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Morphing tree drawings in a small 3D grid
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Abstract. We study crossing-free grid morphs for planar drawings of trees using
the third dimension. A morph consists of morphing steps, where vertices of the tree
move simultaneously along straight-line trajectories at constant speeds. The aim is to
find a morph between two given drawings of the same tree that has a small number
of steps and is crossing-free, i.e. no two vertices overlap or no two edges of the tree
intersect except in their common endpoints at any moment during the morph. It is
already known, that there exists a crossing-free morph between two drawings of an n-
vertex planar graph G with O(n) morphing steps, and that using the third dimension
the number of steps can be reduced to O(log n) for an n-vertex tree. However, these
morphs do not bound one practical parameter, the resolution. Can the number of steps
still be reduced substantially by using the third dimension with an additional restriction
of keeping the resolution bounded throughout the morph? We answer this question in
affirmative by presenting a 3D non-crossing morph between two planar grid drawings
of an n-vertex tree in O(

√
n log n) morphing steps such that each intermediate drawing

is a grid drawing, i.e., vertices of the tree are mapped to the nodes of a 3D grid of
polynomial volume.
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1 Introduction

Given an n-vertex graph G, a morph between two drawings (i.e., embeddings in Rd) of G is
a continuous transformation from one drawing to the other through a sequence of intermediate
drawings. One is interested in well-behaved morphs, i.e., those that preserve essential properties
of the drawing at any moment. Usually, this property is that the drawing is crossing-free; such
morphs are called crossing-free morphs. This concept finds applications in multiple domains:
animation, modeling and computer graphics, etc. [7–9]. A drawing of G is a straight-line drawing
if it maps each vertex of G to a point in Rd and each edge of G to the line segment whose endpoints
correspond to the endpoints of this edge. In this work, we focus on the case of drawings in the
Euclidean plane (d = 2) and 3D drawings (d = 3); a crossing-free drawing of a graph in R2 is
called planar.

There is an interest in studying crossing-free morphs of straight-line drawings, where vertex
trajectories are simple, in particular, linear morphs. In every step of a linear morph, each vertex of
G moves along a straight-line segment at a constant speed in each step of a linear morph. In other
words, a linear morph transforms one straight-line drawing Γ of a graph G to another such drawing
Γ′ through a sequence ⟨Γ = Γ1,Γ2, . . . ,Γk = Γ′⟩ of straight-line drawings; each morphing step or
step, for brevity, is a linear interpolation between the vertices of two consecutive drawings in that
sequence, see Fig. 2. A linear morph is said to be unidirectional if all vertices move along parallel
lines in the same direction. Alamdari et al. [1] showed that for any two topologically equivalent
planar drawings of a graph G, there is a linear 2D morph that transforms one drawing to the other
in Θ(n) steps. Alamdari et al. [1] also showed the bound to be asymptotically optimal in the worst
case by creating an example where a linear 2D morph between two planar drawings of an n-vertex
path needs Ω(n) morphing steps. A natural further question is how the situation changes when we
involve the third dimension. For general 3D graph drawings, the problem seems challenging since
it is tightly connected to the unknot recognition problem, that is in NP ∩ co-NP [10, 13], and its
containment in P is wide open. If the given graph is a tree, the worst-case tight bound of Θ(n)
steps holds for 3D crossing-free linear morph [2], and the lower-bound example is again a path. If
both the initial and the final drawings are planar, then O(log n) steps suffice [2].

Both algorithmic results [1, 2] have a drawback crucial from the practical point of view. Their
intermediate steps use infinitesimal or very small distances, as compared to distances in the input
drawings. This may blow up the space requirements and affect the aesthetical aspect. This issue
raises a demand for morphing algorithms that operate on a small grid, i.e., on a grid of size
polynomial in the size of the graph and parameters of the input drawings. All the intermediate
drawings are then restricted to be grid drawings, where vertices map to nodes of the grid, see
Fig. 1. Two crucial parameters of a straight-line grid drawing are:

• The volume of the required grid in 3D. In case of 2D drawings, the area is considered instead.

• The resolution, that is the ratio between the maximum edge length and the minimum vertex-
edge distance.

If the grid area is polynomially bounded, then so is the resolution [3]. For the 3D case, if the
grid volume is polynomially bounded, then so is the resolution, see Lemma 1. A point in R3 is
said to be an integer point if all its coordinates are integer.

Very recently Barrera-Cruz et al. [3] gave an algorithm that linearly morphs between two planar
straight-line grid drawings Γ and Γ′ of an n-vertex rooted tree in O(n) steps while each intermediate
drawing is also a planar straight-line drawing in a bounded grid. In particular, the maximum grid
length and width are respectively O(D3n · L) and O(D3n · W ), where L = max{l(Γ), l(Γ′)},
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Figure 1: A planar straight-line grid drawing of a 12-vertex tree.

W = max{w(Γ), w(Γ′)} and D = max{L,W}, l(Γ) and w(Γ) are the length and the width of the
drawing Γ respectively. Note that D is Ω(

√
n).

morphing step

Γ = Γ0

Γ1

Γ2 = Γ′

morphing step

Figure 2: A linear morph consisting of 2 morphing steps. In the drawings Γi with i = 0, 1,
dashed lines in drawing represent the positions of the edges in drawing Γi+1, the next drawing in
the sequence, and the red arrows represent the directions of movement of the vertices during the
morphing step ⟨Γi,Γi+1⟩.

Let Γ0 and Γ′ be two planar straight-line drawings of an n-vertex tree T . Throughout this
paper, a morph M = ⟨Γ1,Γ2, . . . ,Γk⟩ of T is a sequence of 3D straight-line drawings of T such
that Γ1 = Γ0 and Γk = Γ′ are respectively the initial and the final drawings, and each step ⟨Γi,Γi+1⟩
is a linear morph, see Fig. 2. Here, we study morphing one straight-line grid drawing Γ of a tree
to another such drawing Γ′ in sublinear number of steps using the third dimension such that the
resolutions of the intermediate drawings are bounded. Our algorithm requires the underlying tree
T to be rooted, and its worst-case performance does not depend on the exact placement of the
root. Thus we fix an arbitrary vertex of T to be its root and from now on treat T to be a rooted
tree.

We morph the initial planar drawing of tree T to its 3D canonical drawing C(T ) and then
analogously morph C(T ) to the final planar drawing. Effectively we solve the same problem as
in [2], but with the additional restriction that all drawings throughout the algorithm lie in a small
grid. We give an algorithm that requires O(

√
n log n) steps. All the intermediate drawings require

a 3D grid of length O(d3(Γ) · log n), width O(d3(Γ) · log n) and height O(n), where d(Γ) denotes
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the maximum between the diameters of the initial drawing Γ0 and the final drawing Γ′. Diameter
of a drawing of a tree T is defined as the ceiling of the maximum pairwise (Euclidean) distance
between the vertices of the tree in the drawing. We make use of known techniques, e.g., canonical
drawing [2] and “Pinwheel” rotation [3] combined with new ideas.

After introducing the necessary definitions and preliminaries in Sec. 2, we describe the tools
that are the building blocks of our algorithm: stretching, mapping around the pole, rotating and
shrinking subtrees, see Sec. 3. In Sec. 4.1, we introduce a technique to lift a plane tree drawing to
R3 such that the vertices of a certain path of the tree go to their respective canonical positions,
their subtrees move along with them, and the morph is linear and crossing-free. We call it lifting
a path, for brevity. The morphing algorithm in Sec. 4 splits the given tree into disjoint paths that
are lifted one by one in specific order. Since lifting each path takes constant number of steps, in
the worst case this algorithm takes O(n) steps to lift a tree. In Sec. 5.1, we show how to lift a
set of edges of the given tree simultaneously. This is used in the second morphing algorithm, that
lifts the tree by lifting disjoint sets of its edges one after another, see Sec. 5. This algorithm takes
O(h) steps to lift a tree of height h. We then combine two algorithms in Sec. 6 to produce the final
algorithm that uses o(n) morphing steps. It first lifts all paths of T of length at most

√
n using

the algorithm of Sec. 5. Since the total number of remaining paths is less than
√
n, it lifts them

one after another by using the algorithm of Sec 4.

2 Preliminaries and Definitions

For a point p = (px, py, pz) in R3, let Y Zp, XZp, XYp denote planes x = px, y = py, z = pz
respectively. Analogously, XZ+

p (resp., XZ−
p ) denotes the vertical halfplane {(x, y, z) : y = py, x ≥

px(resp., x ≤ px)} and Y Z+
p (resp., Y Z−

p ) the halfplane {(x, y, z) : x = px, y ≥ py(resp., y ≤
py)}. Let XY0 denote the horizontal plane passing through the origin. For brevity, we call it the
horizontal plane throughout the paper.
For a point p = (px, py, pz) in R3, consider its vertical projection p′ = (px, py) to the horizontal
plane. For the sake of brevity, we denote this vertical projection by pr().

Tree drawings. For a tree T , let r(T ) be its root, and T (v) be the subtree of T rooted at a
vertex v. Let V (T ) and E(T ) be respectively the set of vertices and edges of T . The size of a tree
T , denoted by |T |, is the number of vertices in T . The depth dpt(v) of a vertex v in T is the length
of the path from the root r(T ) to v.

In a straight-line drawing of T , each vertex is mapped to a point in Rd and each edge is mapped
to a closed straight-line segment connecting the images of its end-points. A 3D- (respectively, a
2D-) grid drawing of T is a straight-line drawing where each vertex is mapped to a point with
integer coordinates in R3 (respectively, R2). A drawing of T is said to be crossing-free if the images
of no two edges intersect except, possibly, at common end-points. A crossing-free 2D-grid drawing
is called a planar grid drawing, see Fig. 1.

For a crossing-free drawing Γ, let B(Γ(v), r) denote the open disk of radius r in the horizontal
plane centered at Γ(v) that is the image of the vertex v in Γ. Let l(Γ), w(Γ) and h(Γ) respectively
denote the length, width and height of the 3D drawing Γ of T , i.e., the maximum absolute difference
between the x-, y- and z-coordinates of vertices in Γ. Recall that d(Γ) denotes the diameter of Γ,
defined as the ceiling of the maximum pairwise (Euclidean) distance between its vertices. Note that
d(Γ) estimates the space required by Γ since M ≤ d(Γ) ≤

√
3M , where M = max(l(Γ), w(Γ), h(Γ)).

See Fig 3.
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Γ

l(Γ)

h(Γ)

w(Γ)

y

x
z

d(Γ)

Figure 3: Example of l(Γ), w(Γ), h(Γ), d(Γ) in 3D straight-line grid drawing.

We define distΓ(v, u) to be the Euclidean distance between two points Γ(v) and Γ(u) that are
the images of vertices v, u of T in Γ. Let distΓ(v, e) be the shortest Euclidean distance between the
point Γ(v) and the line segment Γ(e). Similarly, distΓ(e1, e2) is defined as the shortest Euclidean
distance between two line segments Γ(e1) and Γ(e2) which are the images of edges e1, e2 of T in
Γ, respectively. Precisely we define distΓ(e1, e2) = min{∥x− y∥ | x ∈ Γ(e1), y ∈ Γ(e2)}.

For a grid drawing Γ, we define the resolution of Γ as the ratio of the distances between the
farthest and closest pairs of non-adjacent and non-incident geometric objects of Γ (images of tree
vertices and edges). Since our tree T is labeled, when it is clear from the context, we, slightly
abusing the notation, refer to the image of elements of T (vertices, edges or subtrees) in a certain
drawing simply by the name of these elements, e.g., v instead of Γ(v).

Lemma 1 1. For any vertex v0 and edge e not incident to v0 in a 3D crossing-free grid drawing
Γ(T ) of T (also, in a planar grid drawing), distΓ(v0, e) ≥ 1

d(Γ) .

2. For a pair of non-adjacent edges e1, e2, the distance distΓ(e1, e2) ≥ 1

2
√
3 (d(Γ))

2 in a 3D

crossing-free grid drawing Γ(T ) of T .

Proof:

1. Let v1 and v2 be the endpoints of edge e, and v0 does not lie inside e as Γ(T ) is non-crossing.
If v0, v1, v2 are collinear, then distΓ(v0, e) ≥ 1 since each vertex is mapped to a point with
an integer coordinate. Let us assume that the points are not collinear. Let the coordinates
of points be v0 = (x0, y0, z0), v1 = (x1, y1, z1) and v2 = (x2, y2, z2). The area of the triangle

spanned by the three points v0, v1, v2 is
|−−→v0v1 ×−−→v0v2|

2
, where

−−→v0v1 ×−−→v0v2 =

∣∣∣∣∣∣
î ĵ k̂

x1 − x0 y1 − y0 z1 − z0
x2 − x0 y2 − y0 z2 − z0

∣∣∣∣∣∣ .
Since all the points have integer coordinates and they are not collinear, |−−→v0v1 × −−→v0v2| ≥ 1.

This implies that the area of the triangle is at least
1

2
. On the other hand, the area of
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the same triangle is
1

2
· distΓ(v0, e) · distΓ(v1, v2) ≤

1

2
· distΓ(v0, e) · d(Γ). This implies that

distΓ(v0, e) ≥
1

d(Γ)
. Note that if Γ(T ) is a planar grid drawing of T , the values of z0, z1 and

z2 are zero, and the same argument holds.

2. Let v1 and v2 be the endpoints of edge e1, and v3, v4 be the endpoints of edge e2. If these
four points lie on the same plane, the problem reduces to the previous one. We assume
that these four points do not lie on the same plane. Let the coordinates of points be v1 =
(x1, y1, z1), v2 = (x2, y2, z2), v3 = (x3, y3, z3) and v4 = (x4, y4, z4). Then, the volume of the

tetrahedron spanned by these four points is given by
dist(e1, e2) · |−−→v1v2 ×−−→v3v4|

6
. On the other

hand the volume of the same tetrahedron is given by the following determinant.

1

6
.

∣∣∣∣∣∣
∣∣∣∣∣∣
x1 − x2 y1 − y2 z1 − z2
x2 − x3 y2 − y3 z2 − z3
x3 − x4 y3 − y4 z3 − z4

∣∣∣∣∣∣
∣∣∣∣∣∣

This implies that the volume of the tetrahedron spanned by these four vertices is at

least
1

6
, since the points have integer coordinates. This also implies that distΓ(e1, e2) ≥

1

|−−→v1v2 ×−−→v3v4|
≥ 1

2
√
3 (d(Γ))

2 . □

Path decomposition P of a tree T is a decomposition of its edges into a set of disjoint paths,
defined constructively, as follows. Choose some root-to-leaf path in T and store it in an ordered set
P which is empty at the beginning. Remove the edges of this path from T . Note that the vertices
on the path whose residual degree remains greater than zero after the removal of the edges are
not removed. It may disconnect the tree; recurse on the remaining connected components while
there are edges. In the end, P is an ordered set of disjoint paths whose union is E(T ). Head of
the path P , denoted as head(P ), is the vertex x ∈ P with the minimum depth in tree T . Let
the internal vertices of the path be all vertices except head(P ). Any path decomposition P of T
induces a linear order of the paths: path P ′ succeeds P , i.e., P ′ ≻ P , if and only if P ′ is deleted
before P during the construction of P. Note that the subtree of each internal vertex of a path P
is a subset of the union of the paths that precede P in this linear order. There can be many path
decompositions since the way of choosing the paths is not predefined.

In the example of long-path decomposition [4], the path chosen in every iteration is the longest
root-to-leaf path (ties are broken arbitrarily), see Fig. 5b. Let L = {L1, . . . , Lm} be the ordered
set of paths of the long-path decomposition of T . Since paths in L are ordered in the reverse order
of their deletion, |Li| ≤ |Lj | for i < j.

Heavy-rooted-pathwidth decomposition [2]. The Strahler number, also known as Horton-
Strahler number of a tree is a parameter that was introduced by Horton and Strahler [11,14]. The
same parameter was recently used by Biedl [5] under the name of rooted pathwidth when addressing
the problem of computing upward tree drawings with optimal width.

The rooted pathwidth of a tree T , which we denote by rpw(T ), is defined as follows. If |T | = 1,
then rpw(T ) = 1. Otherwise, let k be the maximum rooted pathwidth of any subtree rooted at a
child of r(T ). Then, rpw(T ) = k if exactly one subtree rooted at a child of of the root r(T ) of T
has rooted pathwidth equal to k, and rpw(T ) = k + 1 otherwise, i. e., if there is more than one
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r(T )

1
1

1

(a)

v0

v01=u1

v1

v2

v3

v4 v03=u0

v00=u3
v10=u2

H

H1

H0

H2

H3

H4

(b)

H

H3H0

H4

H2
H1

(c)

Figure 4: [2] A tree T with (a) the number rpw(T (v)) for each vertex v of T . In particular,
rpw(T ) = 3; (b) the heavy edges of T forming the heavy paths H,H0, . . . ,H4 are shown in bold;
(c) the path tree of T

subtree rooted at a child of r(T ) having rooted pathwidth equal to k; see Fig. 4a. Clearly, rpw(T )
is an integer number.

The heavy-rooted-pathwidth decomposition of a tree T is defined as follows, see Fig. 4b. For
each non-leaf vertex v of T , let c∗ be a child of v in T such that rpw(T (c∗)) is maximum (ties are
broken arbitrarily). Then (v, c∗) is a heavy edge; further, each child c ̸= c∗ of v is a light child of
v, and the edge (v, c) is a light edge. Connected components of heavy edges form a set of paths
H(T ) = {H,H0, . . . ,Hk}, called heavy paths, which may have many incident light edges. The path
tree of T is a tree whose vertices correspond to heavy paths in T ; see Fig. 4c. The parent of a
heavy path P in the path tree is the heavy path that contains the parent of the vertex of P with
the minimum depth. The root of the path tree is the heavy path containing r(T ).

For convenience, we also consider the light edge connecting a heavy path to its parent in the
path tree to be a part of the path. So heavy-rooted-pathwidth decomposition H(T ) is a path
decomposition (see the definition above), when the paths are chosen to be the heavy paths. When
it is clear from the context, we will refer to H(T ) simply as H.

We denote by H the root of the path tree of T ; let v0, . . . , vm−1 be the ordered sequence of
the vertices of the path H, where v0 = r(T ). For i = 0, . . . ,m − 1, we let v0i , . . . , v

ti
i be the light

children of vi ordered arbitrarily. Let L = u0, u1, . . . , ul−1 be the sequence of the light children of
vertices of H ordered so that: (i) any light child of a vertex vj precedes any light child of a vertex

vi, if i < j; and (ii) the light child vj+1
i of a vertex vi precedes the light child vji of vi, see Fig. 4b.

For a vertex ui ∈ L, we denote by p(ui) its parent; note that p(ui) ∈ H, see Fig. 4c. The height of
the path tree of an n-vertex tree T is rpw(T ), for which it is known [5] that rpw(T ) ∈ O(log n).
Fig. 5a and 5b illustrate the heavy-rooted-pathwidth decomposition and long-path decomposition
of the same tree, where heavy paths and long paths are shown in different colors.

Canonical 3D drawing C(T ) of a tree T , introduced in [2], is the crossing-free straight-line
3D drawing of T that maps each vertex v of T to its canonical position C(v) determined by the
heavy-rooted pathwidth decomposition of T , as follows.
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• First, we set C(v0) = (0, 0, 0) for the root v0 of T .

• Second, for each i = 1, . . . , k − 1, we set C(vi) = (0, 0, zi−1 + |T (vi−1)| − |T (vi)|), where zi−1

is the z-coordinate of C(vi−1).

• Third, for each i = 1, . . . , k − 1 and for each j = 0, . . . , ti, we determine C(vji ) as follows. If

j = 0, then we set C(vji ) = (1, 0, 1 + zi), where zi is the z-coordinate of C(vi); otherwise, we
set C(vji ) = (1, 0, zj−1

i + |T (vj−1
i )|), where zj−1

i is the z-coordinate of C(vj−1
i ).

• Finally, in order to determine the canonical positions of the vertices in T (vji ) \ {v
j
i }, for each

i = 0, . . . , k − 2 and each j = 0, . . . , ti, we recursively construct the canonical 3D drawing
C(T (vji )) of T (v

j
i ), and translate all the vertices by the same vector so that vji is sent to C(vji ).

Remark 1 The canonical drawing C(T ) lies in the halfplane XZ+
0 inside a bounding box of height

|T | and width rpw(T ), and the root r(T ) of T is mapped to the left-bottom point of the box, that is
the origin.

Since tree T never changes throughout our algorithm, we refer rpw(T ) as rpw.

z

x
y

(a)

z

x
y

(b)

Figure 5: Canonical drawing of a tree with (a) heavy and (b) long paths, where paths are colored
with different colors, paths that consist of one edge are dashed. The root of the tree lies in the
origin.

For any vertex v of T , let T ′(v) be a portion of the subtree T (v). We define the canonical
drawing of T ′(v) with respect to v to be the drawing of T ′(v) obtained by cropping from C(T ) and
translating the obtained drawing of T ′(v) so that v is mapped to the origin. If T ′(v) = T (v), we
call it the relative canonical drawing of T (v) and denote it by CTv .
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3 Tools for the morphing algorithms

In this section, we define stretching, mapping, rotation and shrinking of subtrees and prove some
useful properties of them. Each of these are essential building blocks of our algorithms in Section 4
and 5.

3.1 Stretching by a constant S1

Let a planar drawing Γ of a tree T lie in the XY0 plane. During stretching morph ⟨Γ,Γ1⟩ each
coordinate of each vertex in Γ is multiplied by the same positive integer constant S1 to obtain the
drawing Γ1. Thereby, it is a linear morph that “stretches” the vertices of Γ apart.

Lemma 2 Stretching is a crossing-free morph.

Proof: For each t ∈ [0, 1] during the morphing step ⟨Γ,Γ1⟩, we denote the drawing of T by Γt(T ).
In Γt(T ), the image of a vertex v of T is {tΓ1(v)+(1− t)Γ(v)}. This implies it is the same drawing
as Γ, but scaled by tS1 + (1 − t). Since the original drawing Γ is crossing-free, so is the drawing
Γt. □

Recall that B(Γ(v), r) denotes the open disk of radius r in the horizontal plane centered at
Γ(v).

Lemma 3 Let ⟨Γ,Γ1⟩ be the stretching morph, that is stretching by S1. Then the following holds:

1. For any pair vi, vj of vertices, disks B(Γ1(vi),
S1

2 ) and B(Γ1(vj),
S1

2 ) do not intersect in XY0

plane.

2. For a vertex vi, disk B(Γ1(vi),
S1

2·d(Γ) ) does not enclose any other vertices or any part of edges

non-incident to vi in Γ1.

3. For every vertex v and every edge e = (v, u) in Γ1, there is an integer point z such that z ∈ e
and z ∈ B(Γ1(v), d(Γ)).

Proof:

1. Disk B(Γ1(vi),S1) does not contain other vertex vj , j ̸= i since disk B(Γ(vi), 1) contains
no other vertices. This implies that B(Γ1(vi),

S1

2 ), i.e., the disk with radius S1

2 , does not

intersect with any B(Γ1(vj),
S1

2 ) for j ̸= i.

2. Due to Lemma 1, no edges non-incident to vi intersect the disk of radius 1
d(Γ) around vi in

Γ. That means that in Γ1, where all distances are multiplied by S1, no non-incident edges
intersect the disk of radius S1

d(Γ) around vi. Also, other vertices do not lie in B(Γ1(vi),
S1

2·d(Γ) )

as B(Γ1(vi),
S1

2·d(Γ) ) ⊂ B(Γ1(vi),
S1

2 ).

3. Every edge e = (u, v) in Γ has been stretched by S1. Let the images of vertex u and v be
Γ(u) = (ux, uy) and Γ(v) = (vx, vy). Then, Γ1(u) = (ux · S1, uy · S1) and Γ1(v) = (vx · S1, vy ·
S1). The integer point z ∈ e and z ∈ B(Γ1(v), d(Γ)) is (ux · S1 + vx − ux, uy · S1 + vy − uy),
see Fig. 6. □
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...

d
(Γ

)

e

(vx · S1, vy · S1)
ux − vx

uy − vy

(ux · S1, uy · S1)Γ1

z

Figure 6: The integer point z for vertex v and edge e = (v, u).

3.2 Shrinking lifted subtrees

Let v be a vertex of a tree T . Assume that the image Γ(T (v)) of subtree T (v) coincides with the
canonical drawing CTv

of T (v), in particular, it lies in h = XZ+
v . Let C = {v1, . . . , vl} be the

sequence of children of v, ordered according to their z coordinates in CTv
. Let C′ = {vi1 , . . . , vik}

be some subsequence of C. Let us consider the new subtree T ′(v) which is obtained by deleting
the vertices in C \ C′ and their subtrees from T (v). Note that, for each j with 1 ≤ j ≤ k, T ′(vij )
still lies inside a box of height |T (vij )| and width rpw(T (vij )) on h.

We define the shrink subtree procedure on T ′
v as follows. We move each vertex vij along with

its subtree from CTv
(vij ) to (CTv

(vij )x, CTv
(vij )y, CTv

(v) + hj), where hj equals to the number of
vertices that were lying below vij in CTv (T

′), see Fig. 7. Let us denote the shrunken subtree by
C′

T ′
v
. The height of the shrunken subtree C′

T ′
v
is equal to the number of vertices in T ′(v). Also,

note that shrinking is a crossing-free unidirectional morph.
The following observation will be used to prove Lemma 10, which establishes the correctness

of a part of our algorithm.

Observation 1 The height of the shrunken subtree C′
T ′
v
is equal to the number of vertices in T ′(v).

Proof: For 1 ≤ j ≤ k, the subtree rooted at vij has a canonical drawing with respect to vij in CT ′
v
.

Each T ′(vij ) lies inside a box of height |T ′(vij )|. Also, note that the z-coordinate of C′(vij ) is equal to

CTv
(vj)z. This implies that in C′

T ′
v
, T ′(v) lies inside a box of height

∑k
j=1 |T (vij )|+1 = |T ′(vi)| and

the down-left corner of the box coincides with CTv (v) = C′
Tv
(v). Also note that |T ′(v)| ≤ |T (v)|. □

The following proposition from Alamdari et al. [1] is needed to prove that shrinking is a crossing-
free morph, see Lemma 4.

Proposition 1 [1, Corollary 15] Let ⟨Γ,Γ′⟩ be a unidirectional morph between two planar straight-
line drawings Γ and Γ′ of T . Let u be a vertex of T , let vw be an edge of T and, for any drawing
of T , let lvw be the line through the edge vw oriented from v to w. Suppose that u is to the left of
lvw both in Γ and in Γ′. Then v is to the left of lvw throughout ⟨Γ,Γ′⟩.

Lemma 4 Shrinking is a crossing-free morph.
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T (v3)
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T (v0)

T (v1)
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⇒ C ′
T ′
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Figure 7: An example of a shrinking morph. (a) The original tree Tv with 4 subtrees T (vi), i ∈
{0, 1, 2, 3}. (b) Subtree T ′(v) of the original tree and the direction of movement for vertices in
T (v1), T (v3). (c) Resulting drawing after the Shrinking morph.

Proof: Note that the x and y coordinates of each vertex in CT ′
v
and C′

T ′
v
are the same and z-

coordinate can only decrease. This implies that shrinking is obviously a unidirectional morph in
XZv plane. Note that throughout the morphing process all vertices in T ′

v maintain the relative
orders among themselves since they move along parallel vectors. Also, note that shrinking satisfies
the conditions of Proposition 1. This implies that shrinking is a crossing-free morph. □

3.3 Mapping around a pole

Let the pole through (x′, y′, 0) be the vertical line in 3D through point (x′, y′, 0). Let α, β be two
distinct vertical halfplanes containing the pole l passing through a point with integer coordinates.
Suppose ∠(α, β) /∈ {0, π} and α, β contain infinitely many points with integer coordinates. Mapping
around the pole l is a single morphing step to obtain a drawing Γ′ which lies in β from Γ which
lies in α. Each vertex moves along a horizontal vector between α and β. The direction of these
horizontal vectors is common for all vertices of Γ and is defined by α and β. Let us fix the horizontal
plane h passing through the point (0, 0, b) where b is an integer. Let pα, pβ be points that lie on
h ∩ α and h ∩ β, respectively; such that dist(l, pα) = dα and dist(l, pβ) = dβ be the minimum
non-zero distances from the l to the integer points lying in h∩α and h∩β. The vector of mapping
is defined as

pβ−pα

|pβ−pα| . Mapping is a unidirectional morph since all vertices of Γ move along the

vectors parallel to the vector of mapping till they reach the halfplane β. See Fig. 9.
We denote by rotation a mapping when α, β are halfplanes of planes parallel to XZ0, Y Z0

respectively or vice versa. Similarly, we define mapping around a horizontal pole, i.e., a pole
parallel to the X-axis. For rotation, the vector of mapping is lying in the following set, see Fig. 8.{(√
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For rotation around horizontal pole, the vector of mapping is lying in the following set.
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Figure 8: Possible directions of rotations between 4 halfplanes sharing a common vertical pole
through vertex v
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Figure 9: The mapping morph, halfplanes α, β sharing a common pole through point (x′, y′) and
their vector of mapping.
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Lemma 5 Mapping around a pole is a crossing-free morph.

Proof: We prove this statement for the case of mapping around a vertical pole. The case of
horizontal pole is analogous. First, note that we map an integer point to an integer point by
construction. Let α, β be vertical halfplanes containing the pole l through the origin. Let us

assume that ∠(α, β) = θ and let us define the stretching factor Sm =
dβ
dα

. Then, we can define

mapping by the following matrix. Sm cos θ −Sm sin θ 0
Sm sin θ Sm cos θ 0

0 0 1


Note that the determinant of the matrix is positive. This implies that the order type of the points
does not change during mapping, see [15]. Therefore, the drawing obtained in β is crossing-free
since the drawing in α is crossing-free. Let the (xα, yα, zα) maps to (xβ , yβ , zβ). For each t ∈ [0, 1]
during mapping, the position of the point is (1− t) · (xα, yα, zα) + t · (xβ , yβ , zβ). In other words,
during mapping the position of a point at the moment t ∈ [0, 1] is defined by the following matrix.1− t+ t · Sm cos θ −t · Sm sin θ 0

t · Sm sin θ 1− t+ t · Sm cos θ 0
0 0 1


Observe that at a fixed t all points of α lie on the same plane, and the order type of the points
does not change. This implies that we do not form any crossing at any t during mapping around
the pole. Note that if the pole passes through the point (a, b, 0) instead of the origin, we can first
translate the point (a, b, 0) to origin and translate back after mapping, and the same argument
applies. □

3.4 Rotating around a point

Let Γ0(T (v)) be the canonical drawing of a subtree T (v) on the horizontal XY +
v or XY −

v halfplane
obtained by rotating the relative canonical drawing CTv

around the horizontal pole through v. Let
Γ1(T (v)),Γ2(T (v)),Γ3(T (v)) be the drawings obtained from Γ0(T (v)) by rotating the horizontal
plane around the point Γ(v) by the angles π

2 , π,
3π
2 , respectively, see Fig 10. The drawing Γi(T (v))

can be obtained from the drawing Γi−1(T (v)) in one morphing step, see Lemma 6. Note that
during the rotation in the horizontal plane, we fix the root to the origin and rotate the drawing
of T by a multiple of π

2 around the origin. On the other hand, we rotate around a pole passing
through the root during the rotation around a pole.
The following lemma is a reformulation of Pinwheel lemma of Barrera-Cruz et al. [3, Lemma 3].

Lemma 6 [3, Lemma 3] The drawing Γi(T (v)) can be obtained from the drawing Γi−1(T (v)) in
one morphing step, for i = 0, 1, 2, 3, where indices are taken modulo 4. This morph is crossing-free.

4 Morphing through lifting paths

Let T be an n-vertex tree and P be some path decomposition of T into k paths. In this section, we
describe an algorithm that morphs a planar drawing Γ = Γ0(T ) of T to the canonical 3D drawing
Γ′ = C(T ) of T in O(k) steps. It lifts the paths of P one by one by applying procedure Lift(). Note
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Γ1(T (v)) Γ0(T (v))

Γ2(T (v)) Γ3(T (v))
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v

Figure 10: Drawings Γi(T (v)) i = 0, 1, 2, 3 obtained from the canonical drawing CTv = Γ0(T (v)).
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Figure 11: Our algorithms morph between two planar drawings through the 3D canonical drawing.
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that the final positions for the vertices in C(T ) are determined by the heavy-rooted-pathwidth
decomposition of T , and thus do not depend on P. A morph from C(T ) to Γ0(T ) can be obtained
by playing the morph from Γ0(T ) to C(T ) backwards, see Fig. 11.

Algorithm overview
Step 0: Preprocessing. This step is a single stretching morph ⟨Γ,Γ1⟩ with S1 = 2 · (rpw+d(Γ)).
This step is crossing-free, see Lemma 2.

After Step 0, for each path in P the procedure Lift(Pi) is performed in the order that is induced
by the definition of the path decomposition procedure (see Section 2). We first prove several
statements about the algorithm, viewing procedure Lift() as a black box and then in Section 4.1
we give a detailed description of Lift().

v0

v1 v2

v4

v3

x

y

z

Γt

Figure 12: A Drawing Γt of T before applying the procedure Lift(P ); edges of P are shown in
green and the lifted subtrees are shown in light purple.

Let Pi = (v0, v1, . . . , vm) be the first path in P that has not been processed yet and Γt be the
current drawing of T , see Fig. 12. We lift the path Pi. For any vertex v, let lifted subtree T ′(v) be
the portion of subtree T (v) that has been lifted during the previous iteration of Lift() procedure.
The following invariants hold after every iteration of the procedure Lift().

(I) The path Pi ∈ P is lifted only after all the children of the internal vertices of Pi are lifted.
The drawing of the lifted subtree T ′(v) in Γt is the canonical drawing of T ′(v) with respect
to v for any v ∈ V (T ).

(II) After the execution of Lift(Pi), path Pi moves to its canonical position with respect to
head(Pi).

(III) For k > i, the vertices of path Pk lie in the XY0 plane.

We now prove several statements that will be useful for proving correctness of our algorithm
in Section 4.2. For now we treat Lift() as a black box and assume that the above invariants hold.
Further in Section 4.1, we give a detailed description of Lift().

Let the processing vertices be the internal vertices of Pi along with the vertices of their lifted
subtrees.

Lemma 7 The subtrees of all internal vertices vj in Pi are already lifted.

Proof: All the paths that precede Pi in P are exactly the paths that are left after deleting Pi from
the forest of subtrees of T in the constructive definition of P (see paragraph Path decomposition
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in Section 2). From this fact, it follows that all internal vertices of Pi have become roots of some
trees after deleting the edges of Pi and edges of those trees were processed in Lift(Pj) procedures
for some Pj where j < i. □

Lemma 8 The maximum height of vertices in the drawing Γt is strictly less than n.

Proof: Note that all vertices of the processed paths are the part of the lifted subtrees of their
head vertices. By invariant (I), their height is strictly less than the number of vertices in the
corresponding subtree, which does not exceed number of vertices in T . □

Let v be a vertex of T . Then the below lemma follows from the definition of the canonical
drawing and invariant (I).

Lemma 9 For any vertex v and its lifted subtree T ′(v), the difference between x coordinates for
any pair of vertices of T ′(v) in Γt does not exceed rpw. In other words, the maximum horizontal
distance between any pair of vertices of T ′(v) in Γt is at most rpw.

4.1 Procedure Lift(P )

In this section we describe the procedure Lift() for a path P of a path decomposition P. We
assume that all paths of P that precede P were already lifted. The procedure consists of 13 Steps,
for each of them we prove that it is crossing-free. Analysis of the size of the grid required for this
process is given in Section 4.2.

Step 1: Shrink lifted subtrees. For every internal vertex vj of the path P , its lifted subtree
T ′(vj) morphs into shrunken lifted subtree, see Sec. 3.2. All subtrees are being shrunk simultane-
ously in one morphing step ⟨Γt,Γt+1⟩. See Fig. 13.

Step 1

Figure 13: Step 1 of the Lift(P ) procedure. Red arrows denote the direction of movement for the
vertices that move during this step.

Lemma 10 Step 1 is crossing-free.

Proof: For a lifted subtree of a particular vertex, this is a shrinking step and by Lemma 4 it
is crossing-free. Lifted subtrees of different vertices were not overlapping in projection to the
XY0 plane in the drawing Γt due to invariant (I) and Lemmas 3 and 9. Since shrinking of the
lifted subtree of vi takes place entirely in the plane XZ+

vi , all vectors of movement are vertical,
and projections of lifted subtrees can not overlap during this morphing step and thus no crossing
happens. No vertices or edges that change their position during Step 1 could intersect each other
in this step.
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In shrunken drawing every vertex of T ′(vj) except vj has strictly positive z coordinate which
means that T ′(vj) \ {vj} remains strictly above the XY0 plane and can not intersect the part of
T that is still lying in the XY0 plane. Internal vertices of P do not change their positions during
this morph. □

Step 2: Rotate some lifted subtrees. This step consists of two morphs
⟨Γt+1,Γt+2⟩, ⟨Γt+2,Γt+3⟩, see Fig. 14a.

For 0 ≤ j < i − 1, if projection pr(T ′(vj)) overlaps with pr((vj , vj+1)), we rotate twice the
drawing of T ′(vj) around the vertical pole through Γt(vj). Since every lifted subtree T ′(vj) lies in
halfplane XZ+

vj , after this step each such lifted subtree T ′(vj) lies in XZ+
vj or XZ−

vj .

Lemma 11 Step 2 is crossing-free.

Proof: Two lifted subtrees T ′(vj), T
′(vi) of different vertices vj , vi cannot cross because Lemma 9

ensures that pr(T ′(vj)) ⊂ B(Γt+1(vj), rpw), pr(T
′(vi)) ⊂ B(Γt+1(vi), rpw). On the other hand,

due to Lemma 3 disks around vertices with radius rpw ≤ S1

2 = (rpw + d(Γ)) do not cross with
each other.

No edges within a single rotating lifted subtree can intersect each other as rotation is a crossing-
free morph, see Lemma 5. Due to invariant (II), all edges that do not lie in the lifted subtrees
are lying in the XY0 plane. No lifted subtree T ′(vj) can intersect any edges in the XY0 plane
due to invariant (I), i.e., Γt+1(T

′(vj)) is the canonical drawing with respect to vj and therefore
lies strictly above the XY0 plane, except for the point Γt+1(vj). Rotation morph does not change
z coordinate of points during the movement, so throughout the morph the drawing of T ′(vj) lies
above the XY0 plane; vertex vj does not move during the rotation as it lies on the pole.

No vertices move in XY0 plane during Step 2 and thus no crossing can happen within the plane
XY0. □

Step 2

Step 3

(b)(a)

Figure 14: (a) Step 2 of Lift(P ), (b) Step 3 of Lift(P ); where the arrows show the directions of
movement for the substeps.

Step 3: Lift the path up: This is a single morphing step ⟨Γt+3,Γt+4⟩ that moves each internal
vertex vj , j ≥ 1 of path P vertically to the height defined recursively as follows. For v1: Γt+4(v1)z =
n; for vj , j > 1: Γt+4(vj)z = Γt+4(vj−1)z + hsh(T

′(vj−1)), where hsh(T
′(vj)) is an integer number

equal to the height of shrunken lifted subtree T ′(vj). See Fig. 14b.
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Lemma 12 Step 3 is crossing-free.

Proof: Every internal vertex vj in the path P moves with its subtree T ′(vj) along a vertical vector.
In the beginning of this morphing step, for any pair of distinct subtrees, their projections to XY0

plane did not intersect. Also, no intersection existed between projections of different subtrees and
the projections of path edges in XY0 plane. Since all the movements are along the vertical vectors,
these projections stay intact during this step. Moreover, all movements happen strictly above XY0

plane implying that the subtrees that are still not lifted and lie in the XY0 plane do not change
their positions and can not form new crossings. Therefore, there can be no crossings during this
step of the algorithm. □

Lemma 13 After Step 3 of the Lift(P ), the following holds:

1. All internal vertices of P , along with vertices of their subtrees, are separated from the rest of
the vertices of the tree by a horizontal plane.

2. For any two internal vertices u, v of P , the subtrees of u and v are separated from each other
by a horizontal plane.

Proof:

1. Due to Lemma 8, the z-coordinates of all vertices that do not lie on the path are integers that
are strictly less than n. By the definition of height in Γt+4, internal vertices of P and vertices

in their lifted subtrees have z-coordinates at least n. Thus, the horizontal plane z = n − 1

2
is the plane of separation.

2. For every pair of internal vertices vj , vk with j < k of P , let us define the plane of separation
as follows. By the definition of the height, Γt+4(vk)z the horizontal plane z = Γt+4(vk)z − 1

2
separates lifted subtree of vertex vj from lifted subtree of vertex vk for all k > j. □

Step 4: Rotate subtrees to horizontal plane. In this single morphing step ⟨Γt+4,Γt+5⟩, each
lifted subtree T ′(vj) of internal vertices of path P is rotated around a horizontal pole through
Γt+4(vj) to lie in a horizontal plane. The direction of rotation is chosen in such a way that T ′(vj)
does not cross with an edge (vj , vj+1) throughout this morph. That is, we rotate in one of the two
possible halfspaces, that does not contain edge (vj , vj+1). See Fig. 15a.

Lemma 14 Step 4 is crossing-free.

Proof: Suppose for the sake of contradiction, a crossing happens during Step 4. It must involve
one of the moving edges, i.e., edges of lifted subtrees. For the internal vertices vj , their subtrees
T ′(vj) are horizontally separated from each other due to Lemma 13, thus edges of different lifted
subtrees can not cross. Since for each j ≥ 1, the vertex vj−1 lies below the horizontal plane passing
through the vertex vj , an edge of T ′(vj) could not cross the edge (vj−1, vj). Also, subtrees of
internal vertices can not cross with non-processing vertices or edges since they are horizontally
separated, Lemma 13.

If for some j, 1 ≤ j ≤ m, the edge (vj , vj+1) lied on the vertical plane through T ′(vj) there was
no crossings in Γt+4 and after the beginning of movement T ′(vj) will no longer lie in that plane and
no crossing can happen. If (vj , vj+1) lied strictly within one of the halfplanes defined by T ′(vj),
then by the choice in Step 4, we rotate through the half-space that does not contain (vj , vj+1) and
thus can not cross with this edge either. A contradiction. □
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Figure 15: (a) Step 4. (b) Step 5. (c) Portion of the drawing after Step 5. Blue arrows show
y-positive and y-negative directions with respect to yellow XZ+

v1 plane that contains v1, . . . , vm.

Step 5: Correct the path. In morph ⟨Γt+5,Γt+6⟩, each vertex vj of path P with j ≥ 2 moves
together with its subtree T ′(vj) along the vector ((v1x − vjx)+ C(vj)x−C(v1)x, v1y − vjy , 0), where
v1x denotes x coordinate of vertex v1 in drawing Γt+5. At the end of this step, the x and y
coordinates of each vj are same as their x and y coordinates in the canonical drawing with respect
to v1. See Fig. 15b and Fig. 15c.

Lemma 15 Step 5 is crossing-free.

Proof: First, note that each vertex vj , j ≥ 2, moves on the horizontal plane passing through it,
that is, z coordinates of the vertices do not change. This step is crossing-free because all edges of
the path P and all subtrees of different vertices vj of the path P are horizontally separated from
each other. All moving edges are horizontally separated from already lifted subtrees with the plane

z = n− 1

2
due to Lemma 13. □

Step 6: Go down. During the morphing step ⟨Γt+6,Γt+7⟩, every vertex vj , j ≥ 2 of the path P
moves together with its subtree T ′(vj) along the same vertical vector (0, 0, (v1z − vjz ) + C(vj)z −
C(v1)z), where v1z and vjz are the z-coordinates of vertex v1 and vj , respectively, in the drawing
Γt+6. At the end of this step, the z coordinate of vj is the same as its z coordinate in the canonical
drawing with respect to v1. Fig. 16a illustrates the result of this step.

Lemma 16 Step 6 is crossing-free.

Proof: First, note that each vertex moves vertically. All moving edges are horizontally separated

from already lifted subtrees by the plane z = n − 1

2
. During the morph, the vertical order of

internal vertices of the path does not change as P is a portion of a root-to-leaf path. This implies
that horizontal separation of T ′(vj) is preserved during the step for different j. □

Step 7: Turn subtrees in horizontal planes. This step consists of two morphing steps
⟨Γt+7,Γt+8⟩, ⟨Γt+8,Γt+9⟩, and is illustrated in Fig. 16b. In Step 2 of procedure Lift(P ), for some
internal vertices vj of P , the lifted subtrees were rotated to lie on XZ−

vj planes. In Step 4, they
were rotated to lie on horizontal planes. More specifically, all such subtrees T ′(vj) lie in negative
x-direction with respect to vertex vj on the horizontal plane passing through vj . We rotate every

such lifted subtree T ′(vj) around the corresponding internal vertex vj twice by an angle
π

2
in the

horizontal plane passing through it. After this rotation the subtree lies in the positive x-direction
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Step 6 Step 7

(b)(a)

Figure 16: (a) Step 6, (b) Step 7.

with respect to vertex vj . Note that we execute this morphing step for every subtree that lies in
negative x-direction with respect to the corresponding internal vertex in the drawing Γt+7. See
Section 3.4 for the description of rotating a drawing of a tree around a point in a horizontal plane.

Lemma 17 Step 7 is crossing-free.

Proof: By Lemma 6, rotating a drawing of a tree in the horizontal plane by the angle
π

2
around

the image of its root is a crossing-free morphing step. We perform this rotation twice consecutively
in steps ⟨Γt+7,Γt+8⟩, ⟨Γt+8,Γt+9⟩. Thus no crossing can happen between the elements of the same
subtree. Vertices of different lifted subtrees are horizontally separated from each other and from
non-processing vertices and edges, which means no crossings can happen between them. □

Step 8: Stretch subtrees in y direction. This morphing step ⟨Γt+9,Γt+10⟩ transforms the
lifted subtree of each internal vertex of P from its shrunken size to the original size of the subtree
before shrinking. The transformation of the subtree of an internal vertex happens in a horizontal
plane passing through the vertex. See Fig. 17a. Note that stretching here is a shrinking morph
played backwards, and it is a crossing-free morph for every T ′(vj) by Lemma 4.

Lemma 18 Step 8 is crossing-free.

Proof: As mentioned above, stretching here is a crossing-free morph for every T ′(vj). As all
subtrees T ′(vj) are pairwise horizontally separated and also horizontally separated from the un-
processed part of the tree. Since the morph is horizontal, no crossings can happen between different
subtrees T ′(vj) or between a subtree T ′(vj) and unprocessed part of the tree. □

Step 9: Rotate subtrees to canonical positions. This step is a single morphing step
⟨Γt+10,Γt+11⟩ where every lifted subtree T ′(vj), where vj is an internal vertex of path P , is rotated
around the horizontal pole passing through vj to lie in vertical halfplane XZ+

vj , see Fig. 17b.
Note that after Step 6, each internal vertex vj with j ≥ 2 lies in the relative canonical position

in the halfplane XZ+
v1 . This implies that the subtree T (v1) is in canonical position with respect to

vertex v1 after Step 9.

Lemma 19 Step 9 is crossing-free.

Proof: Let H be the vertical halfplane XZ+
v1 ; it contains v1, . . . , vm.
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Step 8 Step 9

(b)(a)

Figure 17: (a) Step 8, (b) Step 9.

For each j, vertices in subtrees T ′(vj) lie on the same side of H in parallel planes at any
moment of this morphing step. Note that at the beginning of the step, halfplanes that contain
different subtrees are horizontal. Let vj and vk be two internal vertices of P , and suppose that
their subtrees T ′(vj) and T ′(vk) lie on the same side of H. Since all internal vertices lie on the same
vertical plane, rotation of the horizontal plane α containing T ′(vj) and rotation of the horizontal
plane β containing T ′(vk) can be viewed as the rotations of two horizontal planes α, β around two
horizontal poles contained in XZ+

v1 and passing through vj and vk, respectively. Then, at every
moment of rotation, the angle between α and XZ+

v1 equals the angle between β and XZ+
v1 , i.e.,

∠(α,XZ+
v1
)=∠(β,XZ+

v1). This means that these halfplanes are parallel to each other during every
moment of the rotation. This implies that edges of T ′(vj) do not cross the edges of T ′(vk) this
step.

If T ′(vj) and T ′(vk) lie on the different sides of H, they remain on the different sides of H
during the entire movement, and do not cross as well.

At the end of Step 9, for each internal vertex vj , T
′(vj) is in the canonical position with respect

to vj . Each internal vertex vj is in the canonical position with respect to the vertex v1 as a result
of Step 6 and does not move after it. Therefore, no two subtrees of distinct internal vertices cross
each other at the end of the rotation when they lie on the halfplane XZ+

v1 . □

Step 10: Move the subtrees along. In this morphing step ⟨Γt+11,Γt+12⟩ every internal vertex
vj of the path, together with its subtree T ′(vj) moves horizontally in the direction (v0x −v1x , v0y −
v1y , 0). If in the canonical drawing C(T ) of T the edge (v0, v1) is vertical, vertex v1 moves along
this vector to the point with x, y-coordinates (v0x , v0y ). Otherwise, vertex v1 moves along this
vector as far as possible to get integer x and y coordinates not equal to (v0x , v0y ).

By Lemma 3 there is such a point p = (px, py, 0) in disk B(Γt+11(v0), rpw + d(Γ)). Note that
distΓt+11(p, v0) ≤ d(Γ). Note that after Step 9, each internal vertex vj with j ≥ 2 along with
its lifted subtrees lies in the relative canonical position with respect to v1. This implies that all
subtrees T ′(vj) with j ≥ 2 together take no more than rpw space around the vertical pole through
the point (v1x , v1y ), see Remark 1. Thus, the projection of those subtrees to the XY0 plane lie
within the disk B(Γt+11(v0), rpw+ d(Γ)). After this step, the projections of all processing vertices
lie within B(Γt+11(v0), rpw + d(Γ)) in XY0 plane. See Fig. 18.
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v2v1

v0

Step 10 After Lift(Pi) procedure

(a) (b)

Figure 18: a) Step 10, (b) the drawing after Lift(P ) procedure.

Lemma 20 Step 10 is crossing-free.

Proof: Step 10 is crossing-free because each vertex of the path P is horizontally separated from
the subtrees of other vertices in the plane XY0 (already lifted subtrees have height at most n− 1
and all processing vertices have z-coordinates at least n). Recall that Γ1(T ) is the drawing of T
after Step 0. Note that vertex v1 moves along the edge (v0, v1) towards vertex v0, so the projection
of the edge (v0, v1) always coincide with the segment Γ1(v1)Γ1(v0) and shrink in length. Note
that if in C(T ) the edge (v0, v1) is vertical, then at the end of this step v1 lies on the vertical pole
through Γ1(v0) but no other vertex in the subtree of T (v0) that lies on a different path than P can
lie on the vertical pole through Γ1(v0). □

Steps 11-13 go differently (see the two cases below) depending on whether we rotated T ′(v0)
during Step 2 or not.

Case 1: T ′(v0) was not rotated since pr(v0, v1) and T ′(v0) did not overlap after Step 1. This
implies that in Γt+12 the lifted subtree of v0 lies in XZ+

v0 , see Fig. 19.
Case 2: The overlap happened after Step 1 and T ′(v0) was rotated to lie in XZ−

v0 , see Fig. 20.

Step 11: First part of the subtree xy-correction. Case 1: If in Step 2, T ′(v0) was not
rotated, during ⟨Γt+12,Γt+13⟩ all internal vertices of P with their subtrees T ′(vj) move along the
same horizontal vector until the edge (v0, v1) lies on the halfplane parallel to Y Z0 and |v1y −v0y | =
|C(v1)x − C(v0)x|, see Fig. 19. The direction is chosen so that the angle between pr((v0, v1)) in
Γt+12 and pr((v0, v1)) in Γt+13 is minimal.
Case 2: During Step 2, T ′(v0) was rotated because the edge (v0, v1) was parallel to the X axis.
Therefore pr((v0, v1)) is still parallel to the X axis, since pr((v0, v1)) always coincide with the
segment Γ1(v1)Γ1(v0) where Γ1(T ) is the drawing of T after Step 0. By definition of Step 2, we
know that T ′(v0) in Γt+12 lies in XZ−

v0 . We are rotating T ′(v0) around the pole through v0 to lie
in Y Z+

v0 , see Fig. 20.
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Figure 19: Steps 11-13. Case 1. (a) The canonical drawing of Tv0 . Path that will be lifted and
other processing vertices are shown in green. (b) Drawing Γt before lifting path. (c)-(f) The four
morphing steps composing Steps 11-13 in Case 1.
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Figure 20: Steps 11-13. Case 2. (a) The canonical drawing of Tv0 . Path that will be lifted and
other processing vertices are shown in green. (b) Drawing Γt before lifting path. (c)-(f) The four
morphing steps composing Steps 11-13 in Case 2.
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Lemma 21 Step 11 is crossing-free.

Proof: Case 1: For all vertices of T (v1), their vectors of movement are the same during this
step. This means no crossing can happen in T (v1). Also T (v1) is horizontally separated from the
unprocessed part of T , which is motionless.

As for the edge (v0, v1), its projection pr((v0, v1)) lies within the disk B(Γt+12(v0), rpw + d(Γ))
throughout this morphing step and therefore, can not cross with any other lifted subtree T ′(v)
rooted at a non-processing vertices v whose projection lies within B(Γt+12(v), rpw + d(Γ)). This
step ends as soon as the edge (v0, v1) lies on Y Zv0 plane. Note that we move the edge (v0, v1) in
such a way that it touches Y Zv0 plane before XZv0 plane. This implies that (v0, v1) can not cross
with T ′(v0) because (v0, v1) moves within one half-space defined by plane XZv0 and T ′(v0) lies on
XZv0 .

Case 2: Rotation is a crossing-free morph due to Lemma 5. In projection, it happens within
the disk B(Γt+12(v0), rpw+d(Γ)). Therefore, for the same reason as in Case 1 no crossings happen.

□

Step 12: Move the subtrees down. This step consists of a single morphing step ⟨Γt+13,Γt+14⟩,
and it is a vertical morph. In Γt+13, the internal vertex of P lies n units above its canonical
position with respect to v0. We decrease the z-coordinates of the internal vertices along with all
their subtrees by n.

Lemma 22 Step 12 is crossing-free.

Proof: Case 1. This step is crossing-free because T ′(v0) and T (v1) lie in distinct planes and
their projections do not intersect in Γt+13. Vertical morph does not change the projection of the
drawing, so the separation remains. After Step 11, edge (v0, v1) and T ′(v0) lie in different planes
as well.

Case 2. During Step 12, (v0, v1) and T (v1) are in XZ+
v0 . T ′(v0) during the same step is in

Y Z+
v0 . They can not make any crossings because they do not intersect in projection during the

entire morph. □

Step 13: Second part of the subtree xy-correction. This step consists of one morphing step
⟨Γt+14,Γt+15⟩.

Case 1: All processing vertices move along the same horizontal vector so that after this
movement vertex v1 lies in the canonical position with respect to v0. As T (v1) is already in the
canonical position with respect to v1, after Step 13 it is in the canonical position with respect to
v0.

Case 2: Note that T (v1) and (v0, v1) are in the canonical positions with respect to v0 after Step
12. Indeed in Step 10 we got x, y-coordinates equal to (v0x+(C(v1)x−C(v0)x), v0y+(C(v1)y−C(v0)y)
because (v0, v1) was parallel to X-axis, after Step 12 we have corrected z-coordinates. In this case
we rotate T ′(v0) to XZ+

v0 , i.e. to its canonical position with respect to v0. In both cases processing
vertices and T ′(v0) lie in canonical position with respect to v0 in Γt+15, they all now form new
lifted subtree of vertex v0.

Lemma 23 Step 13 is crossing-free.

Proof: Case 1. During the morph, projections of no two elements of (v0, v1), T (v1), and T ′(v0)
cross. In the end of the step, T (v1) and (v0, v1) lie in their canonical positions with respect to v0,
From the beginning of the procedure Lift(P ), T ′(v0) was already in canonical position with respect
to v0 by invariant (I), so at the end of the morph they also can not cross.
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Case 2. Rotation is a crossing-free morph and in the end of this step T ′(v0), T (v1) and (v0, v1)
are in the canonical position with respect to v0 and CTv0

does not contain any crossings. □

Observe that in the end the entire sequence of steps (Steps 1-13) all the internal vertices of P
along with their subtrees are placed in the canonical position with respect to v0.

4.2 Correctness of the algorithm

In this section we first prove that the algorithm is correct, and then analyse its complexity.

Correctness of the algorithm. To prove that our algorithm is correct, first we prove that
the invariants, stated in the beginning of Section 4, hold after each iteration of Lift(P ). Suppose
that the paths Pj with j < i are already lifted, and Pi is the path for which the lifting procedure
is not started yet. We repeat the invariants here for convenience.

(I) Path Pi ∈ P is lifted only after all the children of the internal vertices of Pi are lifted. Recall
that T ′(v) is a portion of the subtree T (v) which is already lifted. Let Γt be the intermediate
drawing of T obtained after the execution of Lift(Pi−1). The drawing of T ′(v) in Γt is the
canonical drawing of T ′(v) with respect to v for any v ∈ V (T ).

(II) After the execution of Lift(Pi), path Pi moves to its canonical position with respect to
head(Pi), i.e., all the vertices of the path Pi together with their children are in the canonical
position with respect to head(Pi).

(III) After the execution of Lift(Pi), the vertices of path Pk with k > i lie in the XY0 plane until
the next iteration of Lift() procedure begins.

Lemma 24 The above mentioned invariants hold after performing Step 0 and after Lift(Pi) for
each 1 ≤ i ≤ m.

Proof: First, we prove by induction that invariant (II) and invariant (III) hold. Then, we argue
that invariant (II) and (III) together imply invariant (I).

Let Pi consists of the vertices {v0, v1, . . . , vk} where v0 is the head(Pi).

Invariant(II). The drawing of T ′(v) in Γt is the canonical drawing of T ′(v) with respect to v
for any vertex v ∈ V (T ).

Note that after performing the stretching step the whole T lies in the XY0 plane. Since none
of the paths are lifted, invariant (II) trivially holds after the Step 0.

Suppose that we have lifted i − 1 paths for some i ≥ 1 and invariant (II) holds, i.e., for any
internal vertex v of Pi, the drawing of T ′(v) is the canonical drawing of T ′(v) with respect to v
before the execution of the procedure Lift(Pi). We now prove that invariant(II) will hold after the
execution of the procedure Lift(Pi).

After Step 5, each internal vertex vj with j ≥ 2 has canonical x, y-coordinates with respect
to vertex v1 and after Step 6 has canonical z-coordinates with respect to v1. Recall that we
have shrunken lifted subtrees in Step 1. Steps 7 and 8 guarantee that each of the lifted subtrees
T ′(vj), j = 1, . . . , k is in canonical position with respect to its root. They all lie in the positive
x-direction from their respective roots in the horizontal plane passing through their respective
roots. For every T ′(vj), 1 ≤ j ≤ k, the canonical positions with respect to the roots get restored
after Step 8 but in horizontal direction.
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Then, Step 9 lifts subtrees of internal vertices into (vertical) canonical position after rotating
them. That is T (v1) is in canonical position with respect to vertex v1. Steps 10-13 move T (v1)
along with v1, so after the end of procedure Lift(Pi), the subtree T (v1) is in canonical position
with respect to v0. Note that Steps 10-13 also guarantee that old T ′(v0), i.e., the portion of the
subtree rooted at v0 that was already lifted before the beginning of the execution of Lift(Pi), is
placed back to the canonical position with respect to v0 in case it was moved in Step 2. That
means that after Step 13, new T ′(v0), which consists of the old T ′(v0) along with new edge (v0, v1)
and subtree T (v1), is in canonical position with respect to v0.

As for the other vertices in XY0, their lifted subtrees had not moved during Lift(P ) procedure
and are in canonical positions with respect to their roots by induction hypothesis.

Invariant(III). Let us prove that vertices of paths Pk, k > i are lying in XY0 plane. We again
use induction on i.

After Step 0 the invariant (II) holds since the entire tree T lies in the XY0 plane.

Suppose we have lifted i − 1, i ≥ 1, paths and before the Lift(Pi) procedure all vertices of
non-processed paths lie in XY0 plane — invariant (III) holds. Internal vertices of the path Pi can
not lie in other non-processed paths than Pi by definition of path decomposition. In Lift(Pi), we
only move processed paths, i.e. internal vertices of Pi along with the lifted subtrees. All vertices
that lie on non-processed paths still are in XY0 plane. That means that after the execution of the
Lift(Pi) procedure invariant (III) holds too.

Invariant(I). Before the start of the Lift(Pi) procedure, by the induction hypothesis all the
subtrees of the internal vertices are lifted. Also, note that the lifted subtree T ′(v0) is in the
canonical position with respect to v0. Since invariant (II) is true, in the end of the Lift(Pi)
procedure path Pi moves to its canonical position with respect to v0. This implies that the lifted
subtree of v0 is in the canonical position with respect to it at the end of the Lift(Pi) procedure.
Note that only the subtrees of the internal vertices of path Pi take part in morphing steps during
the Lift(Pi) procedure and each of them is in the canonical position with respect to their roots in
the Lift(Pi) procedure. By invariant (III), the vertices of path Pk for k > i lie in XY0 plane. Note
that they also are not moved during Lift(Pi). □

We now prove that our morph is a grid morph, which completes the proof of correctness of our
algorithm.

Lemma 25 All morphing steps in the algorithm are grid morphs.

Proof: Let us prove this by induction on number of lifted paths.

Consider the base case where none of the paths is lifted. After the stretching morph, i.e., Step
0, all coordinates of all vertices are integer because the constant of stretching is integer and in the
input drawing Γ = Γ0 all vertices had integer coordinates.

Suppose i− 1, i ≥ 1 paths are lifted and all performed morphs were grid morphs. That implies
that in the beginning of procedure Lift(Pi), all vertices lie on integer points of the grid. During the
Lift(Pi) procedure non-processed vertices and vertex v0 do not change coordinates at all. Rotation
and shrinking morphs move points with integer coordinates to points with integer coordinates, see
Lemma 5 and Lemma 4, respectively. Turning of the subtrees in horizontal planes in Step 7 is
a grid morph, see Lemma 6. In all other steps the lifted subtrees of internal vertices are moved
along with their respective roots by the same vector to the points with integer coordinates. Thus,
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after the procedure Lift(Pi) all vertices still have integer coordinates since all coordinates at the
beginning of the procedure Lift(Pi) were integer.

This implies that all morphing steps in the algorithm are grid morphs. □

Complexity of the algorithm. Let us estimate the size of a grid required by the algorithm.
Let us recall that l(Γ), w(Γ) and h(Γ), respectively, denote the length, width and height of the
3D drawing Γ of T , i.e., the maximum absolute difference between the x-, y- and z-coordinates of
vertices in Γ, respectively. Also, recall that d(Γ) denote the diameter of Γ, defined as the ceiling
of the maximum pairwise (Euclidean) distance between its vertices.

Note that the initial drawing Γ = Γ0 is planar. At the beginning of procedure Lift(), our tree
T = (V,E), |V | = n has a drawing Γ = Γ0 that requires a two dimensional grid of size l(Γ)×w(Γ).

First step of the algorithm multiplies the required grid size by S1 = 2 · (rpw + d(Γ)). During
our algorithm, already lifted subtrees can take space in x, y-directions, but no more than rpw(T ).
In z-direction every lifted subtree takes no more than n, while during Lift() procedure we may get
vertices at height at most 2n.

Therefore, the space required throughout the algorithm can be estimated as follows:

(x× y × z) : O(l(Γ) · 2 · (d(Γ) + rpw) + 2 · rpw)×O(w(Γ) · 2 · (d(Γ) + rpw) + 2 · rpw)×O(n) =

O(d2(Γ))×O(d2(Γ))×O(n)

Recall that rpw(T ) = O(log n) [2, 5]. Note that for a grid drawing Γ of an n vertex tree T ,
d(Γ) ≥

√
n. This implies that for a sufficiently large n, rpw(T ) is asymptotically less than d(Γ(T ))

for any grid drawing Γ(T ).
The lemmas proved in this section along with the space and time complexity bounds imply the

following theorem, that is the main result of this section.

Theorem 1 For any two planar straight-line grid drawings Γ,Γ′ of a tree T with n vertices and
any path decomposition P of T , there exists a crossing-free 3D morph M = ⟨Γ = Γ0, . . . ,Γl = Γ′⟩
that consists of O(k) steps where k is the number of paths in P. In this morph, every intermediate
drawing Γi, 1 ≤ i ≤ l is a straight-line 3D grid drawing lying in a grid of size O(d2)×O(d2)×O(n),
where d is maximum of the diameters of the input drawings Γ and Γ′.

Since any path decomposition has at most n paths, we can derive the following.

Corollary 1 For every two planar straight-line grid drawings Γ,Γ′ of a tree T with n vertices
there exists a crossing-free 3D-morph M = ⟨Γ = Γ0, . . . ,Γl = Γ′⟩ that has O(n) morphing steps,
and require grid size O(d2) × O(d2) × O(n), where d is maximum of the diameters of the input
drawings. In this morph every intermediate drawing Γi, 1 ≤ i ≤ l is a straight-line 3D grid drawing
lying in a grid of size O(d2)×O(d2)×O(n).

5 Morphing through lifting edges

In this section, we describe another algorithm that morphs a planar grid drawing Γ of an n-
vertex tree T to the canonical drawing C(T ) of T , see Section 2 for the definition of C(T ). The
algorithm, similarly to the algorithm from Section 4, depends on a given path decomposition P.
This time one iteration of our algorithm lifts simultaneously a set of edges of T , that contains at
most one edge from each path of decomposition P. Let us set the drawing Γ0 to be equal to the
initial drawing Γ of T .



JGAA, 27(4) 241–279 (2023) 269

Step 0: Preprocessing. This step ⟨Γ,Γ1⟩ is a stretching morph with S1 = 2·rpw·d(Γ)·(4·d(Γ)+1).
Recall that stretching is a crossing-free morph due to Lemma 2.

Let m denote the depth of T . For an edge e of T , let the start vertex st(e) (respectively,
the end vertex end(e)) be the vertex of e with smallest (respectively, largest) depth. Let
K = {K1, . . . ,Km} be the partition of edges of T into disjoint sets such that e ∈ Ki if and only
if the depth of st(e) in T equals m − i. For every vertex v, let End(v) be a set of edges that
have v as their start vertex. All edges of End(v) are contained in the same set Ki because their
depth is determined by dpt(v). We lift up sets Ki one by one from i = 1 to i = m by running the
procedure Lift(Ki), until we obtain the canonical drawing of T .

Let Γt be the drawing of T before lifting set Ki. See Fig. 22a. The details of the procedure
Lift(Ki) are presented in Section 5.1. For j < i, let lifted subtree T ′(vj) be the portion of subtree
T (vj) which is already lifted by the execution of Lift(Kj) for some j < i. Invariants that we
maintain throughout the algorithm are the following:

(I) The drawing of T ′(vj) in Γt is the canonical drawing of T ′(vj) with respect to vj .

(II) The edges that are part of a not yet processed set Kl ∈ K, l ≥ i, lie in the XY0 plane,
together with the vertices incident to those edges.
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Figure 21: Finding points ze1 , ze2 for edges e1, e2 with common start endpoint v.



270 Arseneva et al. Morphing tree drawings in a small 3D grid

Lemma 26 For any edge e = (v, u) with st(e) = v in the drawing Γ1 of T , obtained by performing
Step 0 on the initial drawing Γ0, there is an integer point ze ∈ e such that the following conditions
hold:

1. Disk B(Γ1(ze), rpw · d(Γ)) is enclosed in the disk B(Γ1(v), rpw · d(Γ) · (4 · d(Γ) + 1)).

2. For any pair of distinct edges e1, e2 ∈ Ki for any i ∈ {1, . . . ,m}, the disks B(Γ1(ze1), rpw)
and B(Γ1(ze2), rpw) are disjoint.

3. For any pair of distinct edges e1, e2 ∈ Ki for any i ∈ {1, . . . ,m}, regions Fe1 ,Fe2 are disjoint,
where Fe = {x ∈ XY0 : distΓ1

(x, (ze, u)) ≤ rpw}, i.e., Fe is the locus of all points in the
plane XY0 within distance rpw from the line segment (ze, u) where u = end(e), see Fig 21.

Proof: Let us fix an edge e = (v, u). By Lemma 3, there is an integer point z lying on e in
B(Γ1(v), d(Γ)). Let ze be the point with coordinates (vx + (zx − vx) · 4 · rpw · d(Γ), vy + (zy − vy) ·
4 · rpw · d(Γ), 0). Let us show that it satisfies items (1)-(3).

1. Item (1) holds because distΓ1(ze, v) ≤ d(Γ) · (4 · rpw · d(Γ)).

2. Case 1: For edges e1, e2 ∈ Ki with different start vertices v1, v2, disk B(Γ1(ze1), rpw) is
disjoint from B(Γ1(ze2), rpw) since B(Γ1(zej ), rpw) ⊂ B(Γ1(vj), rpw ·d(Γ) · (4 ·d(Γ)+1)) and
disks B(Γ1(v), rpw · d(Γ) · (4 · d(Γ) + 1)) are disjoint for different vertices, due to Lemma 3.

Case 2: For edges e1, e2 ∈ Ki with a common start vertex v, let z1, z2 be the points in Γ1

provided by Lemma 3. We have dist(z1, z2) ≥ 1, because z1, z2 are integer points. Then by
the choice of ze1 , ze2 we have distΓ1

(ze1 , ze2) ≥ 4 · rpw · d(Γ) > 2 · rpw. This implies that for
edges e1, e2 ∈ Ki disks B(Γ1(ze1), rpw) and B(Γ1(ze2), rpw) do not intersect each other.

3. Since the drawing Γ1 is crossing-free and planar, the minimum distance between the line
segments (ze1 , u1), (ze2 , u2) is realized at one of the endpoints of the segments. Note that two
distinct edges either share a common endpoint or they are disjoint. Let us consider these
two cases.

Case 1: Suppose that edges e1 = (v, u1) and e2 = (v, u2) share a common endpoint v.
Note that two points v, z2 lie on the edge e2 and are integer points. Also, note that z1
is an integer point. dist(z1, e2) is at least the distance between the point z1 and the line
spanned by the points v, z2. By using an argument similar to Lemma 1, we conclude that
dist(z1, e2) ≥ 1

2·d(Γ) since the length of the line segment vz2 is at most 2 · d(Γ). Then,

dist(ze1 , e2) ≥ (4 · rpw · d(Γ)) · 1
2·d(Γ) = 2 · rpw. For vertices uj , j = 1, 2 by Lemma 3 disk

B(Γ1(uj), 2·rpw) does not intersect any edges non-incident to uj or contain any other vertices
than uj . That means that all segment (ze1 , u1) is at distance at least 2 · rpw from segment
(ze2 , u2) and Fe1 ,Fe2 do not intersect. See Fig. 21.

Case 2: Suppose now that edges e1, e2 with different start vertices and end vertices. Let
e1 = (v1, v2), e2 = (v3, v4), and for the same reasons as above (by Lemma 3) the corresponding
regions are disjoint.

Both the cases together imply item (3). □
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Γt Step 1 Step 2

(a) (b) (c)

Figure 22: Drawing Γt, Steps 1, 2. (a) Drawing Γt before execution of the procedure Lift(Ki);
lifted subtrees are shown in violet, Ki consists of green edges. (b) Step 1 of Lift(Ki). (c) Step 2
of Lift(Ki)

5.1 Procedure Lift(K)

This section describes the procedure Lift() for a set K ∈ K of edges of T . The procedure consists
of five steps, for each of which we prove that it is crossing-free.

Step 1: Move subtrees towards starting vertices. In the single step ⟨Γt,Γt+1⟩, for each edge
e ∈ K we simultaneously move the vertex end(e) along with its lifted subtree towards vertex st(e)
until end(e) reaches point ze determined for edge e by Lemma 26. See Fig. 22b.

Lemma 27 Step 1 is crossing-free.

Proof: Vertices that lie in the horizontal planeXY0 plane do not move or move along their incident
edges, so no intersections can happen in XY0.

Lemma 26 guarantees that the moving subtrees do not intersect because each lifted subtree
in projection lies in the corresponding region Fe throughout the whole morph and these regions
do not intersect for different edges e ∈ K. This implies that no intersections happen during this
morphing step. □

Step 2: Lift the edges up. In this morphing step ⟨Γt+1,Γt+2⟩, we move end(e) together with its
subtree T ′(end(e)) by the vector (0, 0, (C(end(e))z − C(st(e))z)) for each edge e ∈ K, where C(v)
is the canonical position of v. See Fig. 22c.

Lemma 28 Step 2 is crossing-free.

Proof: Recall that all edges of the set End(v) defined above are contained in the same set K ∈ K
because dpt is equal to their depth in the tree. This implies that v does not have any lifted subtrees
in the beginning of Lift(K) procedure. Let e1 = (v, u1) and e2 = (v, u2) be two edges in K that
both belong to the set End(v). In Γt+1,the projections of the lifted subtrees of u1 and u2 to XY0

plane do not intersect. Let e1 = (v1, u1) and e2 = (v2, u2) be two edges in K where v1 ̸= v2. Then,
the projections of the lifted subtrees of u1 and u2 to the plane XY0 also do not intersect in Γt+1.

During this morphing step, we do not change the projections and move every lifted subtree by
the same vertical vector, so no intersections can happen between different subtrees and between
the edges of the same subtree. Vertices of unprocessed sets lie in XY0 plane and do not change
their positions. It implies that they can not create any intersection as well. □
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Step 3: Mapping of the lifted subtrees. Morphing step ⟨Γt+2,Γt+3⟩ is a mapping morph, see
Section 3.3. For every lifted subtree T ′(vj), where vj = end(e), e ∈ K, we define the halfplanes
of the mapping morph as follows: halfplane α is XZ+

vj , halfplane β is part of the vertical plane
containing the edge e in such direction that e /∈ β, and the common vertical pole of α and β is
a pole through vj . Such mappings are done simultaneously for all subtrees of end vertices of the
edges of K. See Fig. 23a.

Lemma 29 Step 3 is crossing-free.

Proof: By Lemma 5 mapping is a crossing-free morph and thus no intersections happen within
the same subtree T ′(vj). Note that in projection to XY0 plane, for every edge e, the movement of
T ′(vj) for vj = end(e) happens within the region Fe defined for e and st(e) in Lemma 26. Also
by Lemma 26, e contains at least rpw integer points between ze and the boundary of the disk
B(Γ1(v), rpw · d(Γ) · (4 · d(Γ) + 1)) and thus between points ze and end(e). Note that in Γt+1 and
in Γt+2 projection of vertices of T ′(vj) lies in Fe. This implies that the projection of T ′(vj) lie in
Fe during the entire morphing step.

Different lifted subtrees do not intersect as they do not intersect in projection to XY0 during
this step since the regions Fe are pairwise disjoint for different edges. Other vertices do not move
and also make no intersections. □

Step 4Step 3

(a) (b)

Figure 23: (a) Step 3, (b) Step 4.

Step 4: Move subtrees to the pole. The morphing step ⟨Γt+3,Γt+4⟩ is a horizontal morph.
See Fig. 23b.

For each vj = end(e), e ∈ K we define a horizontal vector of movement depending whether edge
e is a vertical edge in the canonical drawing or not.
Case 1: If edge e is a vertical edge in the canonical drawing, we move the vertex end(e) with its
subtree T ′(end(e)), along the vector (Γt+3(st(e))x−Γt+3(end(e))x,Γt+3(st(e))y−Γt+3(end(e))y, 0),
until the image of the edge e becomes vertical. This is the canonical position of end(e) with respect
to st(e).
Case 2: If e is not a vertical edge in the canonical drawing, then C(end(e))x − C(st(e))x = 1
and we move end(e) together with the whole subtree T ′(end(e)) along the vector (Γt+3(st(e))x −
Γt+3(end(e))x,Γt+3(st(e))y − Γt+3(end(e))y, 0) until end(e) reaches the last point with integer
coordinates before (Γt+3(st(e))x,Γt+3(st(e))y,Γt+3(end(e))z).
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Lemma 30 Step 4 is crossing-free.

Proof: Every lifted subtree T ′(end(ej)) moves inside the vertical halfplane containing ej with the
pole through st(ej). That means that the projections to XY0 of different subtrees T ′(end(ej))
plane with the same st(ej) do not pairwise intersect.

The projections of subtrees with different st(ej) lie in disjoint disks B(Γ1(v), rpw · d(Γ) · (4 ·
d(Γ) + 1)) by Lemma 26, and thus do not intersect during this morph.

Since the projections of any pair of subtrees do not intersect during this morphing step, neither
do the subtrees. □

Step 5: Collide planes. Let k be ∆(T ) - the maximum degree of a vertex in the tree T . During
the following steps ⟨Γt+4,Γt+5⟩, . . . , ⟨Γt+5+⌈log k⌉),Γt+5+⌈log k⌉+1⟩ for each v = st(e), e ∈ K we
iteratively divide halfplanes around v that contain T ′(end(e)), e ∈ K in pairs. These pairs are
formed by neighboring halfplanes in clockwise order around the pole through st(e), see Fig 24.
If in some iteration there are odd number of planes around some pole, the plane without a pair
does not move in this iteration. In every iteration we map the drawing of one plane of the pair to
another simultaneously for each pair. As around each vertex we can have at most k halfplanes, we
need at most O(log k) mapping steps to collide all planes in one and to rotate the resulting image
to XZ+

st(e).

Step 5

Figure 24: Step 5 in this example consists of two morphing steps.

Lemma 31 Step 5 is crossing-free.

Proof: Mapping is a crossing-free morph due to Lemma 5, thus no intersection happen within
any single lifted subtree in every iteration.

After any iteration, the subtree T ′(end(e)), for each edge e ∈ K is in the canonical position
with respect to st(e) that is mapped from XZ+

st(e) to some vertical halfplane with the pole through

st(e). This is true in Γt+4 and remains true through all these morphing steps as we do not change
the set of halfplanes. In every mapping of one plane to another by the definition of mapping, see
Section 3.3, we keep the invariant that the closest to the pole integer point goes to the closest to
the pole integer point, other integer points are mapped proportionally.

That means that after mapping one subtree from the plane α to the plane β containing another
subtree, we have in plane β a drawing of both subtrees. This drawing is equivalent to their canonical
drawing with respect to st(e) which can be obtained by mapping them from the halfplane XZ+

st(e)

to β. This implies that during each morphing step and at the end of each morphing step no
intersections can happen.

For every st(e), every mapping step is happening inside a region whose projection to the XY0

plane is contained in its disk B(Γ1(v), rpw · d(Γ) · (4 · d(Γ)+ 1)) where v = st(e). This implies that
mappings for different st(e) can not intersect too.

All other, non-processed, vertices are lying in the plane and can not make any intersections. □
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5.2 Correctness of the algorithm

In this section, we prove that the algorithm described above is correct, i.e., the following invariants
hold.

(I) The drawing of T ′(vj) in Γt is the canonical drawing of T ′(vj) with respect to vj .

(II) The edges that are part of a not yet processed set Kl ∈ K, l ≥ i, lie in the XY0 plane,
together with the vertices incident to those edges.

Lemma 32 Invariants (I) and (II) hold after Step 0 and after performing Lift(Ki) for each
1 ≤ i ≤ m.

Proof:

(I) We use the induction on the index of the set Ki to prove that the drawing of T ′(v) in Γt

with respect to v for any v ∈ V (T ) is the canonical drawing of T ′(v).

Note that after performing the stretching step, before Lift(K1), the whole T lies on the XY0

plane. Since none of the sets of edges are lifted, condition (I) trivially holds.

Suppose condition (I) holds after Lift(Ki−1), i ≥ 1, i.e. every T ′(v) is in the canonical
position with respect to v for every vertex v which is an end vertex of e for some e in Ki

before Lift(Ki) procedure. After Step 2 of Lift(Ki) all end vertices of the edges of Ki have
canonical z-coordinates with respect to the start vertices of their edges. After Step 3 of
Lift(Ki), every lifted subtree T ′(vj), where vj = end(e), e ∈ Ki lies on the vertical halfplane
that contains e.

Consider the canonical drawing of the subtree T ′(vj) with respect to st(e), where vj =
end(e), e ∈ Ki, along with the edge e, both of them lie on the halfplane XZ+

st(e). Suppose

we map the canonical drawing of T ′(vj) together with the edge e to the vertical halfplane
that contains e in our current drawing (after Step 3). After Step 4, for any edge e in Ki,
we get this equivalent canonical drawing of the tree T ′(end(e)) along with e on the vertical
halfplane that contains e. This implies that for each subtree T ′(end(e)), its drawing differs
from the canonical drawing with respect to st(e) by horizontal mapping from XZ+

st(e).

After Step 5 all vertices end(e), e ∈ Ki and their lifted subtrees lie in the corresponding
halfplanes XZ+

st(e) and have canonical x, y, z-coordinates with respect to the start vertices of

their edges.

Note that start vertices of edges in Ki did not have lifted subtrees in the beginning of the
procedure Lift(Ki) and after this procedure their lifted subtrees consist of the end vertices
of the edges in Ki and their lifted subtrees.

As for the other vertices in XY0, their lifted subtrees had not moved during the procedure
Lift(Ki) and are in canonical positions with respect to their roots by the assumption.

(II) Again we use the induction on the index of the set Ki. Vertices that lie on edges in a set
that is not yet processed are lying within the XY0 plane.

The invariant (II) holds aftep Step 0 since the entire tree T lies in the XY0 plane.

Suppose that before the Lift(Ki), i ≥ 1 procedure all vertices that lie on edges in a set that
is not yet processed lie in XY0 plane. End vertices of the edges in Ki can not lie in Kj , j > i
by definition of the partition K. Thus after the Lift(Ki) in which we move only end vertices
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of the edges in Ki and their lifted subtrees, all vertices that lie on edges of sets Kj , j > i will
still lie in the XY0 plane. □

Lemma 33 Each morphing step during the algorithm maps a grid drawing of tree T to another
grid drawing of T .

Proof: Let us prove this by induction on number of lifted sets Ki.
After the stretching morph all coordinates of all vertices are integer because the constant of

stretching is integer and in the given drawing Γ all vertices had integer coordinates, see Lemma 2.
Suppose that i− 1, i ≥ 1 sets are lifted and before the execution of the Lift(Ki) procedure all

vertices lie on the nodes of the grid. During the Lift(Ki) procedure vertices that are not ends
of the edges of Ki do not change coordinates at all. Mapping morphs move points with integer
coordinates to points with integer coordinates, see Lemma 5. In all other morphing steps the lifted
subtrees of end vertices of the edges of Ki are moved along with their roots by integer vectors.

As all coordinates at the beginning of the Lift(Ki) were integer and all vectors of movement
of all vertices in every step were integer, after the execution of the procedure Lift(Ki) all vertices
of T still have integer coordinates.

Based on all of the above, each morphing step during the algorithm maps a grid drawing of a
tree to another grid drawing of it. □

5.3 Complexity of the algorithm

The estimation on the size of the required grid is similar to the previous algorithm (see Section 4.2):
In the beginning of the algorithm the given drawing Γ = Γ0 of graph T = (V,E), |V | = n lies

in a grid of size l(Γ)× w(Γ)× 1.
First step of the algorithm multiplies the required grid size by S1 = 2 · rpw · d(Γ) · (4 · d(Γ)+1).

During our algorithm the height of lifted subtrees does not exceed their height in relative canonical
drawing with respect to their roots, i.e. does not exceed n. Lifted subtrees take no more than
rpw space in x, y-directions from their root after each iteration of Lift() procedure and during
Steps 1-2 of it. Note that in Step 1 maximum x, y-coordinates of vertices in lifted subtree can
not exceed maximum x, y-coordinates of vertices that are the start and the end of the edge along
which this lifted subtree is moving. During Steps 3-5 of Lift() procedure lifted subtrees lie in disks
B(Γ1(v), rpw · d(Γ) · (4 · d(Γ) + 1)) for some v that is the start of edge in Ki.

Therefore, the grid size required by the algorithm is:

(x× y × z) : O(l(Γ) · 2 · rpw · d(Γ) · (4 · d(Γ) + 1) + 2 · rpw · d(Γ) · (4 · d(Γ) + 1))×

×O(w(Γ) · 2 · rpw · d(Γ) · (4 · d(Γ) + 1) + 2 · rpw · d(Γ) · (4 · d(Γ) + 1))×O(n) =

O(d3(Γ) · log n)×O(d3(Γ) · log n)×O(n)

There are l sets Ki, where l is the depth of T which is denoted by dpt(T ). For every execution
of procedure Lift(Ki), we need O(log k) morphing steps, where k = ∆(T ), the maximum degree of
a vertex in T . This implies that the total number of steps in the algorithm is O(dpt(T ) · log∆(T )).
Note that the whole analysis does not take into account that the path decompositions can be
different.

The lemmas proved in this section along with the space and time complexity bounds result in
the following.
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Theorem 2 For every two planar straight-line grid drawings Γ,Γ′ of a tree T with n vertices,
there exists a crossing-free 3D morph M = ⟨Γ = Γ0, . . . ,Γk = Γ′⟩ that requires a grid G of size
O(d3 · log n)×O(d3 · log n)×O(n), and that consists of O(dpt(T ) · log∆(T )) morphing steps, such
that every intermediate drawing Γi, 0 ≤ i ≤ k is a straight-line 3D grid drawing on the grid G.
Here d is the maximum of the diameters of the given drawings Γ,Γ′, and ∆(T ) is the maximum
degree of a vertex in T .

Since the maximum degree ∆(T ) = O(n) for an n vertex tree T , the corollary follows.

Corollary 2 For every two planar straight-line grid drawings Γ,Γ′ of a tree T with n vertices,
there exists a crossing-free 3D morph M = ⟨Γ = Γ0, . . . ,Γk = Γ′⟩ that requires a grid G of size
O(d3 · log n)×O(d3 · log n)×O(n), and that consists of O(dpt(T ) · log n) morphing steps, such that
every intermediate drawing Γi, 0 ≤ i ≤ k is a straight-line 3D grid drawing on the grid G. Here d
is the maximum of the diameters of the given drawings Γ,Γ′.

6 The trade-off algorithm

Recall that L(T ) is the set of paths induced by the long-path decomposition of a tree T , see
Section 2. Let Long(T ) be the subsequence of paths from L(T ), consisting of the paths whose
length is at least

√
n, i.e. Long(T ) = {Li ∈ L(T ) : |Li| ≥

√
n}, let the order in Long(T ) be

induced by the order in L(T ). We denote by Short(T ) the set of trees that are left after deleting
from T edges of Long(T ), see Fig. 25.

Lemma 34 1. |Long(T )| ≤
√
n.

2. For every tree Ti in Short(T ), depth of Ti is at most ⌊
√
n⌋.

Proof:

1. Every edge in the tree lies in exactly one path of the long-path decomposition. In a tree T
with n nodes there are n− 1 edge.

n− 1 ≥ |E(T )| = | ∪ Long(T )| ≥ |Long(T )| ·
√
n

Therefore, |Long(T )| ≤
√
n.

2. If there exists a tree Ti which depth is at least
√
n, then long edges from its root create a

path that lies in long-path decomposition and has length at least
√
n. That means that this

path from the root of Ti should lie in Long(T ) and not in Short(T ). We have came to a
contradiction. □

We divide edges in Short(T ) into disjoint sets Sh1, . . . Sh⌊
√
n⌋. An edge (vi, vj) in tree Tk lies

in the set Shl if and only if max(dpt(vi), dpt(vj)) = ⌊
√
n⌋ − l + 1, where dpt(v) is the depth of

vertex v in the corresponding tree Tk. Since the maximum depth of any trees Tk is at most
√
n,

Sh1, . . . Sh⌊
√
n⌋ contain all the edges of these subtrees.
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z

x

y

T

Short(T )
n = 16

|L2| = 4|L1| = 5

Long(T )

Sh3

Sh4

Sh1 Sh2

Figure 25: Partition of the edges of T with 16 vertices into the set of paths Long(T ) and sets of
edges Shi, i ∈ {1, . . . ,

√
n = 4}. Sets Sh1, Sh2 are empty, as trees in Short(T ) have depth at most 2.

The trade-off algorithm. In the beginning we perform a stretching step with S1 = 2·rpw ·d(Γ)·
(4 ·d(Γ)+1) as described in Section 5. The constant S1 is large enough to perform Lift() procedure
described in Section 4. Then, we lift edges from sets Sh1 to Sh⌊

√
n⌋ by Lift(Shi) procedure.

This portion of the algorithm takes O(
√
n · log∆(T )) steps in total by Theorem 2. After that,

we lift paths in Long(T ) in the reverse order of the order of their appearance in Long(T ). Since
|Long(T )| ≤

√
n and each execution of the Lift() procedure for a single path consists of a constant

number of morphing steps, this portion of the algorithm requires O(
√
n) steps as well. We conclude

with the following theorem, that states the main result of this paper.

Theorem 3 For every two planar straight-line grid drawings Γ,Γ′ of a tree T with n vertices there
exists a crossing-free 3D-morph M = ⟨Γ = Γ0, . . . ,Γl = Γ′⟩ that requires O(

√
n · log∆(T )) steps

and a grid G of size O(d3 · log n)×O(d3 · log n)×O(n), where d is the maximum of the diameters of
the given drawings, ∆(T ) is the maximum degree of vertices in T . In this morph every intermediate
drawing Γi, 1 ≤ i ≤ l, is a straight-line 3D grid drawing on the grid G.

Corollary 3 As log∆(T ) ≤ log n, it is possible to morph between Γ,Γ′ using O(
√
n log n) steps.

Corollary 4 It is possible to morph between Γ,Γ′ using O(
√
n) steps if maximum degree of a

vertex of T is a constant.
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7 Conclusion

In this paper, we presented an algorithm that morphs between two planar grid drawings of an
n-vertex tree T in O(

√
n log n) steps such that all intermediate drawings are crossing-free 3D grid

drawings and lie inside a 3D grid of polynomial size. Arseneva et al. [2] proved that O(log n) steps
are enough to morph between two planar grid drawings of an n-vertex tree T where intermediate
drawings are allowed to lie in R3 but they did not guarantee that intermediate drawings have
polynomially bounded resolution. Several problems are left open in this area of research. We
mention a few of them here.

1. It is interesting to prove a lower bound on the number of morphing steps if intermediate
drawings are allowed to lie in R3.

2. It is also interesting to prove a lower bound for this problem along with the additional
constraint of polynomially bounded resolution.

3. Is it possible to morph between two planar grid drawings in o(n) morphing steps for a richer
class of graphs (e.g. outer-planar graphs) than trees if we are allowed to use the third
dimension? Recently, Buchin et al. gave an algorithm that uses the third dimension to
morph between any two, possibly topologically non-equivalent, planar drawings of the same
graph in O(n2) linear morphing steps but there is still no nontrivial lower bound [6].

4. Is there a trade off between the number of steps required and the volume of the grid needed
for the morph?
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