precision and recall (it depends on the network and the layout), it often has a
good recall but a bad precision, or in the most random cases a bad precision and recall.
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A Appendix: Benchmark (details)

This appendix presents a benchmark on connected-closeness. I used 14 network generators (e.g.,
stochastic block model with different settings) and 7 node-placement algorithms available in
Javascript. The choice of Javascript is justified by its importance for interactive data visual-
ization. One of the algorithms used is the default choice offered by the D3.js library. For each
(generator, layout) pair I generated and visualized 100 networks of 100 nodes, and computed the
following indicators: ∆max, Cmax, E%(∆max), p%(∆max), and Pedge(∆max) (as previously defined
in the paper). The benchmark is available as an online notebook2 as well as its analysis including
the data3. First I will provide visual examples and second I will present the statistical results of
each indicator one after the other.

The data of the benchmark are presented in extenso in appendix A.7.

Network generators. 14 different strategies were used to generate networks. Note that some of
them generate a different network every time (e.g., the random-network generator) and others do
not (e.g., the clique generator). The stochastic-block-model generator is set to a planted-partitions
model [4].

• Clique. All nodes are connected.

• Two bridged cliques. 2 cliques (groups of fully connected nodes) connected by 1 edge.

• Two blocks connected at 99.9%. Network generated by stochastic block model. It has
2 blocks. Two nodes in the same block have a 99.9% probability of being connected. Two
nodes in a different block have a 0.1% probability of being connected.

• Two blocks connected at 99%. Network generated by stochastic block model. It has 2
blocks. Two nodes in the same block have a 99% probability of being connected. Two nodes
in a different block have a 1% probability of being connected.

• Two blocks connected at 90%. Network generated by stochastic block model. It has 2
blocks. Two nodes in the same block have a 90% probability of being connected. Two nodes
in a different block have a 10% probability of being connected.

• Two blocks connected at 80%. Network generated by stochastic block model. It has 2
blocks. Two nodes in the same block have a 80% probability of being connected. Two nodes
in a different block have a 20% probability of being connected.

• Two blocks connected at 70%. Network generated by stochastic block model. It has 2
blocks. Two nodes in the same block have a 70% probability of being connected. Two nodes
in a different block have a 30% probability of being connected.

• Two blocks connected at 60%. Network generated by stochastic block model. It has 2
blocks. Two nodes in the same block have a 60% probability of being connected. Two nodes
in a different block have a 40% probability of being connected.

• Random network connected at 50%. Random network: two nodes have a 50% proba-
bility of being connected.

2https://observablehq.com/@jacomyma/evaluating-the-connected-closeness-metric-post-design
3https://observablehq.com/@jacomyma/highlights-on-connected-closeness

https://observablehq.com/@jacomyma/evaluating-the-connected-closeness-metric-post-design
https://observablehq.com/@jacomyma/highlights-on-connected-closeness
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• Random network connected at 5%. Random network: two nodes have a 5% probability
of being connected.

• Random network connected at 0.1%. Random network: two nodes have a 0.1% proba-
bility of being connected.

• Chain. A chain of nodes.

• Star. Network with a central node, and the other nodes are only connected to that one.

• Square lattice. This network is a square grid of nodes.

Layouts. 7 different algorithms were used to generate networks.

• Force Atlas 2. The Force Atlas 2 layout with standard settings [15].

• Force Atlas 2 BAD. The Force Atlas 2 layout with bad settings: too much gravity, not
enough iterations.

• Lin Log. The Force Atlas 2 layout with the LinLog energy model. [25]

• Random (in a disc). Nodes are placed at random in a disc.

• Random (Graphology). Nodes are placed at random in a square, using the method from
the Graphology library.

• Circular layout. Nodes are placed around a circle. Uses the method from the Graphology
library. Note: this algorithm uses the order of nodes. For most generators (bridged cliques,
block models, chain, star and lattice) the nodes are ordered in a relevant way, which produces
remarkable patterns. For the random network generators, the node order is irrelevant and
the circular layout will behave similarly to a random layout.

• D3 Force Simulation. The force-directed layout algorithm implemented in the library
D3.js, with default settings.
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A.1 Visual examples

You will find here one rendition for each (networkgenerator, layout) pair. For each of these 14× 7
cases, that same network is visualized and accompanied by a plot. The network visualization has
colored edges if Cmax > 10%, with edges shorter than ∆max in green, and longer edges in red. The
plot features the main indicators over the Euclidean distance ∆. The share of edges shorter than
∆, i.e. E%(∆), is plotted in black. The share of node pairs closer than ∆, i.e. p%(∆), is plotted
in blue. The connected-closeness C(∆) is plotted in green. Its maximum point Cmax = C(∆max)
is highlighted by a vertical green bar.
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Figure 18: Clique



JGAA, 27(5) 341–404 (2023) 369

Figure 19: Two cliques connected by one bridge
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Figure 20: Five blocks internally connected with a probability of 99.9% (and 0.1% in-between)
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Figure 21: Two blocks internally connected with a probability of 99.9% (and 0.1% in-between)
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Figure 22: Two blocks internally connected with a probability of 99% (and 1% in-between)
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Figure 23: Two blocks internally connected with a probability of 90% (and 10% in-between)
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Figure 24: Two blocks internally connected with a probability of 80% (and 20% in-between)
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Figure 25: Two blocks internally connected with a probability of 70% (and 30% in-between)
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Figure 26: Two blocks internally connected with a probability of 60% (and 40% in-between)
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Figure 27: Random network with a connection probability of 50%
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Figure 28: Random network with a connection probability of 5%
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Figure 29: Random network with a connection probability of 0.1%
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Figure 30: Chain
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Figure 31: Star
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Figure 32: Square lattice
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A.2 Maximum connected-closeness Cmax = C(∆max)

Cmax is the maximum percentage of unexpectedly-close connected nodes. For a given network, it
allows comparing different layouts; and for a layout, it allows comparing different networks. Higher
is better, as it means that the layout captures more unexpected edges under distance ∆max. As we
have seen, “unexpected” means here “discounting what we would observe on average with edges
redistributed at random”.

For each (network generator, layout) pair, the values for the 100 renditions are represented as
a dot (mean) with an error bar (standard deviation). Noteworthy: the standard deviation may be
so low that the bar is not even visible (which is remarkable).
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A.3 Distance of maximum connected-closeness ∆max

∆max is the Euclidean distance defining the maximum percentage of unexpectedly-close connected
nodes. Its unit is the arbitrary unit generated by the node coordinates provided by the layout (it
is not normalized). For a given layout, it allows comparing different networks. It does not compare
from one layout to another. Lower is better, but only insofar as C(∆max) is high. ∆max by itself
does not tell much about a network map, as its purpose is to be drawn on the visualization to
provide context. It is however useful to look at how if behaves in different situations, and notably
its consistency (standard deviation).

For each (network generator, layout) pair, the values for the 100 renditions are represented as
a dot (mean) with an error bar (standard deviation). Noteworthy: the standard deviation may be
so low that the bar is not even visible (which is remarkable).
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A.4 E%(∆max), the share of edges shorter than ∆max (recall).

E%(∆max) is a percentage of edges. For a given network, it allows comparing different layouts,
and for a layout, it allows comparing different networks. It also compares to p%(∆max).

E%(∆max) is also the recall of measuring connectedness with the distance ∆max.
For each (network generator, layout) pair, the values for the 100 renditions are represented as

a dot (mean) with an error bar (standard deviation). Noteworthy: the standard deviation may be
so low that the bar is not even visible (which is remarkable).
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A.5 p%(∆max), the share of node pairs closer than ∆max.

p%(∆max) is a percentage of node pairs. For a given network, it allows comparing different layouts,
and for a layout, it allows comparing different networks. It also compares to E%(∆max).

For each (network generator, layout) pair, the values for the 100 renditions are represented as
a dot (mean) with an error bar (standard deviation). Noteworthy: the standard deviation may be
so low that the bar is not even visible (which is remarkable).
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A.6 Pedge(∆max), the probability that a node pair closer than ∆max is
connected (precision).

Pedge(∆max) is a probability expressed as a percentage. Reminder for the purpose of clarity: the
probability for two nodes to be connected given that they are close (i.e., Pedge(∆max)) is not the
same as the probability for two nodes to be close given that they are connected (i.e., E%(∆max)).
For a given network, Pedge(∆max) allows comparing different layouts, and for a layout, it allows
comparing different networks.

Pedge(∆max) is also the precision of measuring connectedness with the distance ∆max.
For each (network generator, layout) pair, the values for the 100 renditions are represented as

a dot (mean) with an error bar (standard deviation). Noteworthy: the standard deviation may be
so low that the bar is not even visible (which is remarkable).
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A.7 Benchmark data (tabular)
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Network Layout Cmax Avg. Cmax S.D. ∆max Avg. ∆max S.D.

clique fa2 0.0% 0.00% 0 0.0

clique fa2-bad 0.0% 0.00% 0 0.0
clique linlog 0.0% 0.00% 0 0.0

clique random-round 0.0% 0.00% 0 0.0

clique random-graphology 0.0% 0.00% 0 0.0
clique circular 0.0% 0.00% 0 0.0

clique d3 0.0% 0.00% 0 0.0

bri-cli-2-1 fa2 50.5% 0.00% 278 5.8
bri-cli-2-1 fa2-bad 25.8% 2.72% 222 30.5

bri-cli-2-1 linlog 50.5% 0.01% 450 0.0

bri-cli-2-1 random-round 0.7% 0.46% 265 137.8
bri-cli-2-1 random-graphology 0.7% 0.50% 262 129.1

bri-cli-2-1 circular 25.0% 0.00% 620 0.0
bri-cli-2-1 d3 47.4% 0.00% 300 0.0

sbm-999 fa2 50.4% 0.06% 278 6.5

sbm-999 fa2-bad 25.3% 2.56% 220 27.5
sbm-999 linlog 50.4% 0.07% 450 0.0

sbm-999 random-round 0.8% 0.63% 283 122.9

sbm-999 random-graphology 0.8% 0.46% 280 118.9
sbm-999 circular 25.0% 0.05% 620 0.0

sbm-999 d3 47.3% 0.12% 299 3.0

sbm-99 fa2 49.5% 0.21% 276 5.0
sbm-99 fa2-bad 24.9% 2.48% 222 29.9

sbm-99 linlog 49.4% 0.20% 450 0.0

sbm-99 random-round 0.8% 0.43% 273 122.4
sbm-99 random-graphology 0.8% 0.51% 281 122.8

sbm-99 circular 24.5% 0.15% 620 5.9
sbm-99 d3 45.7% 0.38% 294 4.9

sbm-90 fa2 39.3% 0.70% 270 4.7

sbm-90 fa2-bad 18.9% 2.12% 217 19.5
sbm-90 linlog 40.3% 0.49% 482 8.9

sbm-90 random-round 0.8% 0.50% 291 127.9

sbm-90 random-graphology 0.9% 0.54% 268 123.6
sbm-90 circular 20.0% 0.52% 624 23.1

sbm-90 d3 31.8% 2.90% 268 8.2

sbm-80 fa2 26.6% 0.92% 241 6.8
sbm-80 fa2-bad 12.3% 1.79% 217 24.1

sbm-80 linlog 29.7% 0.82% 493 13.3

sbm-80 random-round 0.8% 0.44% 262 128.2
sbm-80 random-graphology 0.8% 0.42% 256 126.1
sbm-80 circular 15.0% 0.56% 629 33.8
sbm-80 d3 21.4% 0.79% 246 7.8
sbm-70 fa2 17.3% 0.70% 228 10.3

sbm-70 fa2-bad 9.1% 2.15% 239 40.0
sbm-70 linlog 19.0% 0.73% 449 23.6

sbm-70 random-round 0.8% 0.45% 244 126.4
sbm-70 random-graphology 0.9% 0.45% 256 123.7
sbm-70 circular 10.2% 0.67% 646 57.3
sbm-70 d3 11.4% 2.74% 251 21.7
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Network Layout Cmax Avg. Cmax S.D. ∆max Avg. ∆max S.D.

sbm-60 fa2 11.6% 0.67% 225 14.4
sbm-60 fa2-bad 5.9% 1.09% 276 37.6

sbm-60 linlog 11.7% 0.69% 400 35.9

sbm-60 random-round 0.9% 0.50% 274 121.0
sbm-60 random-graphology 0.8% 0.49% 241 122.9

sbm-60 circular 5.2% 0.63% 656 94.2

sbm-60 d3 6.0% 0.71% 271 18.9
rand-50 fa2 10.0% 0.52% 228 15.8

rand-50 fa2-bad 4.5% 0.82% 275 36.8
rand-50 linlog 9.7% 0.58% 376 36.5

rand-50 random-round 0.9% 0.48% 253 126.9

rand-50 random-graphology 0.8% 0.44% 260 117.4
rand-50 circular 0.8% 0.51% 613 301.5

rand-50 d3 6.0% 0.65% 270 19.6

rand-5 fa2 56.2% 2.72% 104 6.3
rand-5 fa2-bad 39.8% 3.62% 74 7.5

rand-5 linlog 50.2% 2.51% 92 10.7

rand-5 random-round 3.1% 1.89% 284 148.0
rand-5 random-graphology 3.5% 1.95% 275 132.1

rand-5 circular 3.0% 2.25% 534 330.5

rand-5 d3 53.9% 3.36% 249 10.6
rand-01 fa2 99.9% 0.04% 10 0.9

rand-01 fa2-bad 98.7% 1.24% 8 1.2
rand-01 linlog 99.9% 0.05% 10 1.0

rand-01 random-round 25.6% 18.42% 272 139.5

rand-01 random-graphology 27.2% 15.87% 257 119.0
rand-01 circular 23.9% 18.89% 632 339.1

rand-01 d3 97.2% 0.28% 100 2.0

chain fa2 97.3% 0.52% 35 5.4
chain fa2-bad 72.9% 3.95% 32 3.7

chain linlog 89.4% 2.36% 68 12.5

chain random-round 5.5% 3.38% 274 134.6
chain random-graphology 5.3% 2.51% 268 138.2

chain circular 98.0% 0.00% 40 0.0

chain d3 93.1% 0.00% 140 0.0
star fa2 59.2% 0.47% 71 0.6

star fa2-bad 30.2% 8.65% 78 11.7
star linlog 48.6% 0.72% 71 1.0

star random-round 9.6% 9.29% 286 175.4

star random-graphology 10.9% 9.65% 264 151.7
star circular 0.4% 0.00% 1000 0.0

star d3 55.6% 0.00% 195 0.0
sq-latt fa2 94.2% 3.19% 67 6.1
sq-latt fa2-bad 67.0% 4.60% 46 4.0

sq-latt linlog 83.9% 4.63% 108 8.9

sq-latt random-round 4.2% 2.13% 264 134.5
sq-latt random-graphology 4.2% 2.29% 259 121.1

sq-latt circular 65.1% 0.00% 510 0.0
sq-latt d3 83.1% 0.00% 200 0.0
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Network Layout E%(∆max) Avg. E%(∆max) S.D. p%(∆max) Avg. p%(∆max) S.D.

clique fa2 0.0% 0.00% 0.0% 0.00%

clique fa2-bad 0.0% 0.00% 0.0% 0.00%
clique linlog 0.0% 0.00% 0.0% 0.00%

clique random-round 0.0% 0.00% 0.0% 0.00%

clique random-graphology 0.0% 0.00% 0.0% 0.00%
clique circular 0.0% 0.00% 0.0% 0.00%

clique d3 0.0% 0.00% 0.0% 0.00%

bri-cli-2-1 fa2 99.0% 0.69% 49.0% 0.34%
bri-cli-2-1 fa2-bad 67.8% 4.83% 42.6% 5.27%

bri-cli-2-1 linlog 99.7% 0.05% 49.4% 0.02%

bri-cli-2-1 random-round 48.7% 31.01% 48.0% 31.08%
bri-cli-2-1 random-graphology 50.8% 30.50% 50.1% 30.64%

bri-cli-2-1 circular 66.8% 0.00% 42.4% 0.00%
bri-cli-2-1 d3 94.2% 0.00% 47.7% 0.00%

sbm-999 fa2 98.8% 0.75% 48.9% 0.38%

sbm-999 fa2-bad 66.3% 4.80% 41.5% 4.70%
sbm-999 linlog 99.4% 0.30% 49.2% 0.12%

sbm-999 random-round 53.0% 27.97% 52.2% 28.06%

sbm-999 random-graphology 55.3% 28.52% 54.5% 28.63%
sbm-999 circular 66.8% 0.05% 42.4% 0.00%

sbm-999 d3 93.9% 0.53% 47.6% 0.34%

sbm-99 fa2 96.5% 0.55% 48.1% 0.31%
sbm-99 fa2-bad 66.8% 5.10% 42.4% 5.29%

sbm-99 linlog 97.3% 0.38% 48.6% 0.11%

sbm-99 random-round 51.6% 28.14% 50.8% 28.16%
sbm-99 random-graphology 56.1% 28.64% 55.3% 28.73%

sbm-99 circular 66.3% 0.50% 42.4% 0.45%
sbm-99 d3 92.0% 1.03% 47.3% 0.65%

sbm-90 fa2 85.4% 1.00% 47.0% 0.55%

sbm-90 fa2-bad 62.2% 4.78% 43.7% 4.38%
sbm-90 linlog 87.0% 0.75% 47.7% 0.36%

sbm-90 random-round 55.1% 28.62% 54.3% 28.65%

sbm-90 random-graphology 52.9% 29.21% 52.1% 29.24%
sbm-90 circular 62.4% 2.03% 42.9% 1.86%

sbm-90 d3 78.8% 1.65% 47.7% 3.46%

sbm-80 fa2 72.0% 1.99% 46.0% 1.46%
sbm-80 fa2-bad 57.0% 5.63% 44.9% 5.25%

sbm-80 linlog 75.4% 1.40% 46.3% 0.92%

sbm-80 random-round 48.1% 28.80% 47.3% 28.82%
sbm-80 random-graphology 49.4% 29.77% 48.6% 29.81%
sbm-80 circular 58.1% 2.96% 43.4% 2.81%
sbm-80 d3 67.8% 2.13% 46.9% 2.12%
sbm-70 fa2 64.2% 3.09% 47.3% 2.94%

sbm-70 fa2-bad 56.5% 6.72% 47.6% 6.86%
sbm-70 linlog 62.5% 3.20% 43.9% 2.96%

sbm-70 random-round 44.7% 29.05% 44.0% 29.00%
sbm-70 random-graphology 49.3% 28.30% 48.4% 28.24%
sbm-70 circular 54.8% 4.76% 44.8% 4.79%
sbm-70 d3 65.1% 6.01% 53.9% 7.64%



402 Jacomy Connected-closeness

Network Layout E%(∆max) Avg. E%(∆max) S.D. p%(∆max) Avg. p%(∆max) S.D.

sbm-60 fa2 61.6% 4.79% 50.3% 4.71%
sbm-60 fa2-bad 56.8% 8.66% 51.0% 8.73%

sbm-60 linlog 51.7% 5.85% 40.3% 5.58%

sbm-60 random-round 50.9% 27.75% 50.1% 27.82%
sbm-60 random-graphology 45.9% 28.04% 45.1% 28.02%

sbm-60 circular 51.1% 8.02% 46.0% 7.96%

sbm-60 d3 69.1% 5.66% 63.1% 5.64%
rand-50 fa2 62.1% 5.24% 52.3% 5.14%

rand-50 fa2-bad 54.8% 9.75% 50.4% 9.62%
rand-50 linlog 47.4% 5.89% 37.9% 5.71%

rand-50 random-round 46.0% 28.22% 45.1% 28.25%

rand-50 random-graphology 50.4% 27.38% 49.6% 27.42%
rand-50 circular 48.1% 28.03% 47.3% 28.09%

rand-50 d3 68.9% 5.92% 63.0% 5.87%

rand-5 fa2 83.6% 3.64% 28.2% 3.18%
rand-5 fa2-bad 73.9% 5.56% 34.7% 5.24%

rand-5 linlog 69.4% 4.51% 20.1% 4.19%

rand-5 random-round 55.7% 32.44% 52.6% 32.24%
rand-5 random-graphology 56.4% 29.82% 52.9% 30.09%

rand-5 circular 43.2% 28.69% 40.2% 28.17%

rand-5 d3 85.4% 2.70% 32.3% 3.35%
rand-01 fa2 100.0% 0.00% 0.1% 0.04%

rand-01 fa2-bad 100.0% 0.00% 1.3% 1.24%
rand-01 linlog 100.0% 0.00% 0.1% 0.05%

rand-01 random-round 74.8% 27.03% 49.2% 30.98%

rand-01 random-graphology 76.7% 27.73% 49.6% 28.21%
rand-01 circular 74.9% 28.81% 50.4% 32.37%

rand-01 d3 100.0% 0.00% 2.8% 0.28%

chain fa2 98.5% 1.16% 2.3% 0.38%
chain fa2-bad 85.7% 4.41% 13.8% 3.03%

chain linlog 93.6% 2.11% 5.9% 1.45%

chain random-round 55.7% 29.59% 50.1% 30.23%
chain random-graphology 56.0% 30.92% 50.7% 31.33%

chain circular 100.0% 0.00% 2.0% 0.00%

chain d3 98.0% 0.00% 6.1% 0.00%
star fa2 99.9% 0.51% 40.7% 0.52%

star fa2-bad 84.7% 13.24% 54.7% 9.35%
star linlog 98.5% 1.63% 50.2% 1.03%

star random-round 61.8% 37.82% 52.2% 35.70%

star random-graphology 60.7% 34.73% 49.9% 32.28%
star circular 100.0% 0.00% 99.6% 0.00%

star d3 100.0% 0.00% 44.4% 0.00%
sq-latt fa2 99.3% 2.19% 5.3% 1.47%
sq-latt fa2-bad 83.6% 4.34% 17.8% 2.88%

sq-latt linlog 93.9% 3.79% 11.3% 2.01%

sq-latt random-round 52.2% 30.54% 48.0% 30.83%
sq-latt random-graphology 53.8% 27.97% 49.6% 28.21%

sq-latt circular 99.4% 0.00% 34.3% 0.00%
sq-latt d3 97.2% 0.00% 14.5% 0.00%
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Network Layout Pedge(∆max) Avg. Pedge(∆max) S.D.

clique fa2

clique fa2-bad
clique linlog

clique random-round

clique random-graphology
clique circular

clique d3

bri-cli-2-1 fa2 100.0% 0.00%
bri-cli-2-1 fa2-bad 79.3% 4.98%

bri-cli-2-1 linlog 100.0% 0.00%

bri-cli-2-1 random-round 51.3% 3.03%
bri-cli-2-1 random-graphology 51.1% 2.26%

bri-cli-2-1 circular 78.0% 0.00%
bri-cli-2-1 d3 97.8% 0.00%

sbm-999 fa2 100.0% 0.05%

sbm-999 fa2-bad 79.4% 4.59%
sbm-999 linlog 99.9% 0.06%

sbm-999 random-round 50.7% 1.27%

sbm-999 random-graphology 50.8% 1.59%
sbm-999 circular 77.9% 0.07%

sbm-999 d3 97.7% 0.21%

sbm-99 fa2 99.3% 0.19%
sbm-99 fa2-bad 78.3% 4.79%

sbm-99 linlog 99.1% 0.22%

sbm-99 random-round 50.9% 1.92%
sbm-99 random-graphology 50.8% 1.65%

sbm-99 circular 77.5% 0.37%
sbm-99 d3 96.3% 0.45%

sbm-90 fa2 90.3% 0.63%

sbm-90 fa2-bad 70.8% 3.03%
sbm-90 linlog 90.5% 0.61%

sbm-90 random-round 51.2% 2.58%

sbm-90 random-graphology 51.2% 3.12%
sbm-90 circular 72.2% 1.01%

sbm-90 d3 82.2% 3.24%

sbm-80 fa2 77.8% 0.93%
sbm-80 fa2-bad 63.3% 2.60%

sbm-80 linlog 81.0% 0.99%

sbm-80 random-round 51.4% 2.09%
sbm-80 random-graphology 51.2% 1.89%
sbm-80 circular 66.6% 1.29%
sbm-80 d3 71.9% 1.34%
sbm-70 fa2 67.8% 1.30%

sbm-70 fa2-bad 59.3% 2.73%
sbm-70 linlog 71.0% 1.62%

sbm-70 random-round 52.0% 5.54%
sbm-70 random-graphology 51.3% 1.65%
sbm-70 circular 61.2% 1.68%
sbm-70 d3 60.5% 3.52%
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Network Layout Pedge(∆max) Avg. Pedge(∆max) S.D.

sbm-60 fa2 61.2% 1.49%
sbm-60 fa2-bad 55.8% 1.76%

sbm-60 linlog 64.4% 2.13%

sbm-60 random-round 51.3% 1.47%
sbm-60 random-graphology 51.5% 1.65%

sbm-60 circular 55.7% 1.43%

sbm-60 d3 54.8% 1.00%
rand-50 fa2 59.5% 1.13%

rand-50 fa2-bad 54.5% 1.24%
rand-50 linlog 62.8% 1.85%

rand-50 random-round 51.8% 2.17%

rand-50 random-graphology 51.5% 2.13%
rand-50 circular 51.3% 1.57%

rand-50 d3 54.8% 0.95%

rand-5 fa2 14.9% 1.05%
rand-5 fa2-bad 10.8% 1.09%

rand-5 linlog 17.8% 2.66%

rand-5 random-round 5.8% 1.45%
rand-5 random-graphology 5.6% 0.81%

rand-5 circular 5.7% 0.91%

rand-5 d3 13.3% 0.84%
rand-01 fa2 100.0% 0.00%

rand-01 fa2-bad 14.9% 10.87%
rand-01 linlog 73.1% 18.41%

rand-01 random-round 0.3% 0.99%

rand-01 random-graphology 0.2% 0.32%
rand-01 circular 0.2% 0.34%

rand-01 d3 3.7% 1.36%

chain fa2 88.1% 11.16%
chain fa2-bad 12.9% 2.53%

chain linlog 33.9% 8.67%

chain random-round 2.5% 0.66%
chain random-graphology 2.5% 0.72%

chain circular 99.0% 0.00%

chain d3 32.1% 0.00%
star fa2 4.9% 0.06%

star fa2-bad 3.1% 0.34%
star linlog 3.9% 0.04%

star random-round 3.0% 2.50%

star random-graphology 2.9% 1.36%
star circular 2.0% 0.00%

star d3 4.5% 0.00%
sq-latt fa2 71.3% 11.84%
sq-latt fa2-bad 17.4% 2.63%

sq-latt linlog 31.3% 5.97%

sq-latt random-round 4.3% 0.76%
sq-latt random-graphology 4.1% 0.46%

sq-latt circular 10.5% 0.00%
sq-latt d3 24.4% 0.00%
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