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Abstract. In the d-Scattered Set problem we are asked to select at least k
vertices of a given graph, so that the distance between any pair is at least d. We study
the problem’s (in-)approximability and offer improvements and extensions of known
results for Independent Set, of which it is a generalization. Specifically, we show:

• A lower bound of ∆⌊d/2⌋−ϵ on the approximation ratio of any polynomial-time
algorithm for graphs of maximum degree ∆ and an improved upper bound of
O(∆⌊d/2⌋) on the approximation ratio of any greedy scheme for this problem.

• A polynomial-time 2
√
n-approximation for bipartite graphs and even values of d,

that matches the known lower bound by considering the only remaining case.

• A lower bound on the complexity of any ρ-approximation algorithm of (roughly)

2
n1−ϵ

ρd for even d and 2
n1−ϵ

ρ(d+ρ) for odd d (under the randomized ETH), comple-
mented by ρ-approximation algorithms of running-times that (almost) match these
bounds.

1 Introduction

In this paper we study the d-Scattered Set problem: given graph G = (V,E), we are asked
if there exists a set K of at least k selections from V , such that the shortest-path distance between
any pair v, u ∈ K is at least d. We focus on the corresponding optimization version where we
seek to maximize the number of selections. The problem can already be seen to be hard as it
generalizes Independent Set (for d = 2) and thus the optimal k cannot be approximated to
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n1−ϵ in polynomial time [19] (under standard complexity assumptions). An alternative name is
Distance-d Independent Set [12, 25].

The problem has been well-studied, also from the parameterized point of view [23, 26], while
approximability in polynomial time has already been considered for bipartite, regular and degree-
bounded graphs [13, 12], perhaps the natural candidate for the next intractability frontier. This
paper aims to advance our understanding in this direction by providing the first lower bound on
the approximation ratio of any polynomial-time algorithm as a function of the maximum degree
of any vertex in the input graph, while also improving upon the known ratios to match this lower
bound. On bipartite graphs, our aim is to complete the picture by considering the only remaining
open case for this class, before turning our attention to super-polynomial running-times with the
purpose of extending known upper/lower bounds for Independent Set.

Before moving on to describe our results in detail, we note that these may be dependent on
the parity of our distance parameter d as being even or odd. Both our running-times and ratios
can be affected by this peculiarity of the problem that, intuitively, arises due to the (non)existence
of a middle vertex on a path of length d between two endpoints: if d is even then such a vertex
can exist at equal distance d/2 from any number of vertices in the solution, while if d is odd there
can be no vertex at equal distance from any pair of vertices in the solution. This idiosyncrasy can
change the way in which both our algorithms and hardness constructions work and in some cases
even entirely alters the problem’s complexity (e.g. in the results of [12]).

Our contribution: Section 3 concerns itself with strictly polynomial running-times. We first
show that there is no polynomial-time approximation algorithm for d-Scattered Set with ratio
∆⌊d/2⌋−ϵ in graphs of maximum degree ∆. Our complexity assumption is NP ̸⊆BPP due to our
use as a starting point of a randomized construction for Independent Set by [8], that we then
build upon to produce highly efficient (in terms of maximum vertex degree and diameter) instances
of d-Scattered Set. This is the first lower bound that considers ∆ and generalizes the known
∆1−ϵ-inapproximability of Independent Set (see Theorem 5.2 of [8], restated here as Theorem 1,
as well as [1]). Maximum vertex degree ∆ plays an important role in the context of independence
(e.g. [3, 11, 18]) and was specifically studied for d-Scattered Set in [13], where polynomial-
time O(∆d−1)- and O(∆d−2/d)-approximations are given. We improve upon these upper bounds
by showing that any degree-based greedy approximation algorithm in fact achieves a ratio of
O(∆⌊d/2⌋), also matching our lower bound.

We then turn our attention to bipartite graphs and show that d-Scattered Set can be
approximated within a factor of 2

√
n in polynomial time also for even values of d, matching its

known n1/2−ϵ-inapproximability from [12] and complementing the known
√
n-approximation for

odd values of d from [17].

Section 4 follows this up by considering super-polynomial running-times, presenting first an
exact exponential-time algorithm for d-Scattered Set of complexity O∗((ed)

2n
d ) based on a

straightforward upper bound on the size of any solution and then considering the inapproximability
of the problem in the same complexity range. We show that no ρ-approximation algorithm can

take time (roughly) 2
n1−ϵ

ρd for even d and 2
n1−ϵ

ρ(d+ρ) for odd d, under the (randomized) ETH. This

is complemented by (almost) matching ρ-approximation algorithms of running-times O∗((eρd)
2n
ρd )

for even d and O∗((eρd)
2n

ρ(d+ρ) ) for odd d. We note that the current state-of-the-art PCPs are
unable to distinguish between optimal running-times of the form 2n/ρ and ρn/ρ for ρ-approximation
algorithms, due to the poly-logarithmic factor added by even the most efficient constructions and
we thus do not focus on such factors differentiating our upper and lower bounds.
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These results provide a complete characterization of the optimal relationship between the worst-
case approximation ratio ρ achievable for d-Scattered Set by any algorithm, its running-time
and the distance parameter d, for any point in the trade-off curve, in a similar manner as was done
for Independent Set in [8, 10] (see also [5, 6]), by also considering the range of possible values
for d. We observe that the distance parameter d acts as a scaling factor for the size of the instance,
whereby the problem becomes easier when vertices are required to be much further apart, a feature
counterbalanced by the chosen approximation ratio ρ, with small values guaranteeing the quality
of the produced solutions, yet also negatively impacting on the exponent of the running-time.

We close the paper with a supplementary note on the treewidth of power graphs obtained
through observations related to our previous results, while Section 5 provides some concluding
remarks and discussion on open problems. Our results are also summarized in Table 1 below.

Inapproximability Approximation

Super-polynomial 2
n1−ϵ

ρd (8) O∗((eρd)
2n
ρd ) (10)

2
n1−ϵ

ρ(d+ρ) (9) O∗((eρd)
2n

ρ(d+ρ) ) (11)

Polynomial ∆⌊d/2⌋−ϵ (2) O(∆⌊d/2⌋) (4)
Bipartite graphs n1/2−ϵ [12] 2

√
n (6)

Table 1: A summary of our results (theorem numbers), for even/odd values of d.

Related work: Eto et al. ([13]) showed that on r-regular graphs the problem is APX-hard
for r, d ≥ 3, while also providing polynomial-time O(rd−1)-approximations. They also show a
polynomial-time 2-approximation on cubic graphs and a polynomial-time approximation scheme
(PTAS) for planar graphs and every fixed constant d ≥ 3. For a class of graphs with at most a
polynomial (in n) number of minimal separators, d-Scattered Set can be solved in polynomial
time for even d, while it remains NP-hard on chordal graphs and any odd d ≥ 3 [25]. For bipartite
graphs, the problem is NP-hard to approximate within a factor of n1/2−ϵ and W[1]-hard for any
fixed d ≥ 3. Further, for any odd d ≥ 3, it remains NP-complete, inapproximable and W[1]-hard
[12]. It is NP-hard even for planar bipartite graphs of maximum degree 3, yet a 1.875-approximation
is available on cubic graphs [14]. Furthermore, [15] shows the problem admits an EPTAS on (apex)-
minor-free graphs, based on the theory of bidimensionality, while on a related result [24] offers an
nO(

√
n)-time algorithm for planar graphs, making use of Voronoi diagrams and based on ideas

previously used to obtain geometric QPTASs. Finally, [23] presents tight upper/lower bounds
on the structurally parameterized complexity of the problem, while [26] shows that it admits an
almost linear kernel on every nowhere dense graph class.

2 Definitions and Preliminaries

We use standard graph-theoretic notation. For a graph G = (V,E), we let V (G) := V and
E(G) := E, an edge e ∈ E between u, v ∈ V is denoted by {u, v} and for a subset X ⊆ V , G[X]
denotes the graph induced by X. We let dstG(v, u) denote the shortest-path distance (i.e. the
number of edges) from v to u in G. We may omit subscript G if it is clear from the context. The
maximum distance between vertices is the diameter of the graph, while the minimum among all
the maximum distances between a vertex to all other vertices (their eccentricities) is the graph’s
radius.
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For a vertex v, we let Nd
G(v) denote the (open) d-neighborhood of v in G, being the set of

vertices at distance ≤ d from v in G (without v), while for a subset U ⊆ V , Nd
G(U) denotes the

union of the d-neighborhoods of vertices u ∈ U . In a graph G whose maximum degree is bounded
by ∆, the size of the d-neighborhood of any vertex v is upper bounded by the well-known Moore
bound : |Nd

G(v)| ≤ ∆
∑d−1

i=0 (∆− 1)i.
For Σ being a set of δ elements (the alphabet) and d a positive integer, the Hamming graph

H(d, δ) has vertex set Σd, the set of ordered d-tuples of elements of Σ, each vertex thus corre-
sponding to one sequence of length d of symbols from Σ (a word). Two vertices are adjacent if
their words differ in precisely one coordinate (if their Hamming distance is one). The Hamming
graph H(d, δ) can equivalently be seen as the Cartesian product of d complete graphs Kδ and is
also related to Hypercube graphs, that are similarly defined for δ = 2 (over a binary alphabet). A
graph H(d, δ) constructed in this way has δd vertices, diameter equal to d and is d(δ − 1)-regular
(see [7, Chapter 12]).

For an integer q, the q-th power graph of G, denoted by Gq, is defined as the graph obtained from
G by adding to E(G) all edges between vertices v, u ∈ V (G) for which dstG(v, u) ≤ q. Furthermore,
we let OPTd(G) denote the maximum size of a d-scattered set in G and α(G) = OPT2(G) denote
the size of the largest independent set.

We use log(n) to denote the base-2 logarithm of n, while log1+δ(n) is the logarithm base-(1+δ),
for δ > 0. Recall also that log1+δ(n) = log(n)/ log(1 + δ). The functions ⌊x⌋ and ⌈x⌉, for x ∈ R,
denote the maximum integer that is not larger and the minimum integer that is not smaller than
x, respectively.

The Exponential Time Hypothesis (ETH) [20, 21] implies that 3-SAT cannot be solved in time
2o(n) on instances with n variables (a slightly weaker statement), while the definition can also
refer to randomized algorithms. Finally, we recall here the following result by [8] that some of our
reductions will be relying on (slightly paraphrased, see also [5]), that can furthermore be seen as
implying the ∆1−ϵ-inapproximability of Independent Set in polynomial time:

Theorem 1 ([8], Theorem 5.2) For any sufficiently small ϵ > 0 and any r ≤ N5+O(ϵ), there is
a randomized polynomial-time reduction that builds from a formula ϕ of SAT on N variables a
graph G of size n = N1+ϵr1+ϵ and maximum degree r, such that with high probability:

• If ϕ is satisfiable, then α(G) ≥ N1+ϵr.

• If ϕ is not satisfiable, then α(G) ≤ N1+ϵr2ϵ.

3 Polynomial Time

We begin by focusing on the behaviour of the problem in the context of strictly polynomial-
time approximation. We first examine graphs of bounded degree and provide a tight bound on
the achievable approximation ratio, before turning to bipartite graphs in order to finalize the
classification in terms of approximability by considering the only open remaining case (when d is
even).

3.1 Inapproximability

We show that for sufficiently large ∆ and any ϵ1 > 0, d ≥ 4, the d-Scattered Set problem is
inapproximable to ∆⌊d/2⌋−ϵ1 on graphs of degree bounded by ∆, unless NP⊆BPP. Let us first sum-
marize our reduction. Starting from an instance of Independent Set of bounded degree, we create
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an instance of d-Scattered Set where the degree is (roughly) the d/2-th square root of that of the
original instance. As we are able to maintain a direct correspondence of solutions in both instances,
the ∆1−ϵ′-inapproximability of Independent Set implies the ∆⌊d/2⌋−ϵ1 -inapproximability of d-
Scattered Set.

The technical part of our reduction involves preserving the adjacency between vertices of the
original graph without increasing the maximum degree (too far) beyond ∆2/d. We are able to
construct a regular tree as a gadget for each vertex and let the edges of the leaves (their total
number being equal to ∆) represent the edges of the original graph. To ensure that our gadget has
some useful properties (i.e. small diameter), we overlay a number of extra edges on each level of
the tree (i.e. between vertices at equal distance from the root), only sacrificing a small increase in
maximum degree.1 Our complexity assumption is NP̸⊆BPP, since for the ∆1−ϵ′ -inapproximability
of IS we use the randomized reduction from SAT of [8] (Theorem 1 above). In particular, we will
prove the following theorem:

Theorem 2 For sufficiently large ∆ and any d ≥ 4, ϵ ∈ (0, ⌊d/2⌋), there is no polynomial-time
approximation algorithm for d-Scattered Set with ratio ∆⌊d/2⌋−ϵ for graphs of maximum degree
∆, unless NP⊆BPP.

Construction: Let δ =
⌈

⌊d/2⌋
√
∆
⌉
. Given ϵ1 ∈ (0, ⌊d/2⌋) and an instance of Independent

Set G = (V,E), where the degree of any vertex is bounded by ∆, we will construct an instance
G′ = (V ′, E′) of d-Scattered Set, where OPT2(G) = OPTd(G

′), while the degree is bounded by
2⌊d

2⌋(δ−1)+2 for odd d and by d
2 (δ−1)+2 for even d. We thus will assume ∆ is sufficiently large

for ϵ1 >
⌊ d

2 ⌋2
logd(∆)+⌊ d

2 ⌋
, for reasons that become apparent in the subsequent proof of Theorem 2.

Our construction for G′ builds a gadget T (v) for each vertex v ∈ V . For even d, each gadget
T (v) is composed of a (δ + 1)-regular tree of height d/2 − 1 and we refer to vertices of T (v) at
distance exactly i from the root tv as being in the i-th height-level of T (v), letting each such subset
be denoted by Ti(v). That is, every vertex of Ti(v) has one neighbor in Ti−1(v) (its parent) and
δ neighbors in Ti+1(v) (its children). We will also add extra edges on each height-level, described
below. For odd values of d, the difference is in the height of each tree being ⌊d/2⌋ instead of d/2−1.

Since for even d the number of leaves of T (v) is δd/2−1 ≥ (∆2/d)d/2−1 = ∆1−2/d and each such
leaf also has δ ≥ ∆2/d edges, the number of edges leading outside each gadget is δd/2 ≥ ∆ and we
let each of them correspond to one edge of the original vertex v in G, meaning there is an edge
between a leaf xv of T (v) and a leaf yu of T (u), if {v, u} ∈ E. For odd d, the number of leaves is(⌈

⌊d/2⌋
√
∆
⌉)⌊d/2⌋

≥ ∆ and we let each leaf correspond to an edge of the original vertex v in G, i.e.

we identify two such leaves xv, yu of two gadgets T (v), T (u), if {v, u} ∈ E in G. In this way, the
gadgets T (v), T (u) share a common “leaf” of degree 2 (thus far), that is at distance ⌊d/2⌋ from
both roots tv ∈ T (v), tu ∈ T (u). See Figure 1 for an illustration.

Next, in order to make the diameter of our gadgets at most equal to their height, we will add
a number of edges between the vertices Ti(v) of each height-level i of every gadget T (v), for every
v ∈ V . These will be the edges of the Hamming graph H(i, δ) for each height-level i ≤ d/2 − 1
for even d and each height-level i ≤ ⌊d/2⌋ for odd d. The number of vertices of Ti(v) at every
height-level i is already equal to δi and thus a one-to-one correspondence between them and the
words of length i with symbols from an alphabet of size δ is straightforward. The edges we add will

1The original version of this paper [22] made use of a randomized technique from [4] to obtain degree-diameter
efficiency, but we give here an improved, deterministic gadget.
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d/2− 1 bd/2c

T (v) T (v)

T (u) T (u)

T (z) T (z)

d/2− 1 bd/2c
Even Odd

∆ ≥ ∆

Figure 1: Our constructions for an example subgraph consisting of a path on three vertices (u, v, z)
and even/odd d. Ellipses in grey designate the overlaid edges on each height-level.

connect vertices xi, yi ∈ Ti(v) if the corresponding words differ in precisely one coordinate (their
Hamming distance is 1). In this way, the edges already constructed above as part of the tree will
now be seen to connect vertices xi, xi+1 between Hamming graphs H(i, δ) and H(i + 1, δ) such
that the words corresponding to xi, xi+1 are of lengths that differ by 1 and the word of xi (the
parent) is a prefix of the word of xi+1 (the child). This concludes our construction, while Figure 2
illustrates a small example.

a b c

aa ab ac ba bb bc ca cb cc

aaa aba aca baa bba bca caa cba cca

δ

|H(0, 3)| = 1

|H(1, 3)| = 3

|H(2, 3)| = 9

|H(3, 3)| = 27

tv

Figure 2: The upper height-levels of an example gadget T (v), where the edges of the tree are
shown in bold. The words of vertices for alphabet Σ = {a, b, c} are shown for height-levels i = 1, 2,
along with their edges, but only for the first vertices of each group in level i = 3. Observe that
every Ti(v) is composed of δ copies of Ti−1(v) with edges between copies according to one added
coordinate.

We are now ready to argue about the maximum degree of any vertex in the instances built by
our construction.

Lemma 1 The maximum degree of any vertex in G′ is d
2 (δ−1)+2 for even d and 2⌊d

2⌋(δ−1)+2
for odd d.
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Proof: For even d, the degree of any vertex is bounded by the sum of the δ + 1 edges of the tree
plus the number of edges added by the Hamming graph. Their maximum is (d/2 − 1)(δ − 1) for
height-level i = d/2− 1, giving a total of (d/2− 1)(δ − 1) + δ + 1 = d

2 (δ − 1) + 2.
For odd d, the degree of all other vertices is strictly lower than that of the “shared” leaves

between gadgets, since each leaf between two gadgets T (v), T (u) (representing the edge {v, u} of
G) will belong to two Hamming graphs H(⌊d

2⌋, δ). Their degree will be 2⌊d
2⌋(δ− 1)+ 2, giving the

maximum, while the next highest degree (that of a parent of such a leaf) would be (⌊d
2⌋ − 1)(δ −

1) + δ + 1. □

We then bound the diameter of our gadgets in order to guarantee that the solutions in our
reduction will be well-formed.

Lemma 2 The diameter of each gadget T (v) is d/2− 1 for even d and ⌊d/2⌋ for odd d.

Proof: By construction, the diameter of a Hamming graph H(i, δ) is equal to i. Since at each
height-level i, no pair of vertices is at distance > i with i ≤ d/2 − 1 for even d and i ≤ ⌊d/2⌋ for
odd d, the distance between any vertex x at some height-level ix to another vertex y at height-level
iy > ix will be at most ix from x to the root of the subtree of T (v) (at level ix) that contains
y. From there to y it will be at most d/2 − 1 − ix for even d and at most ⌊d/2⌋ − ix for odd d.
Furthermore, the distance from the root of T (v) to a leaf is exactly d/2− 1 for even d and exactly
⌊d/2⌋ for odd d. □

We finalize our argument with a series of lemmas leading to the proof of Theorem 2, that
detail the behaviour of solutions that can form in our construction, relative to the independence
of vertices in the original graph.

Lemma 3 No d-Scattered Set in G′ can contain a vertex from gadget T (v) and a vertex from
gadget T (u), if {u, v} ∈ E.

Proof: Since {u, v} ∈ E, there is an edge {xv, yu} ∈ E′ between a leaf xv ∈ T (v) and yu ∈ T (u)
for even d, while for odd d the leaf x belongs to both T (v), T (u) and is at distance ⌊d/2⌋ from
each of their roots. Thus for even d the maximum distance from any vertex of T (v) to yu ∈ T (u)
is d/2 − 1 + 1 = d/2, by Lemma 2, and for odd d this is ⌊d/2⌋. Since, by the same lemma,
the diameter of T (u) is d/2 − 1 for even d and ⌊d/2⌋ for odd d, there is no vertex of T (u) that
can be in any d-Scattered Set along with any vertex of T (v), as the maximum distance is
≤ d/2 + d/2− 1 = d− 1 for even d and ≤ ⌊d/2⌋+ ⌊d/2⌋ = d− 1 for odd d. □

Lemma 4 If {u, v} /∈ E, then the distance between the root tv of T (v) and the root tu of T (u) is
at least d.

Proof: Since {u, v} /∈ E, then there is no edge between any pair of leaves xu of T (u) and yv of
T (v) for even d. Thus the shortest possible distance between any such pair of leaves is 2 for even
d, through a third leaf zw of another gadget T (w) corresponding to a vertex w adjacent to both u
and v in G. The distance from tv to any leaf of T (v) is d/2−1 and the distance from tu to any leaf
of T (u) is also d/2− 1. Thus the distance from tu to tv must be at least d/2− 1+ d/2− 1+2 = d.

For odd d, there is no shared leaf x between the two gadgets, i.e. at distance ⌊d/2⌋ from both
roots. Thus the distance between two leaves xu ∈ T (u) and yv ∈ T (v) is at least 1, if each of these
is shared with a third gadget T (w) corresponding to a vertex w that is adjacent to both u and v in
G. The distance from tv to any leaf of T (v) is ⌊d/2⌋ and the distance from tu to any leaf of T (u)
is also ⌊d/2⌋. Thus the distance from tu to tv is at least 2⌊d/2⌋+ 1 = d. □
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Lemma 5 For any independent set S in G, there is a d-Scattered Set K in G′, with |S| = |K|.

Proof: Given an independent set S in G, we let K include the root vertex tv ∈ T (v) for each
v ∈ S. Clearly, |S| = |K|. Since S is independent, there is no edge {u, v} between any pair u, v ∈ S
and thus, by Lemma 4, vertices tv and tu are at distance at least d. □

Lemma 6 For any d-Scattered Set K in G′, there is an independent set S in G, with |K| = |S|.

Proof: Given a d-Scattered Set K in G, we know there is at most one vertex from each gadget
T (v) in K, since its diameter is d/2−1 for even d and ⌊d/2⌋ for odd d, by Lemma 2. Furthermore,
for any two vertices x, y ∈ K, we know by Lemma 3 that if x ∈ T (u) and y ∈ T (v) for gadgets
corresponding to vertices u, v ∈ V , then {u, v} /∈ E and thus u, v are independent in G. We let
set S contain each vertex v ∈ V whose corresponding gadget T (v) contains a vertex of K. These
vertices are all independent and also |K| = |S|. □

Proof: [Theorem 2] We suppose the existence of a polynomial-time approximation algorithm for
d-Scattered Set with ratio ∆⌊d/2⌋−ϵ1 for graphs of maximum degree ∆ and some 0 < ϵ1 < d/2

and assume ∆ is sufficiently large for ϵ1 >
⌊ d

2 ⌋2
logd(∆)+⌊d/2⌋ . We define ϵ2 = log∆(d

⌊d/2⌋−ϵ1) = ⌊d/2⌋−ϵ1
logd(∆)

and ϵ′ = ϵ1−ϵ2⌊d/2⌋
2⌊d/2⌋ . Note that ϵ′ > 0 because ϵ1 >

⌊ d
2 ⌋2

logd(∆)+⌊d/2⌋ ⇔ logd(∆)
⌊d/2⌋ +1 > ⌊d/2⌋

ϵ1
⇔ logd(∆)

⌊d/2⌋ >
⌊d/2⌋−ϵ1

ϵ1
⇔ ϵ1 > ⌊d/2⌋−ϵ1

logd(∆) ⌊d/2⌋ ⇔ ϵ1 > ϵ2⌊d/2⌋.
Now, starting from a formula ϕ of SAT on N variables, where N is also sufficiently large,

i.e N > ∆
1

5+O(ϵ′) , we use Theorem 1 to produce an instance G = (V,E) of Independent Set
on |V | = N1+ϵ′∆1+ϵ′ vertices and of maximum degree ∆, such that with high probability: if
ϕ is satisfiable, then α(G) ≥ N1+ϵ′∆; if ϕ is not satisfiable, then α(G) ≤ N1+ϵ′∆2ϵ′ . Thus
approximating Independent Set in polynomial time on G within a factor of ∆1−2ϵ′ , for ϵ′ > 0,
would permit us to decide if ϕ is satisfiable, with high probability.

We next use the above construction to create an instance G′ of d-Scattered Set where the
degree is bounded by 2⌊d/2⌋(δ−1)+2 = 2⌊d/2⌋(⌈∆ 1

⌊d/2⌋ ⌉−1)+2, by Lemma 1 where the maximum

comes from the case where d is odd. To simplify the following, we observe 2⌊d/2⌋(⌈∆ 1
⌊d/2⌋ ⌉−1)+2 <

2⌊d/2⌋ ·∆ 1
⌊d/2⌋ + 2 = (d− 1) ·∆ 1

⌊d/2⌋ + 2 < d ·∆ 1
⌊d/2⌋ and we claim this as our degree bound.

We then apply the supposed approximation for d-Scattered Set on G′. This returns a

solution at most (d · ∆ 1
⌊d/2⌋ )⌊d/2⌋−ϵ1 = d⌊d/2⌋−ϵ1 · ∆1− ϵ1

⌊d/2⌋ = ∆1− ϵ1
⌊d/2⌋+ϵ2 = ∆1−2ϵ′ from the

optimum. By Lemma 6 we can find a solution for Independent Set in G of the same size,
meaning we can approximate α(G) within a factor of ∆1−2ϵ′ . This would allow us to decide if
ϕ is satisfiable and thus solve SAT in polynomial time with two-sided bounded errors, implying
NP⊆BPP. □

3.2 Approximation

We next show that any (degree-based) greedy polynomial-time approximation algorithm for
d-Scattered Set achieves a ratio of O(∆⌊d/2⌋), thus improving upon the analysis of [13] and the
O(∆d−1)- and O(∆d−2/d)-approximations given therein.

Our strategy is to bound the size of the largest d-scattered set in any graph of maximum degree
at most ∆ and radius at most d − 1, centered on some vertex v. The idea is that in one of its
iterations our greedy algorithm would select v and thus exclude all other vertices within distance
d− 1 from v, yet an upper bound on the size of the largest possible d-scattered set can guarantee
that the ratio of our algorithm will not be too large.
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The following definition of our “merge” operation (see also Figure 3) will allow us to consider all
possible graphs of a given radius and degree and provide upper bounds on the size of the optimal
solution in such graphs. These bounds on the size of the optimum are then used to compare it to
those solutions produced by our greedy scheme.

G1 G2 G′

→
v1 v2 v′

u1

u2

u1

u2 w2

w1w1

w2

Figure 3: An example graph G′ = MG2

G1
(v1, v2, [u1, u2], [w1, w2]) for G1, G2 shown on the left, with

edges added by the third merge operation shown in bold.

Definition 3 (Merge operation) For graphs G1 = (V1, E1), G2 = (V2, E2), each of which is
assumed to be connected, the merged graph MG2

G1
(v1, v2,U,W), where U = [u1, . . . , uk1

], W =
[w1, . . . , wk2

] are ordered (possibly empty and with repetitions allowed) sequences of vertices from
V1 and V2, respectively, is defined as the graph G′ = (V ′, E′) obtained by:

1. Identification of vertex v1 ∈ G1 and vertex v2 ∈ G2, i.e. V
′ is composed of the union of V1, V2

after removal of vertices v1, v2 and addition of a new vertex v′.

2. Replacement of all edges of v1, v2 by new edges with v′ as the new endpoint, i.e. E′ contains
all edges of E1, E2, where any edges incident on v1 or v2 are now incident on v′.

3. Addition of a number of edges between vertices of G1, G2, i.e. E′ also contains one edge
between every pair {ui, wj} from U,W, for i = j.

Lemma 7 The maximum size of a d-scattered set in any graph of maximum degree at most ∆ and
radius at most ⌈d/2⌉ centered on some vertex v is at most ∆.

Proof: Consider a graph of maximum degree ∆ and radius ⌈d/2⌉ centered on some vertex v: the
only pairs of vertices at distance d from each other must be at distance ≥ ⌈d/2⌉ from v (or ⌊d/2⌋
in one side for odd d), as any vertex u at distance < ⌊d/2⌋ from v will be at distance < d from
any other vertex z in the graph, since z is at distance ≤ ⌈d/2⌉ from v (due to the graph’s radius).
Furthermore, for every vertex in the d-scattered set, there must be an edge-disjoint path of length
at least ⌈d/2⌉ to v that is not shared with any other such vertex, i.e. these paths can only share
vertex v at distance ⌈d/2⌉ from their endpoints (the vertices that can be in a d-scattered set). As
the degree of v is bounded by ∆, the number of such disjoint paths also cannot be more than ∆.

□

Lemma 8 Given two graphs G1, G2, for G
′ = MG2

G1
(v1, v2,U,W) and any U,W, it is OPTd(G

′) ≤
OPTd(G1) +OPTd(G2).

Proof: Assume for the sake of contradiction that OPTd(G
′) > OPTd(G1) +OPTd(G2) and let S

denote an optimum d-scattered set in G′ of this size, with S1 = S ∩ {V1 \ {v1} ∪ {v′}} and S2 =
S∩{V2\{v2}∪{v′}} denoting the parts in G1, G2, respectively. Since |S| > OPTd(G1)+OPTd(G2),
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then for any pair of optimal K1 ⊆ V1, K2 ⊆ V2 in G1, G2, there must be at least one vertex s in S
for which s /∈ K1 and s /∈ K2, but it must be s ∈ S1 or s ∈ S2 (or both, if s = v′).

Observe that the distance between any pair of vertices in G1 (the same holds for G2) cannot
increase in G′ after the merge operation, since identification of a pair of vertices between two
graphs and addition of any number of edges between the two can only decrease their distance Thus
if s ∈ V1, then S1 is also a d-scattered set in G1 (potentially substituting v′ for v1) and so, if
|S1| > |K1| then K1 was not optimal for G1. If |S1| ≤ |K1|, it must be |S2| > |K2| contradicting
the optimality of K2 for G2. Similarly, if u ∈ V2 we have either |S1| > |K1| or |S2| > |K2|.

If u is the merged vertex v′ then there must be at least two other vertices added from V1, V2

for |S| > |K1|+ |K2|, since S can only contain v′ in the place of v1 ∈ K1 and v2 ∈ K2. In this case
the same argument as above gives the contradiction. □

Lemma 9 For any graph G = (V,E) of maximum degree at most ∆ and radius at most d − 1
centered on some vertex v, it is OPTd(G) ≤ O(∆⌊d/2⌋).

Proof: Any graph G of maximum degree at most ∆ and radius at most d−1 centered on a vertex
v can be obtained by the following process: we begin with a graph H of radius at most ⌊d/2⌋ − 1
and maximum degree ∆. Let {v1, . . . , vk} ∈ H be the set of vertices at maximum distance from v,
i.e. dstH(v, vi) = ⌊d/2⌋ − 1. Since the degree of H is bounded by ∆, it must be k ≤ ∆⌊d/2⌋−1. We
now let Hi, for each i ≤ k, denote a series of at most k graphs of radius at most ⌈d/2⌉ centered on
a vertex vi and maximum degree ∆.

Repeatedly applying the merge operation MHi

H (v1, vi,U,W) between graph H (or the result of
the previous operation) and such a graph Hi we can obtain any graph G of radius at most d− 1:
identifying a vertex vj ∈ H (for j ∈ [1, k]) at maximum distance from v with the central vertex vi
of Hi and then adding any number of edges between the vertices of H and Hi (while respecting
the maximum degree of ∆), we can produce any graph of radius ≤ d− 1, since the distance from
v to each vj is at most ⌊d/2⌋ − 1 and from there to any vertex of Hi it is at most ⌈d/2⌉. The
remaining structure of G can be constructed by the chosen structures of the graphs H,Hi and the
added edges between them, i.e. the sequences U,W.

By Lemma 7 it is OPTd(Hi) ≤ ∆ and by Lemma 8, it must be OPTd(G) ≤ OPTd(H) +∑k
i=1 OPTd(Hi) ≤ 1 + ∆ ·∆⌊d/2⌋−1 ≤ 1 + ∆⌊d/2⌋. □

Theorem 4 Any degree-based greedy approximation algorithm for d-Scattered Set achieves a
ratio of O(∆⌊d/2⌋) on graphs of degree bounded by ∆.

Proof: Let G = (V,E) be the input graph and consider the process of our supposed greedy
algorithm: it picks a vertex vi, removes it from consideration along with the set Vi ⊆ V of vertices
at distance at most d − 1 from vi and continues the process until there are no vertices left to
consider. The sets V1, . . . , VALG thus form a partition of G. By Lemma 9, the optimum size of
a d-scattered set in any such Vi is at most O(∆⌊d/2⌋) and thus OPTd(G) ≤ ALG · O(∆⌊d/2⌋), by
Lemma 8, since G can be seen as the merged graph of G[V1], . . . , G[VALG]. □

3.3 Bipartite graphs

Here we consider bipartite graphs and show that d-Scattered Set is approximable to 2
√
n

in polynomial time also for even values of d. Our algorithm will be applied on both sides of the
bipartition and each time it will only consider vertices from one side as candidates for inclusion
in the solution. Appropriate sub-instances of Set Packing are then defined and solved using the
known

√
n-approximation for that problem.
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Definition 5 For a bipartite graph G = (A ∪ B,E), let 1OPTd(G) denote the size of the largest
one-sided d-scattered set of G, i.e. a set that only includes vertices from the same side of the
bipartition A or B, but not both.

Lemma 10 For a bipartite graph G = (A ∪B,E), it is 1OPTd(G) ≥ OPTd(G)/2.

Proof: Consider an optimal solution S ⊆ A ∪ B with |S| = OPTd(G). Then at least half of the
vertices of S are contained in one side of G, i.e. it is either |S∩A| ≥ |S|/2 or |S∩B| ≥ |S|/2 (or both
if |S∩A| = |S∩B| = |S|/2). By definition, it is also 1OPTd(G) ≥ |S∩A| and 1OPTd(G) ≥ |S∩B|.
Thus in both cases it must be 1OPTd(G) ≥ OPTd(G)/2. □

Theorem 6 For any bipartite graph G = (A∪B,E) of size n and d even, the d-Scattered Set
problem can be approximated within a factor of 2

√
n in polynomial time.

Proof: We will consider two cases based on the parity of d/2 and define appropriate Set Packing
instances whose solutions are in a one-to-one correspondence with one-sided d-scattered sets in G.
We will then be able to apply the

√
n-approximation for Set Packing of [17]. We will repeat this

process for both sides A,B of the bipartition and retain the best solution found. Thus we will be
able to approximate 1OPTd(G) within a factor of

√
n and then rely on Lemma 10 to obtain the

claimed bound.
Our Set Packing instances are defined as follows: for d/2 even, we make a set ci for every

vertex ai of A (i.e. from one side) and an element ej for every vertex bj of B (i.e. from the other
side). For d/2 odd, we make a set ci for every vertex ai of A (again from one side) and an element
ej for every vertex bj of B and an element ri for every vertex ai ∈ A (i.e. from both sides).
Note that i, j ≤ n. In both cases we include an element corresponding to vertex x ∈ G in a
set corresponding to a vertex y ∈ G, if dstG(x, y) ≤ d/2 − 1. We then claim that for any given
collection C of compatible (i.e. non-overlapping) sets in the above definitions, we can always find
a one-sided d-scattered set S ⊆ A in G with |C| = |S| and vice-versa.

First consider the case where d/2 is even. Given a one-sided d-scattered set S ⊆ A, we let
C include all the sets that correspond to some vertex in S and suppose for a contradiction that
there exists a pair of sets c1, c2 ∈ C that are incompatible, i.e. that there exists some element e
with e ∈ c1 and e ∈ c2. Let a1, a2 ∈ A be the vertices corresponding to sets c1, c2 and b ∈ B be
the vertex corresponding to element e. Then it must be dstG(a1, b) ≤ d/2 − 1 since e ∈ c1 and
dstG(b, a2) ≤ d/2 − 1 since e ∈ c2, that gives dstG(v1, v2) ≤ d − 2, which contradicts S being a
d-scattered set. On the other hand, given collection C of compatible sets we let S ⊆ A include all
the vertices corresponding to some set in C and suppose there exists a pair of vertices a1, a2 ∈ S
for which it is dstG(a1, a2) < d. Since d is even and a1, a2 ∈ A, if dstG(a1, a2) < d it must be
dstG(a1, a2) ≤ d − 2, as any shortest path between two vertices on the same side of a bipartite
graph must be of even length. Thus there must exist at least one vertex b ∈ B on a shortest path
between a1, a2 in G for which it is dstG(a1, b) ≤ d/2−1 and dstG(b, a2) ≤ d/2−1. This means that
the element e corresponding to vertex b ∈ B must be included in both sets c1, c2 corresponding to
vertices a1, a2 ∈ A, which contradicts the compatibility of sets in C.

We next consider the case where d/2 is odd. Given a one-sided d-scattered set S ⊆ A, we
again let C include all sets that correspond to some vertex in S. If there exists a pair of sets
c1, cs ∈ C that contain the same element e corresponding to some vertex b ∈ B or some element
r that corresponds to a vertex a ∈ A, then by the same argument as in the even case we know
that there must exist paths of length ≤ d/2 − 1 from both vertices a1, a2 ∈ A (corresponding to
c1, c2 ∈ C) to vertex b ∈ B or a ∈ A and thus it must be dstG(a1, a2) < d. On the other hand,
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given a collection C of compatible sets we again let S ⊆ A include all the vertices corresponding to
sets in C. Supposing there exists a pair a1, a2 ∈ S for which it is dstG(a1, a2) < d, then again as
d is even it must be dstG(a1, a2) ≤ d− 2. This means there must be a vertex a ∈ A on a shortest
path between a1 and a2 for which dstG(a1, a) ≤ d/2 − 1 and dstG(a, a2) ≤ d/2 − 1, which means
the corresponding sets c1, c2 ∈ C must both contain element r that corresponds to this vertex
a ∈ A, giving a contradiction.

Our algorithm then is as follows. For a given bipartite graph G = (A ∪ B,E), we define an
instance of Set Packing as described above (depending on the parity of d/2) and apply the

√
n-

approximation of [17]. Observe that |A|, |B| ≤ n. We then exchange the sets A,B in the definitions

of our instances and repeat the same process. This will return a solution S of size |S| ≥ 1OPTd(G)√
n

,

which by Lemma 10 is ≥ OPTd(G)
2
√
n

. □

4 Super-polynomial time

This section concerns itself with running-times that are not restricted to being functions poly-
nomial in the size of the input. We begin with an upper bound on the size of the solution in any
connected graph that is then employed in obtaining a simple exact exponential time algorithm.

Lemma 11 The maximum size of any d-Scattered Set in a connected graph is
⌊

n
⌊d/2⌋

⌋
.

Proof: Given connected graph G = (V,E), let S ⊆ V be a d-scattered set in G. To each u ∈ S,
we will assign all vertices at distance < ⌊d/2⌋: let M(u) := {u} ∪ {v ∈ V |dst(u, v) < ⌊d/2⌋}. Our
aim is to show that for any u ∈ S, it must be |M(u)| ≥ ⌊d/2⌋. In other words, for any vertex u in
the solution there must be at least ⌊d/2⌋ − 1 distinct vertices that are at distance < ⌊d/2⌋ from u
and at distance ≥ ⌊d/2⌋ from any vertex w ∈ S. Observe that if for some pair u,w ∈ S, we have
M(u)∩M(w) ̸= ∅, then dst(u,w) < d, as there exists a vertex at distance < ⌊d/2⌋ from both u,w.

Consider some u ∈ S and let k be the number of vertex-disjoint paths of length < ⌊d/2⌋ starting
from u, i.e. such that no vertices are shared between them. Then it must be |M(u) \ {u}| ≥
k(⌊d/2⌋ − 1). If V ⊆ M(u), then OPTd(G) = |S| = 1 and the claim trivially holds, so we may
assume that there is at least one vertex z /∈ M(u). This means k ≥ 1, sinceG is connected and there
must be (at least) one path from z to u of length ≥ ⌊d/2⌋. It is then |M(u)\{u}|+1 ≥ ⌊d/2⌋−1+1
giving |M(u)| ≥ ⌊d/2⌋.

This means that for each vertex u taken in any solution S there must be at least ⌊d/2⌋ distinct
vertices in the graph, i.e. G must contain |S| disjoint subsets of size at least ⌊d/2⌋ and the claim
follows. □

Theorem 7 The d-Scattered Set problem can be solved in O∗((ed)
2n
d ) time.

Proof: We simply try all sets of vertices of size at most
⌊

n
⌊d/2⌋

⌋
for feasibility and retain the best

one found. By Lemma 11, the optimal solution must be contained therein. The number of sets we
examine is ≤ 2n

d

(
n

d/2

)
= O∗((ed)

2n
d ), giving also the running-time. □

4.1 Inapproximability

We now turn our attention to the problem’s hardness of approximation in super-polynomial
time. We use Theorem 1 in conjunction with straightforward reductions from Independent Set
to d-Scattered Set for the two cases, that depend on the parity of d.
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d = 2 d = 8 d = 9

→

z

u v

w z

u v

w

z

u

v

w

Figure 4: Examples of the constructions for even (center) and odd (right) values of d. Note the
existence of an edge “gadget” for the odd case.

Theorem 8 Under the randomized ETH, for any even d ≥ 4, ϵ > 0 and ρ ≤ (2n/d)5/6, no

ρ-approximation for d-Scattered Set can take time 2

 n1−ϵ

ρ1+ϵd1−ϵ


· nO(1).

Proof: We suppose the existence of a ρ-approximation algorithm for d-Scattered Set of running-

time 2

(
n1−ϵ

d1−ϵρ1+ϵ

)
·nO(1) for some ϵ > 0 and aim to show this would violate the (randomized) ETH.

First let ϵ1 > 0 be such that ϵ > ϵ1 and ϵ > 2ϵ1
1−3ϵ1

. We next define ϵ2 = 1
1−ϵ1

− 1 and r =

ρ
1−ϵ1
1−3ϵ1 . Then, given a formula ϕ of 3SAT on N variables, we use the reduction of Theorem 1 with

parameters r and ϵ2 to build a graph G from ϕ, with |V (G)| = N1+ϵ2r1+ϵ2 and maximum degree r,
such that with high probability: if ϕ is satisfiable then α(G) ≥ N1+ϵ2r; if ϕ is not satisfiable then
α(G) ≤ N1+ϵ2r2ϵ2 . Thus an approximation algorithm with ratio r1−2ϵ2 would permit us to decide

if ϕ is satisfiable. We have that r1−2ϵ2 = (ρ
1−ϵ1
1−3ϵ1 )1−2ϵ2 = (ρ

1−ϵ1
1−3ϵ1 )3−

2
1−ϵ1 = ρ

3+
2ϵ1−2
1−ϵ1

−3ϵ1

1−3ϵ1 = ρ.
We will construct graph H from G as follows (similarly to Theorem 3.10 in [17], see also Figure

4): graph H contains a copy of G and a distinct path of d/2−1 edges attached to each vertex of G.
Without loss of generality, we may assume that any d-scattered set will prefer selecting an endpoint
of these attached paths than some vertex from G, as these selections would exclude strictly fewer
vertices from the solution, i.e. any solution can only be improved by exchanging any vertex of G
with selecting the (other) endpoint of the path attached to it. A pair of vertices that are endpoints
of such paths (and not originally in G) will be at distance ≥ 2(d/2−1)+2 = d, only if the vertices
of G to which they are attached are non-adjacent, i.e. if the shortest path between them is of length
at least 2. Thus, d-scattered sets in H are in one-to-one correspondence with independent sets in
G and α(G) = OPTd(H). The size of H is n = |V (H)| = |V (G)|(d/2− 1 + 1) = N1+ϵ2r1+ϵ2(d/2).
Note also that ρ ≤ N5 and thus ρ ≤ (2n/d)5/6.

If ϕ is satisfiable then OPTd(H) = α(G) ≥ N1+ϵ2r, while if ϕ is not satisfiable then OPTd(H) =
α(G) ≤ N1+ϵ2r2ϵ2 . Therefore, applying the supposed ρ-approximation for d-Scattered Set on

H would permit us to solve 3SAT in time 2

(
n1−ϵ

d1−ϵρ1+ϵ

)
·nO(1), with high probability. We next show

that this would violate the ETH, i.e. 2

(
n1−ϵ

d1−ϵρ1+ϵ

)
· nO(1) = 2o(N). We have:

n = N1+ϵ2r1+ϵ2(d/2) ⇒ N =

(
2n

d

)1−ϵ1

· 1

ρ

(
1−ϵ1
1−3ϵ1

) (1)
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And we then need to show:

2

(
n1−ϵ

d1−ϵρ1+ϵ

)
· nO(1) = 2o(N) = 2

o

( 2n
d )

1−ϵ1 · 1

ρ
( 1−ϵ1

1−3ϵ1
)


(2)

Observe that, since ϵ > ϵ1 and ϵ > 2ϵ1
1−3ϵ1

, it is:

(n/d)1−ϵ < (2n/d)1−ϵ1 (3)

(1/ρ1+ϵ) <
(
1/ρ(

1−ϵ1
1−3ϵ1

)
)

(4)

Which then gives:

lim
(n,ρ)→∞

2

(
(n
d )1−ϵ· 1

ρ1+ϵ

)

2

( 2n
d )1−ϵ1 · 1

ρ
( 1−ϵ1

1−3ϵ1
)

 = 0 (5)

□

The following reduction from Independent Set to d-Scattered Set for odd values of d
uses a construction that includes a copy of every edge of the original graph (an edge gadget, see
Figure 4). This necessity is responsible for the difference in running-times and is due to the parity
idiosyncrasies of the problem as mentioned above.

Theorem 9 Under the randomized ETH, for any odd d ≥ 5, ϵ > 0 and ρ ≤ (2n/d)5/6, no ρ-

approximation for d-Scattered Set can take time 2

 n1−ϵ

ρ1+ϵ(d+ ρ)1+ϵ


· nO(1).

Proof: We suppose the existence of a ρ-approximation algorithm for d-Scattered Set of running-

time 2

 n1−ϵ

ρ1+ϵ(d+ ρ)1+ϵ


·nO(1) for some ϵ > 0 and aim to show this would violate the (randomized)

ETH. We let ϵ1 > 0 be such that ϵ > ϵ1
1+ϵ1

and also ϵ > 2ϵ1
1−2ϵ1

, as well as ϵ >
2ϵ21+ϵ1

1−2ϵ21−ϵ1
. We then

set r = ρ

(
1

1−2ϵ1

)
. Given a formula ϕ of 3SAT on N variables, we build graph G from ϕ using

the reduction of Theorem 1 with parameters r and ϵ1. The size of G is |V (G)| = N1+ϵ1r1+ϵ1 , its
maximum degree is r and with high probability: if ϕ is satisfiable then α(G) ≥ N1+ϵ1r; if ϕ is not
satisfiable then α(G) ≤ N1+ϵ1r2ϵ1 . Therefore an approximation algorithm with ratio r1−2ϵ1 = ρ
would permit us to decide if ϕ is satisfiable.

For odd d ≥ 5, we will construct graph H from G as follows (again, a similar reduction is
alluded to in the proof of Theorem 3.10 from [17] and partly also used for Corollary 1 from [12]):
we make a vertex in H for each vertex of G and we also attach a distinct path of (d−3)/2 edges to
each of them. We then make a vertex for every edge of G, turn all these vertices into a clique and
also connect each one to the two vertices of H representing its endpoints. In this way, all pairs of
vertices in H are at distance ≤ 2(d−1)/2+1 = d and the only vertices at exactly this distance are
pairs of leaves on paths added to vertices that do not share a common neighbor representing some
edge of G. Thus, d-scattered sets in H are again in one-to-one correspondence with independent
sets in G and α(G) = OPTd(H). The size of H is n = |V (H)| = |V (G)|(d − 1)/2 + |E(G)|.
The construction of [8] builds a graph where every vertex has degree at least one and at most
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r, therefore |E(G)| ≥ |V (G)| and |E(G)| ≤ |V (G)|r/2, that gives n ≤ N1+ϵ1r1+ϵ1(d+r−1
2 ), while

ρ ≤ N5, with n ≥ Nρ(d+ 1)/2, that gives ρ ≤ (2n/d)5/6.
If ϕ is satisfiable then OPTd(H) = α(G) ≥ N1+ϵ1r, while if ϕ is not satisfiable then OPTd(H) =

α(G) ≤ N1+ϵ1r2ϵ1 . Thus the supposed ρ-approximation for d-Scattered Set on H would permit

us to solve 3SAT in time 2

 n1−ϵ

ρ1+ϵ(d+ ρ)1+ϵ


· nO(1), with high probability. We next show that

this would violate the ETH, i.e. 2

 n1−ϵ

ρ1+ϵ(d+ ρ)1+ϵ


· nO(1) = 2o(N). It is:

n ≤ N1+ϵ1r1+ϵ1

(
d+ r − 1

2

)
⇒ (6)

⇒ 2N ≥ 2

(
( 2n

d+r−1 )
1

1+ϵ1 · 1r
)
= 2


 2n

d+ρ
( 1

1−2ϵ1
)
−1

 1
1+ϵ1

· 1

ρ
( 1

1−2ϵ1
)


(7)

Observe it is (d+ ρ)
1

1−2ϵ1 > (d+ ρ
1

1−2ϵ1 − 1) and so 2N > 2

( 2n

(d+ρ)

1
1−2ϵ1

) 1
1+ϵ1

· 1

ρ
( 1

1−2ϵ1
)


. We thus

then require:

lim
(n,ρ)→∞

2

 n1−ϵ

ρ1+ϵ(d+ ρ)1+ϵ



2

( 2n

(d+ρ)

1
1−2ϵ1

) 1
1+ϵ1

· 1

ρ
( 1

1−2ϵ1
)

 = 0 (8)

This is shown by the following inequalities:

ϵ >
ϵ1

1 + ϵ1
⇒ n1−ϵ < 2n

1
1+ϵ1 (9)

ϵ >
2ϵ21 + ϵ1

1− 2ϵ21 − ϵ1
⇒ 1

(d+ ρ)1+ϵ
<

1

(d+ ρ)
1

(1+ϵ1)(1−2ϵ1)

(10)

ϵ >
2ϵ1

1− 2ϵ1
⇒ 1

ρ1+ϵ
<

1

ρ(
1

1−2ϵ1
)

(11)

□

4.2 Approximation

We complement the above hardness results with approximation algorithms of almost matching
super-polynomial running-times. Similarly to the exact algorithm of Theorem 7, the upper bound
from the beginning of this section is used for even values of d, while for the odd values this idea is
combined with a greedy scheme based on minimum vertex degree.

Theorem 10 For any even d ≥ 2 and any ρ ≤ n
⌊d/2⌋ , there is a ρ-approximation algorithm for

d-Scattered Set of running-time O∗((eρd)
2n
ρd ).

Proof: From Lemma 11 we know that the maximum size of a d-scattered set is ⌊ n
⌊d/2⌋⌋. We thus

simply try all sets of vertices of size at most n
ρ⌊d/2⌋ for feasibility and retain the best one: these
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are ≤ n
ρ⌊d/2⌋

(
n

ρ⌊d/2⌋
)
= O∗((eρd)

2n
ρd ), that gives the running-time. If the graph is not connected, we

can apply Lemma 11 to each connected component C of size nC and then consider all subsets of
size at most nC

ρ⌊d/2⌋ in each C. □

Theorem 11 For any odd d ≥ 3 and any ρ ≤ n
⌊d/2⌋ , there is a ρ-approximation algorithm for

d-Scattered Set of running-time O∗((eρd)
2n

ρ(d+ρ) ).

Proof: Let q = (d−1)/2 and G′ be the q-th power of graph G. We then claim that any d-scattered
set S in G is a 3-scattered set in G′ and vice-versa: if S is a d-scattered set in G, then for any pair
u, v ∈ S, it is dstG(u, v) ≥ d. For some pair of distinct vertices w, z on a shortest path between u, v
in G, it must be dstG(u,w) = dstG(z, v) = q, while also dstG(u, z) = dstG(w, v) > q, i.e. w and z
are two vertices on a shortest path from u to v, each at equal distance q from their closest endpoint
(v or u). Then dstG′(u,w) = dstG′(z, v) = 1. Since w, z are distinct, it must be dstG′(w, z) ≥ 1
which gives also dstG′(u, v) ≥ 3, since dstG′(u, z) = dstG′(w, v) > 1.

If S is a 3-scattered set in G′, then for any pair u, v ∈ S it is dstG′(u, v) ≥ 3. Now, any
shortest path in G between u, v must contain two distinct vertices w, z for which dstG(u,w) = q
and dstG(z, v) = q, while dstG(u, z) = dstG(w, v) > q. If no such pair of vertices exists in G, then
dstG′(u, v) < 3: any pair of vertices at distance ≤ q in G are adjacent in G′ and so for the distance
between u, v in G′ to be at least 3, there must be two vertices each at distance ≥ q from u, v in G.
From this we get that dstG(u, v) ≥ 2q + 1 = d, since dstG(w, z) ≥ 1, as w ̸= z.

The algorithm then proceeds in two phases. For the first phase, so long as there exists an
unmarked vertex vi in G′ of minimum degree < ρ, we mark vi as ‘selected’ and add it to S1 ⊆ V ,
marking all vertices at distance ≤ 2 from vi in G′ as ‘excluded’ and adding them to Xi ⊆ V . That
is, Xi = N2

G′(vi) and we let X = N2
G′(S1), i.e. X = X1 ∪ · · · ∪ X|S1|. We also let the remaining

(unmarked) vertices belong to H ⊆ V . Thus when this procedure terminates we have V partitioned
into three sets S1, X,H, while the degree of any vertex in H is ≥ ρ. For the second phase, we try
all subsets of vertices of H of size at most 2n

ρ(ρ+⌊d/2⌋) for feasibility and retain the best one. These

are ≤ 2n
ρ(ρ+⌊d/2⌋)

(
n

ρ/2(ρ+⌊d/2⌋)
)
= O∗((eρd)2n/ρ(d+ρ)), giving the upper bound on the running-time.

Now let S∗
1 be a 3-scattered set of maximum size in the subgraph of G′ induced by S1 ∪ X,

i.e. |S∗
1 | = OPT3(G

′[S1 ∪X]) and S∗
2 be a 3-scattered set of maximum size in the subgraph of G′

induced by H, i.e. |S∗
2 | = OPT3(G

′[H]). As the degree of any vertex vi ∈ S1 is < ρ, we have (1):
|S∗

1 | < ρ|S1|, since for every vertex u in N1
G′(vi), for vi ∈ S1, 3-scattered set S∗

1 can contain at
most one vertex w from N1

G′(u), as the distance between w and another neighbor of u is ≤ 2. For
the second phase, it must be |S∗

2 | ≤ n/ρ ⇒ 1/|S∗
2 | ≥ ρ/n, since all vertices of H are of degree ≥ ρ

and these neighborhoods are disjoint: if two vertices of S∗
2 share a common neighbor then they

cannot belong in a 3-scattered set. From Lemma 11, we also know that |S∗
2 | ≤ n/⌊d/2⌋ ⇒ 1/|S∗

2 | ≥
⌊d/2⌋/n. Adding the two inequalities gives 2/|S∗

2 | ≥ ρ+⌊d/2⌋
n ⇒ |S∗

2 | ≤ 2n
ρ+⌊d/2⌋ . Furthermore, it is

|S2| ≤ 2n
ρ(ρ+⌊d/2⌋) , by construction. Dividing the two inequalities gives (2):

|S∗
2 |

|S2| ≤ ρ ⇒ |S∗
2 | ≤ ρ|S2|.

From (1) and (2) we get that |S∗
1 |+ |S∗

2 | ≤ ρ(|S1|+ |S2|). It is OPTd(G) = OPT3(G
′) ≤ |S∗

1 |+ |S∗
2 |

since S1 ∪ X and H form a partition of G′. Our algorithm returns a solution of size |S1| + |S2|
and thus our approximation ratio is OPTd(G)

|S1|+|S2| ≤ |S∗
1 |+|S∗

2 |
|S1|+|S2| ≤ ρ. If the graph is not connected, we

can apply Lemma 11 to each connected component C of size nC and then try all subsets of size at
most nC

ρ⌊d/2⌋ in each C and obtain an additive version of (2) for each component. □
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Treewidth of power graphs

We close this paper with a note on the treewidth of power graphs. Similar ideas as those used
in the above results also point to the following upper bound on the increase in treewidth taking
place when computing the power of a graph of bounded degree:

Theorem 12 For any graph G of treewidth tw and maximum degree bounded by ∆, the treewidth

tw′ of the d-th power Gd is at most tw′ ≤ tw ·∆∑d/2−1
i=0 (∆− 1)i = O(tw ·∆d/2).

Proof: Given a tree decomposition T of G = (V,E) of width tw, we make a tree decomposition
T ′ of Gd = (V,Ed) by replacing the appearance of each vertex v in each bag of T with v and the

set of vertices at distance at most d/2 from v in G, i.e. with N
d/2
G (v) ∪ {v}. It is |Nd/2

G (v)| ≤∑d/2−1
i=0 (∆(∆ − 1)i), from which we get the upper bound. This is a valid tree decomposition for

Gd as: (a) all vertices appear in some bag of T ′ as they appeared in T , (b) for every edge {u, v}
in Gd, either {u, v} ∈ E and there is a bag in T containing both u, v and thus there is one also in
T ′, or {u, v} was added to Ed due to the distance between u, v being ≤ d in G. In this case there
must be at least one vertex w at distance ≤ d/2 from both u and v in G, meaning there will be a
bag in T ′ containing all three vertices u, v, w that was constructed from a bag of T that contains
w.

Finally, (c) for every vertex v appearing in two bags X ′, Y ′ of T ′, vertex v also appears on every
bag on the path from X ′ to Y ′ in T ′: consider (for a contradiction) the existence of a bag Z ′ on
the path from X ′ to Y ′ in T ′ that does not contain v, and let X,Y, Z be the corresponding bags
in T . Since X ′, Y ′ contain v, then both X and Y contain some vertex u at distance at most d/2

from v in G, or v itself, i.e. u ∈ N
d/2
G (v)∪{v}. If both X and Y contain v, then as T is a valid tree

decomposition, so does Z and therefore also Z ′. Thus we may assume that at least one of X,Y do
not contain v, as well as v /∈ Z. As Z is a separator, then v must appear only on one side of Z in
T . We assume (without loss of generality) that v only appears on the X-side of T (from Z) and
v is not contained in Y . Thus Y must contain some vertex u at distance ≤ d/2 from v in G. As
Z is a separator, the path from v to u must contain at least one vertex w ∈ Z, at distance < d/2
from v. Thus Z ′ must also contain v, as it includes all vertices at distance ≤ d/2 from w. □

As for graphs of maximum degree bounded by ∆, we have cw ≤ O(∆ · tw) (see [9]) and
tw ≤ O(∆ · cw) (directly derived from the well-known result of Gurski and Wanke [16]), we also
obtain the following corollary.

Corollary 13 For any graph G of clique-width cw and maximum degree bounded by ∆, the clique-
width cw′ of the d-th power Gd is at most cw′ ≤ O(cw ·∆d/2+2).

5 Conclusion

In this paper we furthered our understanding of the d-Scattered Set problem by answering
remaining questions on its (super-)polynomial (in-)approximability. In particular, we showed the
following:

• A lower bound of ∆⌊d/2⌋−ϵ on the approximation ratio of any polynomial-time algorithm for
graphs of maximum degree ∆ and an improved upper bound of O(∆⌊d/2⌋) on the approxi-
mation ratio of any greedy scheme for this problem.
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• A polynomial-time approximation algorithm of ratio 2
√
n for bipartite graphs and even values

of d, that complements known results by considering the only remaining open case.

• An exact exponential time algorithm of complexity O∗((ed)
2n
d ), based on an upper bound on

the size of any solution.

• A lower bound on the complexity of any ρ-approximation algorithm of (roughly) 2
n1−ϵ

ρd for

even d and 2
n1−ϵ

ρ(d+ρ) for odd d, under the randomized ETH.

• ρ-approximation algorithms of running-times O∗((eρd)
2n
ρd ) for even d and O∗((eρd)

2n
ρ(d+ρ) ) for

odd d that (almost) match the above lower bounds, thus giving a clear picture of the trade-off
curve between approximation and running-time.

Apart from the possibility of “de-randomization” of the results above that use the randomized
construction of [8] as a starting point, some remaining unanswered questions here would concern
the complexity of the problem on chordal bipartite graphs (also mentioned as an open problem
by [12]) as well as the functionality of the PTAS for planar graphs by the same authors, that
only works for fixed values of d as it extends the well-known approach of [2] for obtaining such
algorithms in planar graphs for e.g. Independent Set. Because this approach involves breaking
down the graph into (roughly) d-outerplanar subgraphs and then exactly solving the problem in
each of these using dynamic programming over their tree decompositions, for values of d that are
not constant (say d ≥ √

n)) this is not achievable in polynomial time, due to the exponent of
the treewidth algorithms depending on d. It would be interesting to see an extension of this (or
some other) approach for the case of unbounded d, or, conversely, a hardness reduction proving it
is unlikely. The hard part would have to involve a construction that is very efficient in terms of
crossing gadgets in order to maintain planarity, or, from the other side, a way to optimally solve
the problem in carefully constructed subgraphs without spending time exponential on d.
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[5] É. Bonnet, M. Lampis, and V. T. Paschos. Time-approximation trade-offs for inapproximable
problems. J. Comput. Syst. Sci., 92:171–180, 2018. doi:10.1016/j.jcss.2017.09.009.

[6] N. Bourgeois, B. Escoffier, and V. T. Paschos. Approximation of max independent set, min
vertex cover and related problems by moderately exponential algorithms. Discret. Appl. Math.,
159(17):1954–1970, 2011. doi:10.1016/j.dam.2011.07.009.

[7] A. Brouwer and W. Haemers. Spectra of graphs. Universitext. Springer, 2012.

[8] P. Chalermsook, B. Laekhanukit, and D. Nanongkai. Independent set, induced matching,
and pricing: Connections and tight (subexponential time) approximation hardnesses. In 54th
Annual IEEE Symposium on Foundations of Computer Science, FOCS 2013, 26-29 October,
2013, Berkeley, CA, USA, pages 370–379. IEEE Computer Society, 2013. doi:10.1109/FOCS.
2013.47.

[9] B. Courcelle. On the model-checking of monadic second-order formulas with edge set quan-
tifications. Discret. Appl. Math., 160(6):866–887, 2012. doi:10.1016/j.dam.2010.12.017.

[10] M. Cygan, L. Kowalik, M. Pilipczuk, and M. Wykurz. Exponential-time approximation of
hard problems. CoRR, abs/0810.4934, 2008.

[11] M. Demange and V. T. Paschos. Improved approximations for maximum independent set via
approximation chains. Applied Mathematics Letters, 10(3):105 – 110, 1997.

[12] H. Eto, F. Guo, and E. Miyano. Distance-d independent set problems for bipartite and chordal
graphs. J. Comb. Optim., 27(1):88–99, 2014. doi:10.1007/s10878-012-9594-4.

[13] H. Eto, T. Ito, Z. Liu, and E. Miyano. Approximability of the distance independent set
problem on regular graphs and planar graphs. In T. H. Chan, M. Li, and L. Wang, editors,
Combinatorial Optimization and Applications - 10th International Conference, COCOA 2016,
Hong Kong, China, December 16-18, 2016, Proceedings, volume 10043 of Lecture Notes in
Computer Science, pages 270–284. Springer, 2016. doi:10.1007/978-3-319-48749-6\_20.

https://doi.org/10.1007/BF01277956
https://doi.org/10.1145/174644.174650
https://doi.org/10.1007/3-540-48523-6_17
https://doi.org/10.1137/0401033
https://doi.org/10.1016/j.jcss.2017.09.009
https://doi.org/10.1016/j.dam.2011.07.009
https://doi.org/10.1109/FOCS.2013.47
https://doi.org/10.1109/FOCS.2013.47
https://doi.org/10.1016/j.dam.2010.12.017
https://doi.org/10.1007/s10878-012-9594-4
https://doi.org/10.1007/978-3-319-48749-6_20


238 Katsikarelis, Lampis, Paschos Improved (In-)Approximability Bounds for d-Scattered Set

[14] H. Eto, T. Ito, Z. Liu, and E. Miyano. Approximation algorithm for the distance-3 independent
set problem on cubic graphs. In S. Poon, M. S. Rahman, and H. Yen, editors, WALCOM: Al-
gorithms and Computation, 11th International Conference and Workshops, WALCOM 2017,
Hsinchu, Taiwan, March 29-31, 2017, Proceedings, volume 10167 of Lecture Notes in Com-
puter Science, pages 228–240. Springer, 2017. doi:10.1007/978-3-319-53925-6\_18.

[15] F. V. Fomin, D. Lokshtanov, V. Raman, and S. Saurabh. Bidimensionality and EPTAS.
In D. Randall, editor, Proceedings of the Twenty-Second Annual ACM-SIAM Symposium on
Discrete Algorithms, SODA 2011, San Francisco, California, USA, January 23-25, 2011,
pages 748–759. SIAM, 2011. doi:10.1137/1.9781611973082.59.

[16] F. Gurski and E. Wanke. The tree-width of clique-width bounded graphs without Kn, n.
In U. Brandes and D. Wagner, editors, Graph-Theoretic Concepts in Computer Science,
26th International Workshop, WG 2000, Konstanz, Germany, June 15-17, 2000, Proceed-
ings, volume 1928 of Lecture Notes in Computer Science, pages 196–205. Springer, 2000.
doi:10.1007/3-540-40064-8\_19.
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[18] M. M. Halldórsson and J. Radhakrishnan. Greed is good: Approximating independent sets
in sparse and bounded-degree graphs. Algorithmica, 18(1):145–163, 1997. doi:10.1007/

BF02523693.

[19] J. H̊astad. Clique is hard to approximate within n1−ϵ. Acta Mathematica, 182:105–142, 1999.

[20] R. Impagliazzo and R. Paturi. On the complexity of k-sat. J. Comput. Syst. Sci., 62(2):367–
375, 2001. doi:10.1006/jcss.2000.1727.

[21] R. Impagliazzo, R. Paturi, and F. Zane. Which problems have strongly exponential complex-
ity? J. Comput. Syst. Sci., 63(4):512–530, 2001. doi:10.1006/jcss.2001.1774.

[22] I. Katsikarelis, M. Lampis, and V. T. Paschos. Improved (in-)approximability bounds for
d-scattered set. In E. Bampis and N. Megow, editors, Approximation and Online Algorithms
- 17th International Workshop, WAOA 2019, Munich, Germany, September 12-13, 2019,
Revised Selected Papers, volume 11926 of Lecture Notes in Computer Science, pages 202–216.
Springer, 2019. doi:10.1007/978-3-030-39479-0\_14.

[23] I. Katsikarelis, M. Lampis, and V. T. Paschos. Structurally parameterized d-scattered set.
Discret. Appl. Math., 308:168–186, 2022. doi:10.1016/j.dam.2020.03.052.

[24] D. Marx and M. Pilipczuk. Optimal parameterized algorithms for planar facility location
problems using voronoi diagrams. ACM Trans. Algorithms, 18(2):13:1–13:64, 2022. doi:

10.1145/3483425.

[25] P. Montealegre and I. Todinca. On distance-d independent set and other problems in graphs
with ”few” minimal separators. In P. Heggernes, editor, Graph-Theoretic Concepts in Com-
puter Science - 42nd International Workshop, WG 2016, Istanbul, Turkey, June 22-24, 2016,
Revised Selected Papers, volume 9941 of Lecture Notes in Computer Science, pages 183–194,
2016. doi:10.1007/978-3-662-53536-3\_16.

[26] M. Pilipczuk and S. Siebertz. Kernelization and approximation of distance-r independent sets
on nowhere dense graphs. Eur. J. Comb., 94:103309, 2021. doi:10.1016/j.ejc.2021.103309.

https://doi.org/10.1007/978-3-319-53925-6_18
https://doi.org/10.1137/1.9781611973082.59
https://doi.org/10.1007/3-540-40064-8_19
https://doi.org/10.1016/S0166-218X(99)00124-9
https://doi.org/10.1007/BF02523693
https://doi.org/10.1007/BF02523693
https://doi.org/10.1006/jcss.2000.1727
https://doi.org/10.1006/jcss.2001.1774
https://doi.org/10.1007/978-3-030-39479-0_14
https://doi.org/10.1016/j.dam.2020.03.052
https://doi.org/10.1145/3483425
https://doi.org/10.1145/3483425
https://doi.org/10.1007/978-3-662-53536-3_16
https://doi.org/10.1016/j.ejc.2021.103309

	Introduction
	Definitions and Preliminaries
	Polynomial Time
	Inapproximability
	Approximation
	Bipartite graphs

	Super-polynomial time
	Inapproximability
	Approximation

	Conclusion

