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Abstract. We study the problem of finding the smallest graph that does not occur
as an induced subgraph of a given graph. This missing induced subgraph has at most
logarithmic size and can be found by a brute-force search, in an n-vertex graph, in time
nO(logn). We show that under the Exponential Time Hypothesis this quasipolynomial
time bound is optimal. We also consider variations of the problem in which either the
missing subgraph or the given graph comes from a restricted graph family; for instance,
we prove that the smallest missing planar induced subgraph of a given planar graph
can be found in polynomial time.

1 Introduction
In recent years, the older conventional wisdom that all natural computational problems have time
either polynomial (or better) or exponential (or worse) has frayed, with the discovery of several
natural problems whose best known time complexity is quasipolynomial, of the form nf(n) for a
polylogarithmically bounded function f . Of course, it is possible to obtain quasipolynomial time
bounds from parameterized time bounds, by an appropriate choice of parameter, but instead we
seek problems in which quasipolynomiality arises naturally from an unparameterized problem. Such
problems for which the best known time is quasipolynomial include:

• Finding minimum dominating sets in tournaments [35]

• Computing the Vapnik–Chervonenkis dimension of a family of sets [31,37,41]. Approximating
VC dimension up to any constant factor [34].
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• Constructing ϵ-approximate Nash equilibria, for constant ϵ [32].

• Graph isomorphism and graph canonization [6].

• Maximum independent set in unit ball graphs in the hyperbolic plane [27].

More strongly, in some of these cases, the form of the quasipolynomial time bound has been precisely
determined (up to constant factors in the exponent) under the Exponential Time Hypothesis (ETH)
of Impagliazzo and Paturi [26], the assumption that 3-SAT cannot be solved in time 2o(n). For
instance, for both ϵ-approximate Nash equilibria and hyperbolic unit ball independent sets, the upper
bound is nO(logn), while ETH implies the impossibility of improving this bound to no(logn) [9, 27].

In this work, we find another natural example of a problem that has both a quasipolynomial
upper bound and a matching lower bound derived from the Exponential Time Hypothesis. Our
problem is the Smallest Missing Induced Subgraph: given an undirected graph G as input, find
another undirected graph H, with as few vertices as possible, such that H is not isomorphic to
an induced subgraph of G. As we show, this problem can be solved in time nO(logn) in n-vertex
graphs G (Theorem 1), and improving this to time no(logn) would contradict ETH (Theorem 2).

We also consider variations of the problem in which either the missing subgraph or the given
graph comes from a restricted graph family. For instance, the smallest missing planar induced
subgraph, in a given graph G, measures the quality of G as a universal graph for planar graphs and as
the basis for adjacency-labeling schemes for planar graphs [17]. We prove that the smallest missing
planar induced subgraph of a given planar graph can be found in polynomial time (Theorem 3).

2 Upper bounds
The Smallest Missing Induced Subgraph can be found by exactly counting the number of induced
subgraphs of each type, of increasing size, until finding a size for which one of the counts is zero.
Related problems of counting all types of subgraphs, exactly or approximately, have long been
studied [18, 28, 40], and have recently gained popularity in bioinformatics, where small induced
subgraphs are called “graphlets” [1, 25, 38]. A naïve counting algorithm can solve this problem
simply by enumerating all ordered k-tuples of vertices, determining the type of subgraph each
k-tuple induces, and incrementing a counter for that type of subgraph.

In more detail:

• We begin with k = 2, the smallest possible size of a missing induced subgraph in a graph with
two or more vertices.

• A k-vertex subgraph can be represented by a binary value with
(
k
2

)
bits, representing (the

lower half of) its adjacency matrix. We use these binary values as indices into an array of
counters, initially all zero. We consider the vertices of the subgraphs to be labeled, so that
permutations of the vertices are considered as different subgraphs.

• We loop through all ordered k-tuples of vertices of the given graph. For each k-tuple, we can
construct the binary value representing its adjacency matrix in average O(k) time per k-tuple,
by updating it from the previous k-tuple in the enumeration. After this step, we increment
the counter indexed by that binary value. Note that by going through every k-tuple in the
graph we are incrementing at least once for every possible re-labeling of each subgraph on
k nodes. In other words, we can not ‘miss’ a valid labeling as we are going through all nk

possible combinations of nodes.
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• We loop through all cells of the array of counters, searching for one that is zero. If found,
we decode it and output it as a missing subgraph; otherwise, we increment k and repeat the
previous steps.

The time for each k is O(knk + 2k(k−1)/2). As this increases superexponentially with k, it is
dominated by the last step, the one in which we find a missing induced subgraph.

Lemma 1 This algorithm succeeds for some k ≤ 2 log2 n+ 2.

Proof: If it ever reaches k > 2 log2 n+ 1, the number of array cell counters will be

2(
k
2) = 2k(k−1)/2 > 2k log2 n = nk.

There are more counters than increment steps, and some counter will remain unincremented.
Therefore, the algorithm must necessarily terminate whenever k becomes this large. Since k is
increased by one in each iteration, the value at which it exceeds this threshold is at most 2 log2 n+2.

□

Corollary 1 In any n-vertex graph, the smallest missing induced subgraph has at most 2 log2 n+ 2
vertices.

Constructions of Alon [2] and Alstrup, Kaplan, Thorup, and Zwick [4] produce graphs in which
the smallest missing induced subgraph has 2 log2 n − O(1) vertices, showing that this bound is
nearly tight. By plugging this value of k into the time bound for the algorithm as a function of n
and k, and simplifying the resulting expression, we obtain:

Theorem 1 The algorithm above takes time O(n2 log2 n+3) to find the smallest missing induced
subgraph of any n-vertex graph.

The bottleneck in this time bound is initializing and searching the table of counters. When
k = 2 log2 n+ 2, the size of this table is sufficiently larger than nk to make this step slower than
the search through all k-tuples of vertices. The time can be reduced to O(n2 log2 n+2 log n), at the
expense of randomization, by replacing the table of counters by a hash table; we omit the details.

The copies of any single k-vertex subgraph type can be counted in the substantially smaller
time bound O(n0.174k+o(k)) [15] but multiplying this bound by the number of distinct subgraph
types would lead to a slower algorithm than the one above. Although there has been research on
applying fast matrix multiplication to the induced subgraph counting problem for specific small
values of k [28, 29], using sparsity parameters of the host graph to reduce the time for subgraph
counting [21,23], or using the structural features of specific types of subgraphs to speed up algorithms
for counting only those subgraphs [43], we do not know of significant general speedups to the naïve
counting algorithm above based on these ideas. Indeed, to make any significant improvement based
on counting methods we would need not only algorithmic ideas, but a better bound than Corollary 1
on the smallest k for which success is guaranteed or a counting algorithm which takes less than O(1)
time per possible subgraph of size k. This is because, for the value of k given by Corollary 1, our
time bound is not significantly larger than what would be required merely to output all subgraph
counts.
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Figure 1: The labeled graph X4 of Lemma 3. Every graph with four or fewer vertices exists as an
induced subgraph of X4, except for a clique of size four. More strongly, whenever H is a four-vertex
graph H labeled by the four numbers 1, 2, 3, 4 that does not have an edge labeled 1–2, H appears
as a labeled induced subgraph of X4.

3 Lower bounds
Our lower bound on the smallest missing induced subgraph follows from the hardness of finding
cliques of logarithmic size, a special case of known results on the parameterized complexity of
the clique problem [11, 12, 33]. We spell out the proof to clarify its applicability to the range of
parameter values that we need. We follow the proof outline from Lokshtanov et al [33].

Lemma 2 Under the Exponential Time Hypothesis, for any constant c > 0, it is impossible to find
a maximum clique, in an n-vertex graph for which that clique is guaranteed to have size at most
c log n, in time no(logn).

Proof: We reduce 3-coloring of N -vertex graphs to clique-finding on exponentially-larger graphs,
as follows. Choose a parameter δ > 0, and partition the given N -vertex graph G into t = ⌊δ

√
N⌋

subsets of at most ⌈N/t⌉ vertices. Form a graph H representing the possible 3-colorings of each
subset, and add an edge in H between pairs of compatible subset 3-colorings. (Two subset 3-colorings
are compatible if they represent proper colorings of the induced subgraphs of different subsets, and
they do not combine to form any monochromatic edge.) Then cliques of size t in H correspond
to proper 3-colorings of G. The number n of vertices in H is O(t3N/t), so t = Θ(log n), with a
constant of proportionality that can be made arbitrarily small by choosing a sufficiently small value
of δ, meeting the guarantee of the lemma. If we could find a t-clique in time no(logn), this would
give us a 3-coloring algorithm with time (t3N/t)o(t) = 3o(N), contradicting the exponential-time
hypothesis. □

To reduce from clique-finding to missing subgraphs, we use a construction for a family of graphs
in which the unique smallest missing subgraph is a clique:

Lemma 3 For each positive integer i > 1, there exists a graph Xi that does not contain a clique of
size i, but contains all other i-vertex induced subgraphs, and has a total of 2i − 2 vertices.

Proof: More strongly, we form a family of labeled graphs Xi with the following properties:
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• Xi has its vertices labeled by the numbers from 1 to i. It has one vertex labeled 1 and one
vertex labled 2, and 2j−1 vertices labeled j for j > 2.

• The vertices having the same label form an independent set, so each clique must have vertices
of distinct labels.

• There is no edge labeled 1–2, so it is not possible for both of these labels to appear in a clique.
Therefore, the i-vertex clique is a missing induced subgraph.

• If H is any i-vertex graph H labeled by distinct integers from 1 to i, such that H does not
have an edge labeled 1–2, then H appears with the same labels as an induced subgraph of Xi.

Every i-vertex graph that is not a clique can be labeled by distinct integers from 1 to i so that its
vertices labeled 1 and 2 are non-adjacent; therefore, for a graph Xi with the properties listed above,
every i-vertex graph that is not a clique appears as an induced subgraph, and the i-vertex clique is
the unique smallest missing induced subgraph.

We construct the graphs Xi inductively, as illustrated in Fig. 1. As a base case, for i = 2, let X2

consist of two isolated vertices, one with labeled 1 and the other labeled 2. For ease of notation call
the set of all vertices labeled i Ti. To form Xi from Xi−1 add 2i−1 vertices, labeled i, one for each
subset of {1, 2, . . . , i− 1}. For a vertex v labeled i corresponding to the subset S ∈ {1, 2, . . . , i− 1},
add edges between v and u for all u ∈ Tℓ for all ℓ ∈ S. That is, connect v to all verticies u that
have a label in S.

The resulting graph clearly has the first three properties listed above. To show that it has the
last property, let H be any i-vertex graph H labeled by distinct integers from 1 to i, such that H
does not have an edge labeled 1–2. Let H− be obtained from H by removing the vertex labeled i,
and let S be the set of labels of neighbors of the removed vertex. Then by induction, H− appears
as an induced subgraph of Xi−1, with the same labels. To form H as an induced subgraph of Xi,
add one more vertex to this copy of H−, the vertex with label i that corresponds to set S. □

Noga Alon (personal communication) has observed that a randomized construction from his
work on induced-universal graphs [2] can be modified to produce smaller graphs with the same
properties as in Lemma 3, with 2(i−1)/2

(
1 + o(1)

)
vertices. This size bound is within a lower-order

additive term of optimal. However, for our purposes it is more important to have a deterministic
construction than to optimize the exponent.

Theorem 2 Under the exponential-time hypothesis, it is impossible to find the smallest missing
induced subgraph of every n-vertex graph in time no(logn).

Proof: Let Xi denote the family of graphs constructed by Lemma 3. We can use an algorithm
for the smallest missing induced subgraph to find a maximum clique of size up to log2 n, in a
graph G for which the maximum clique has that size, by successively finding the smallest missing
induced subgraph in the disjoint union of graphs G∪Xi for i = 2, 3, . . . until finding an i for which
this missing subgraph is an i-vertex clique. The maximum clique in G has size one less than this
stopping value of i. The addition of Xi to G at most doubles the number of vertices, which does
not change the form of a time bound of form no(logn), and the loop through successive values of i
also does not change this form. Therefore, an algorithm for the smallest missing induced subgraph
with time no(logn) would contradict Lemma 2. □
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4 Restricted missing subgraphs
A natural extension of the smallest missing induced subgraph would be to search for the smallest
missing induced subgraph from a given graph family F , either in a larger graph from the same
family or more generally. When F is totally ordered by the induced subgraph relation, this is
equivalent to finding the largest induced subgraph in F in a given graph G; for instance, the
classical problems of finding the largest clique, largest independent set, and longest induced path in
a graph can all be expressed as a missing induced subgraph problem in this way.

For general graph families F , the size of smallest missing induced subgraph in F , in a graph G,
is one plus the largest k for which G is k-induced-universal, meaning that it contains all k-vertex
graphs in F as induced subgraphs. A universal graph in this sense is not required to belong to F
itself. Universality is equivalent to the existence of an adjacency labeling scheme, an assignment of
binary labels to the vertices of graphs in F such that the adjacency of two vertices can be determined
from their labels. If a k-universal graph exists, and has nk vertices, the identities of its vertices can
be used as labels in an adjacency labeling scheme with ⌈log2 n⌉ bits per label. Conversely, if an
adjacency labeling scheme with b bits per label is possible, then one can construct a k-universal
graph with 2b vertices, one for each possible label, with adjacency determined according to the
labeling scheme. The computational problem of finding the smallest missing induced subgraph from
F in G, then, is the same as determining the k for which G is k-universal. If the smallest missing
subgraph from F in G is of size k + 1 then all subgraphs of size k appear G making G k-universal
(for the family F). Thus, known upper bounds on the size of universal graphs translate into lower
bounds on the possible size of the smallest missing subgraph. For instance, trees have universal
graphs of linear size, from which it follows that the smallest missing tree, in a given graph, may
also have linear size [14]. Translating other known results on universal graphs into this form, it
follows that the smallest missing induced subgraph of maximum degree ∆ can have size Θ(n2/∆) [3]
and that the smallest missing planar induced subgraph can have size n1−o(1) [17].

Additional problems of this type arise when both the induced subgraph and G are restricted to
belong to the same family F . For instance, for the smallest missing induced bipartite subgraph of a
given bipartite graph, a counting argument similar to the one we used for general graphs shows
that this subgraph has size O(log n), from which it follows that we can find this subgraph by a
brute-force search in quasipolynomial time. However, our ability to prove the optimality of this
time bound is limited in two ways: we do not have a construction for a bipartite graph in which the
unique smallest missing induced bipartite subgraph is a biclique, analogous to our construction for
cliques, and we do not know ETH-tight bounds on the complexity of finding bicliques in bipartite
graphs [30].

Another interesting case is the problem of finding the smallest missing induced planar subgraph,
in a given planar graph. Like the unconstrained smallest missing induced subgraph, the smallest
planar missing induced subgraph in a planar graph has logarithmic size. However, in this case
the search for the subgraph can take advantage of planarity, speeding up the overall algorithm to
polynomial time. In the remainder of this section we detail this result.

Lemma 4 The smallest missing induced planar subgraph, in a given n-vertex planar graph, has
O(log n) vertices.

Proof: The high level idea is to compare the exponential number of 4-connected planar triangu-
lations (that is, maximal planar graphs) of size k, on the one hand, and an O(n) bound on the
number of 4-connected triangulations that can exist as induced subgraphs of a given n-vertex graph,
on the other hand. When all k-vertex 4-connected planar triangulations are present in a graph,
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their exponential number must be O(n), from which it follows that k must be O(log n). Although
the smallest missing induced subgraph might not be 4-connected or maximal planar, it has at most
k vertices.

In more detail, the number of 4-connected planar triangulations on k unlabeled vertices can
be upper-bounded by ck for some constant c [39, 42]. However, a given planar graph G, with n
vertices, can only have O(n) induced subgraphs that are 4-connected and maximal planar. This is
because each such subgraph is one of the linearly many graphs formed when G is partitioned along
its separating triangles, which necessarily form a nested family of separations [22]. This partition
cannot subdivide any 4-connected triangulation, because if it could be subdivided in this way it
would not be 4-connected. Conversely, if G contains a 4-connected triangulation as an induced
subgraph, each face of the triangulation must either be a face of G or a separating triangle, so
this triangulation will be separated from all the other vertices of G by the partition of G on its
separating triangles. Putting the two bounds on the number of k-vertex triangulations and on
the number of induced 4-connected triangulations together, if G is an n-vertex graph for which
all k-vertex planar graphs are present as induced subgraphs, it must be the case that ck = O(n).
Taking logarithms of both sides shows that k = O(log n). For the induced subgraphs of any larger
size, at least one is missing. □

Although we do not need it, we note that conversely there exist planar graphs whose smallest
missing induced subgraph has size Ω(log n). This follows from the fact that the number of k-vertex
unlabeled planar graphs of all types is only singly exponential in k [24]. An n-vertex planar graph
whose smallest missing planar induced subgraph is logarithmic can be constructed by choosing the
largest k such that the disjoint union of all k-vertex planar graphs has at most n vertices, and then
padding this disjoint union to exactly n vertices by adding isolated vertices.

Theorem 3 The smallest missing induced planar subgraph, in a given n-vertex planar graph G,
can be found in time polynomial in n.

Proof: For each positive integer k, in numerical order, we list all k-vertex planar graphs and test
for each one whether it is an induced subgraph of G. The k-vertex unlabeled planar graphs can
be listed in total time exponential in k using standard planar graph enumeration methods [8, 10].
An algorithm of Eppstein [20], subsequently improved by Dorn [16] and Bonsma [7], allows testing
whether a graph H of size k is a subgraph or induced subgraph of a graph G of size n, in time 2O(k)n.
Because we only apply these algorithms for k = O(log n), the total time bound is polynomial in n.

□

The constant factor in the logarithmic bound on the size of the smallest missing induced planar
subgraph that can be obtained from our proof of Lemma 4 is unlikely to be tight, and the base
of the exponential function in the 2O(k)n time bound for planar subgraph isomorphism is large
(approximately 76k in Bonsma’s version). For this reason we have not analyzed the time bound of
Theorem 3 more carefully to determine its exact exponent.

5 Conclusions and Related Problems
We have shown that, to find the smallest missing induced subgraph of a given n-vertex graph, it
is possible to use an algorithm with running time nO(logn), and that under standard assumptions
no better time bound is possible. We have also investigated similar problems where the induced
subgraph or the given graph must belong to a more restricted family of graphs.
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More generally, the problem of asking for the smallest missing subobject of an object can be
extended to many other inclusion orderings of other types of objects. For substrings or subsequences,
it is not difficult to solve in polynomial time. A more interesting example of the same type of
problem arises for permutations and permutation patterns, smaller permutations with the same
ordering as a subsequence of a larger permutation. A permutation that contains all patterns of
length up to some value k is known as a superpattern, and so the problem of finding the smallest
missing permutation is equivalent to asking for what k a given pattern is a superpattern. A counting
argument shows that a k-superpattern must have length Ω(k2), and superpatterns of this length are
known [5,13,19,36]. Turning this around, any permutation of length n must have a missing pattern
of length O(

√
n), from which it follows that this missing pattern can be found in time nO(

√
n). Is a

time bound of this form tight?
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