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Abstract. Betweeness centrality is one of the most important concepts in graph
analysis. It was recently extended to link streams, a graph generalization where links
arrive over time. However, its computation raises non-trivial issues, due in particular
to the fact that time is considered as continuous. We provide here the first algorithms
to compute this generalized betweenness centrality, as well as several companion al-
gorithms that have their own interest. They work in polynomial time and space, we
illustrate them on typical examples, and we provide an implementation.

1 Introduction
Betweenness centrality, or betweenness for short, is one of the most classical and important concepts
defined over graphs and used in the field of complex networks and social network analysis [42, 36,
23, 22, 10]. Given a graph G = (V,E), it measures how frequently each node v ∈ V is involved in
shortest paths: B(v) =

∑
u∈V,w∈V

σ(u,w,v)
σ(u,w) where σ(u,w,v)

σ(u,w) is the fraction of all shortest paths from
u to w that involve v if there is a path from u to w, 0 otherwise. Reference algorithms compute
the betweenness of all nodes in a graph in time O(n ·m), where n and m are the number of nodes
and links in the graph [4].

Betweenness was extended recently to link streams [21], a family of formal objects that model
sequences of interactions over time in a way similar to the modeling of relations by graphs. They are
equivalent to other objects like time-varying graphs (TVG) [8, 2], relational event models (REM)
[7, 30], or temporal networks [24, 16], with an emphasis on the streaming nature of link sequences.
Various temporal extensions of beweenness were introduced in these contexts, see Section 7.

We first introduce key concepts and notations in Section 2. Betweenness in link streams has
some unique features that make it quite different from other temporal extensions of betweenness in
graphs. In particular, it considers continuous time and links with or without durations: nodes may
be linked at specific time instants, as well as during continuous periods of time. As a consequence,
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a set of paths from a temporal node to another one is in general uncountable, which requires
specific concepts to estimate its importance; we define them in Section 3. Also, betweenness in
link streams considers paths from any node at any time instant to any node at any time instant,
which induces an uncountable amount of temporal nodes. Therefore, not all paths that involve a
given temporal node necessarily have the same impact on its betweenness centrality: this impact
depends on the amount of temporal nodes that are sources and destinations for each path. This
raises specific algorithmic challenges, that we address in Sections 4 and 5. We finally obtain the
first algorithm for computing betweenness centrality in link streams. We present this polynomial
time and space algorithm, and show results on non-trivial toy examples in Section 6. We provide
an open Python implementation of these algorithms [19].

2 Preliminaries
A link stream L is a triplet (T, V,E) where T = [α, ω] is an interval of R representing time, V is a
finite set of nodes, and E ⊆ T × V ⊗ V is the set of links 1. Then, (t, uv) ∈ E means that u and v
are linked together at time t. For any u and v in V , Tuv = {t, (t, uv) ∈ E} denotes the set of time
instants at which u and v are linked together. See Figure 1 for an illustration and [21] for a full
presentation of the formalism.

We assume here that Tuv is the union of a finite number of disjoint closed intervals (possibly
singletons) of T . We denote by T the set of bounds of maximal intervals in Tuv for any u and
v, that we call event times. We denote by muv the number of maximal intervals in Tuv, and by
m =

∑
u,v∈V muv their sum, i.e. the number of maximal intervals in E. In the case of Figure 1,

we obtain T = {1, 2, 3, 5, 6, 7, 8, 9, 11, 12, 14, 15, 16, 18, 19, 22, 23, 24, 25, 27, 28, 29, 30, 31}, mab = 3,
mac = 1, mbc = 4, mbd = 1, mcd = 3, mde = 4, and so m = 16.

Given a link stream L = (T, V,E) and a time t, we define the graph Gt = (V,Et) with
Et = {uv, (t, uv) ∈ E}. We denote by Nt(v) the set of neighbors of v in Gt. We denote by σt(u, v)
the (finite) number of paths from u to v in Gt, and by dt(u, v) the distance from u to v in this
graph.
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Figure 1: An example of link stream L = (T, V,E) with T = [α, ω] = [0, 32], V = {a, b, c, d, e},
and E defined by Tab = [1, 2]∪ [15, 16]∪ [23, 24], Tac = [8, 9], Tbc = [3, 5]∪ {11} ∪ [19, 22]∪ [25, 28],
Tbd = [12, 14], Tcd = [6, 7] ∪ [18, 19] ∪ [27, 29], and Tde = [9, 11] ∪ {16} ∪ [23, 24] ∪ [31, 32].

In L = (T, V,E), a path P from (x, u) ∈ T × V to (y, v) ∈ T × V is a sequence v0, t1, v1, t2,
v2, . . . tk, vk with v0 = u, vk = v, x ≤ t1 ≤ t2 ≤ · · · ≤ tk ≤ y, and (ti, vi−1vi) ∈ E for all i. If such
a path exists, then (y, v) is reachable from (x, u), which we denote by (x, u) −→ (y, v). The path
P involves (t1, u), (tk, v), and (t, vi) for all t ∈ [ti, ti+1] and all i. It starts at t1, arrives at tk, has
length k and duration tk − t1. A path with duration 0 is called an instantaneous path.

1We make the distinction between the set X × Y of ordered pairs of elements of X and Y , that we denote by
(x, y) with x ∈ X and y ∈ Y , and the set X ⊗Y of unordered pairs of distinct elements of X and Y , that we denote
by xy with x ∈ X, y ∈ Y and x ̸= y; (x, y) ̸= (y, x) while xy = yx.
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For instance, in the case of Figure 1, the sequences a, 1, b, 4, c, 6, d, 9, e and a, 9, c, 18, d, 27, c, 28,
d, 31, e are two paths from (0, a) to (32, e) with length 4 and duration 8, and length 5 and duration
22, respectively.

The path P is a shortest path from (x, u) to (y, v) if it has minimal length, called the distance
from (x, u) to (y, v) and denoted by d((x, u), (y, v)). The path P is a fastest path from (x, u) to (y, v)
if it has minimal duration, called the latency from (x, u) to (y, v) and denoted by ℓ((x, u), (y, v)).
The path P is a shortest fastest path from (x, u) to (y, v) if it is a path of minimum length among
those of minimal duration from (x, u) to (y, v).

For instance, in the case of Figure 1, the path a, 2, b, 4, c, 6, d, 9, e is a fastest path from (0, a) to
(32, e), but a, 1, b, 4, c, 6, d, 9, e is not (it has duration 8). The path a, 2, b, 4, c, 6, d, 9, e has length 4
and duration 7, and no path from (0, a) to (32, e) with lower duration exists. It is not a shortest
path since a, 9, c, 18, d, 23, e also is a path from (0, a) to (32, e) which has length 3 and duration 14.
This last path is a shortest path, since no path with lower length exists, but not a fastest one. The
distance from (0, a) to (32, e) therefore is 3 and the latency is 7. Among the fastest paths from (0, a)
to (32, e), i.e. the paths of duration 7, the shortest have length 4. Therefore, a, 2, b, 4, c, 6, d, 9, e is
a shortest fastest path between them, as well as a, 2, b, 5, c, 6, d, 9, e, for instance.

Finally, the betweenness of a node v ∈ V at a time instant t ∈ T measures how frequently (t, v)
is involved in shortest fastest paths in L, see [21]:

B(t, v) =
∑

u∈V,w∈V

∫
i∈T,j∈T

σ((i, u), (j, w), (t, v))

σ((i, u), (j, w))
di dj

where σ((i,u),(j,w),(t,v))
σ((i,u),(j,w)) is the fraction of all shortest fastest paths from u at time i to w at time j

that involve v at time t if there is a path from (i, u) to (j, w), 0 otherwise.
It is important to notice that path contributions depend on the amount of temporal node pairs

for which they are shortest fastest paths. Consider for instance the shortest fastest paths from
(i, a) to (j, c) in both link streams in Figure 2, for any i and j. There is only one such path
in each case, namely a, 1, b, 2, c for the first stream and a, 5, b, 6, c for the second stream. But in
the first link stream the path is a shortest fastest path for i ∈ [0, 1] and j ∈ [2, 10], while in the
second the path is a shortest fastest path for i ∈ [0, 5] and j ∈ [6, 10]. This has drastic influence
on betweenness computation. Consider for instance the temporal nodes (1.5, b) and (5.5, b) in
the first and second link stream respectively, highlighted with crosses in the figure. Although the
paths have similar features regarding these two temporal nodes, they have significantly different
contributions to their betweenness:

∫
i∈T,j∈T

σ((i,u),(j,w),(1.5,b))
σ((i,u),(j,w)) di dj = (1 − 0) ∗ (10 − 2) = 8 and∫

i∈T,j∈T
σ((i,u),(j,w),(5.5,b))

σ((i,u),(j,w)) di dj = (5 − 0) ∗ (10 − 6) = 20, respectively. This reflect the fact that
(5.5, b) in the second link stream is involved in shortest fastest paths between more temporal node
pairs than (1.5, b) in the first stream.

In the original definition given above, the quantity σ((i,u),(j,w),(t,v))
σ((i,u),(j,w)) is only loosely defined as a

fraction of shortest fastest paths; the function σ itself, as well as the ratio between its values, are
not explicitely defined. We will see in next section that this fraction involves uncountable sets of
shortest fastest paths that have finite volumes with a size and a dimension. We will also introduce
the appropriate arithmetic operators needed to deal with them, and an algorithm to compute these
volumes.



198 Simard, Magnien, Latapy Computing Betweenness Centrality in Link Streams

a

b

c

0 1 2 3 4 5 6 7 8 time

a

b

c

0 1 2 3 4 5 6 7 8 time

Figure 2: Two link streams illustrating the fact the impact of a shortest fastest path depends on
the amount of temporal node pairs for which it is a shortest fastest path. Left: L = (T, V,E) with
T = [0, 10], V = {a, b, c}, and E = {(1, ab), (2, bc)}. The temporal node (1.5, b) is marked with a
cross. Right: L = (T, V,E) with T = [0, 10], V = {a, b, c}, and E = {(5, ab), (6, bc)}. The temporal
node (5.5, b) is marked with a cross.

3 Volumes of shortest paths

Let us consider a link stream L = (T, V,E), and a sequence I1, I2, · · · , Ik of intervals of T . Let
us denote by bi and ei the bounds of interval Ii, with bi ≤ ei. If ei = bi then Ii is a singleton
(Ii = {bi} = {ei}). The intervals may be closed (Ii = [bi, ei]), half-open (Ii =]bi, ei] or Ii = [bi, ei[),
or open (Ii =]bi, ei[).

We say that the sequence I1, I2, · · · , Ik is a sliding sequence if for all i, there exists no
element in Ii+1 strictly smaller than all elements of Ii (∄y ∈ Ii+1,∀x ∈ Ii, y < x), and no element
of Ii strictly larger than all elements of Ii+1 (∄x ∈ Ii,∀y ∈ Ii+1, x > y).

In such a sequence, the intervals may overlap (Ii∩Ij ̸= ∅, i ̸= j), may be included in each other
(Ii ⊆ Ij , i ̸= j), or may even be equal (Ii = Ij , i ̸= j).

Given a sliding sequence I1, I2, · · · , Ik, we denote by v0, I1, v1, I2, v2, · · · Ik, vk the set S of all
sequences v0, t1, v1, t2, v2, · · · , tk, vk such that vi ∈ V , ti ∈ Ii and ti+1 ≥ ti for all i. We say that S
is a sliding set. If the intervals are disjoint then S = {v0}× I1×{v1}× I2×{v2}×· · ·× Ik×{vk},
but this is not true in general.

In the case of Figure 1, for instance, [23, 24], ]25, 28], [27, 29], {31} is a sliding sequence and
a, [23, 24], b, ]25, 28], c, [27, 29], d, {31}, e is a sliding set. The elements of this set are the paths
a, t1, b, t2, c, t3, d, t4, e with 23 ≤ t1 ≤ 24, 25 < t2 ≤ 28, max(27, t2) ≤ t3 ≤ 29, and t4 = 30.

More generally, all paths in any link stream are elements of sliding sets. In the case of Figure 1,
for instance, all shortest paths from (0, a) to (14, e) go from a to b between times 1 and 2, from b
to c between times 3 and 5, from c to d between 6 and 7, and finally from d to e between 9 and
11. Therefore, they are elements of a, [1, 2], b, [3, 5], c, [6, 7], d, [9, 11], e.

In addition, if we consider any two elements (i, u) and (j, v) of T×V , then we have the following
result.

Proposition 1 The set SP((i, u), (j, v)) of all shortest paths from (i, u) and (j, v) is the disjoint
union of a finite number of sliding sets.

Proof: Let us consider all sliding sequences I1, I2, · · · , Ik with k = d((i, u), (j, v)) and Ii is either
an open interval ]t, t′[ such that t and t′ are two consecutive event times, or Ii is a singleton {t}
such that t is an event time. Since there is a finite number of event times, there is a finite number
of such sequences, and they induce a finite number of sliding sets which are all disjoint.

Any path in SP((i, u), (j, v)) is in one of these sliding sets, and then all the elements of this
sliding set are shortest paths from (i, u) to (j, v). Therefore SP((i, u), (j, v)) is the union of such
sliding sets. □



JGAA, 27(3) 195–217 (2023) 199

For instance, let us consider the following sliding sets:
A = a, [1, 2], b, [3, 5], c, [6, 7], d, [9, 11], e; B = a, [8, 9], c, {11}, b, [12, 14], d, {16}, e;
C = a, [15, 16], b, {19}, c, {19}, d, [23, 24], e; D = a, [23, 24], b, [25, 28], c, [27, 29], d, [31, 32], e;
E = a, [1, 2], b, [12, 14], d, {16}, e; F = a, [1, 2], b, [12, 14], d, {23}, e;
G = a, [1, 2], b, [12, 14], d, [23, 24], e; H = a, [1, 2], b, [12, 14], d, [31, 32], e;
I = a, [8, 9], c, [18, 19], d, {23}, e; J = a, [8, 9], c, [18, 19], d, [23, 24], e.
K = a, [8, 9], c, [18, 19], d, [31, 32], e; and L = a, [8, 9], c, [27, 29], d, [31, 32], e.

Then, consider the link stream of Figure 1. There are simple cases where each set of shortest
paths corresponds to a unique sliding set, like for instance SP((0, a), (14, e)) = A, SP((4, a), (17, e)) =
B, SP((12, a), (26, e)) = C, SP((20, a), (32, e)) = D, or SP((0, a), (18, e)) = E. In most cases, how-
ever, the set of shortest paths are disjoint unions (denoted by ⊔) of several sliding sets, like for
instance SP((0, a), (23, e)) = E ⊔ F ⊔ I, SP((0, a), (26, e)) = E ⊔ G ⊔ J , or SP((0, a), (32, e)) =
E ⊔G ⊔H ⊔ J ⊔K ⊔ L.

Definition 1 (volumes) The volume of a sliding set S = v0, I1, v1, I2, v2, · · · Ik, vk, denoted by
|S|, is defined by its size and dimension as follows:

• If Ii is a singleton for all i, then S contains only one sequence. It has size 1 and dimension
0.

• Otherwise, let I ′1, I
′
2, · · · , I ′l be the subsequence of I1, I2, · · · , Ik composed of all its intervals

that are not singletons, and let b′i and e′i, b′i < e′i, denote the bounds of I ′i, for all i. Then,
size(S) =

∫ e′1
t1=b′1

∫ e′2
t2=max(t1,b′2)

. . .
∫ e′l
tl=max(tl−1,b′l)

1 dtl . . . dt2 dt1 and dim(S) = l.

In both cases, the volume of S, |S|, is defined as the pair (size(S), dim(S)) giving its size and
dimension.

For instance, the sliding sets above have the following volumes: |A| = (4, 4), |B| = (2, 2),
|C| = (1, 2), |D| = (5.5, 4), |E| = (2, 2), |F | = (2, 2), |G| = (2, 3), |H| = (2, 3), |I| = (1, 2),
|J | = (1, 3), |K| = (1, 3), and |L| = (2, 3). The case of D is different from the others, as it involves
two non-trivially overlapping intervals, namely [25, 28] and [27, 29]. Therefore, D may be writ-
ten as D = a, [23, 24], b, [25, 27], c, [27, 29], d, [31, 32], e∪a, [23, 24], b, [27, 28], c, [27, 28], d, [31, 32], e∪
a, [23, 24], b, [27, 28], c, [28, 29], d, [31, 32], e. The volume of D is then the sum of volumes of these
three sliding sets. The first and last ones have volumes (4, 4) and (1, 4), respectively. The middle
one has volume (0.5, 4), since it is the set of all sequences of the form a, t1, b, t2, c, t3, d, t4 with t1
in [23, 24], both t2 and t3 in [27, 28], and t4 in [30, 31], with the constraint that t2 ≤ t3.

More generally, we have the following definitions for volume operations.

Definition 2 (addition, ⊞) Given two disjoint sliding sets S and S′ of volume |S| = (s, d) and
|S′| = (s′, d′), the volume of their union S ⊔ S′ is the sum of their two volumes, which we denote
by |S|⊞ |S′|. In such a sum, volumes in lower dimensions are negligible, and the sizes of volumes
with maximal dimension just add up, so we obtain |S ⊔ S′| = |S| ⊞ |S′| = (s + s′, d) if d = d′,
(s, d) if d > d′, and (s′, d′) if d′ > d. By extension, any disjoint union of a finite number of
sliding sets S1, S2, · · · , Sk has dimension equal to the largest dimension of these sets, and size
equal to the sum of the size of all these sets of maximal dimension; we denote its volume by
⊞k

i=1|Si| = |S1|⊞ |S2|⊞ · · ·⊞ |Sk|.

Definition 3 (product, �) Consider three nodes u, v and w in V , and two sets S and S′ such
that all elements of S are of the form u, t1, v1, t2, · · · , tk, v and the ones of S′ are of the form
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v, t′1, v
′
1, t

′
2, · · · , t′l, w, with tk ≤ t′1. We denote by S·S′ the set of all sequences u, t1, v1, t2, · · · , tk, v, t′1,

v′1, t
′
2, · · · , t′l, w such that the sequence from u to v is in S and the one from v to w is in S′. If S

and S′ are disjoint unions of a finite number of sliding sets with |S| = (s, d) and |S′| = (s′, d′),
then S · S′ also is the disjoint union of a finite number of sliding sets, and its volume is |S · S′| =
|S|� |S′| = (s · s′, d+ d′).

Definition 4 (quotient, � and ·
· ) Consider S and S′ two disjoint unions of sliding sets with

|S| = (s, d) and |S′| = (s′, d′), and such that S′ ⊆ S. Then necessarily d′ ≤ d and the fraction of

elements of S that are also in S′, which we denote by |S′|� |S| or |S′|
|S| , is equal to 0 if d > d′, and

to s′/s if d = d′.

These notations and operations make it easy to describe the set SP((i, u), (j, v)) and
compute its volume, which is the goal of this section.

In the non-trivial cases above, for instance, |SP((0, a), (23, e))| = |E ⊔F ⊔ I| = |E|⊞ |F |⊞ |I| =
(2, 2)⊞ (2, 2)⊞ (1, 2) = (5, 2), |SP((0, a), (26, e))| = |E ⊔G⊔ J | = |E|⊞ |G|⊞ |J | = (2, 2)⊞ (2, 3)⊞
(1, 3) = (3, 3), and |SP((0, a), (32, e))| = |E ⊔G⊔H ⊔ J ⊔K ⊔L| = (2, 2)⊞ (2, 3)⊞ (2, 3)⊞ (1, 3)⊞
(1, 3)⊞ (2, 3) = (8, 3).

We will now prove two lemmas needed to compute the volume of shortest paths from a given
temporal node (i, u) in T ×V to another one (j, v) in T ×V . Lemma 1 shows how to compute the
volume of shortest paths between two consecutive event times. Lemma 2 shows how to decompose
the set of shortest paths from a temporal node to another one into a disjoint union of smaller sets
of shortest paths.

In all the following, we consider two consecutive event times t and t′. For all x and y in ]t, t′[,
the graphs Gx and Gy are identical. We denote by G+

t (or G−
t′ ) this graph, and by σ+

t (u, v) and
d+t (u, v) (or σ−

t′ (u, v) and d−t′ (u, v)) the (finite) number of shortest paths and the distance from u
to v in this graph.

Lemma 1 Given two nodes x and w, the volume of the set of shortest paths from x to w that start
and arrive during ]t, t′[ is equal to(

σ+
t (x,w) ·

(t′ − t)d
+
t (x,w)

d+t (x,w)!
, d+t (x,w)

)
.

Proof: First notice that if v0, t1, v1, t2, v2, . . . , tk, vk is a shortest path from (t, x) to (t′, w) in
L with ti ∈]t, t′[ for all i, then necessarily v0, v1, v2, . . . , vk is a shortest path from x to w in
G+

t . Conversely, if v0, v1, v2, . . . , vk is a shortest path from x to w in G+
t then each sequence

v0, t1, v1, t2, v2, . . . , tk, vk with ti ∈]t, t′[ and ti ≤ ti+1 for all i is a shortest path from (t, x) to
(t′, w) in L.

Therefore, the set of shortest paths from x to w that start and arrive during ]t, t′[ is the disjoint
union of v0, ]t, t′[, v1, ]t, t′[, · · · , ]t, t′[, vk for all shortest path v0, v1, v2, . . . , vk from x to w in G+

t ,
where v0 = x, vk = w, and k = d+t (x,w). It is easy to show by induction that the size of each such
sliding set is

∫ t′

t1=t

∫ t′

t2=t1
. . .
∫ t′

tk=tk−1
1 dtk . . . dt2 dt1 = (t′−t)k

k! , and its dimension is k. The volume
of SP((t, x), (t′, w)) is the sum of the volumes of all these sliding sets, and there are σ+

t (x,w) such
sliding sets, which completes the proof. □
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Lemma 2 Given (i, u) in T ×V and w in V , we define the two sets X = {x ∈ V, d((i, u), (t, x))+
d+t (x,w) = d((i, u), (t′, w))} and Y = {y ∈ Nt′(w), d((i, u), (t

′, y)) + 1 = d((i, u), (t′, w))}. Then,
the volume of SP((i, u), (t′, w)) is the sum of the two following volumes:

⊞x∈X

(
|SP((i, u), (t, x))|�

(
σ+
t (x,w) ·

(t′ − t)d
+
t (x,w)

d+t (x,w)!
, d+t (x,w)

))
and

⊞y∈Y |SP((i, u), (t′, y))|.

Proof: Let us denote by A the set A = ⊔x∈XSP((i, u), (t, x))·SP+((t, x), (t′, w)), where SP+((t, x),
(t′, w)) is the set of shortest paths from (t, x) to (t′, w) that start and arrive during ]t, t′[. Let us
denote by B the set B = ⊔y∈Y SP((i, u), (t′, y)) ·{(y, t′, w)}, which means that B is the set obtained
when one concatenates any sequence in SP((i, u), (t′, y)) with y ∈ Y to the sequence y, t′, w. By
definition of X and Y , elements of A and B are shortest paths from (i, u) to (t′, w), and A and B
are disjoint.

Let us now consider a shortest path P = v0, t1, v1, t2, v2, · · · , tk, vk in SP((i, u), (t′, w)), hence
v0 = u and vk = w. We show that P is in A or B. Indeed, if tk = t′ then vk−1 is in Y , and
v0, t1, v1, t2, v2, · · · , vk−1 is in SP((i, u), (t′, vk−1)), which implies that P is in B. If instead tk < t′,
let l be the largest value such that tl ≤ t. Then, all tj with l < j ≤ k are in ]t, t′[ and vl necessarily
is in X. Therefore, vl, tl+1, · · · , tk, vk necessarily is a shortest path from (t, vl) to (t′, w) that starts
and arrives in ]t, t′[. In addition, v0, t1, v1, · · · , tl, vl is a shortest path from (i, u) to (t, vl), with
vl ∈ X. Therefore, P is in A.

Finally, SP((i, u), (t′, w)) is exactly A ⊔ B, which, together with Lemma 1 and Definitions 2
and 3 on volume operations, proves the claim. □

These lemmas have crucial consequences: it is in general non-trivial to incrementally com-
pute the volumes of sets of shortest paths, even in quite simple cases. Consider for instance
the following two sets of paths in a given link stream, X = a, [1, 2], b, [3, 4], c, [3, 4], d and Y =
a, [1, 2], b, [3, 4], c, [5, 6], d. These two sets clearly do not have the same volume. Yet, they are both
obtained as the set of all paths in Z = a, [1, 2], b, [3, 4], c with an additional jump that may occur
within a time interval of duration 1. Knowing the volume of Z and this feature of the additional
jump is not sufficient to infer the volume of X or Y : it is crucial to know in addition whether the
last time interval of the additional jump is the same as the one of the previous jump. Even worse,

knowing the number of such equal intervals is required to compute the expression (t′−t)d
+
t (x,w)

d+
t (x,w)!

in

Lemma 1 (this number is nothing but d+t (x,w)).

This leads to Algorithm 1, that computes the volume of shortest paths from a given temporal
node (i, u) to another one (j, v). It starts by computing the volume of shortest paths from (i, u)
to (i, w) for any w. Then, in a temporal BFS-like manner, it uses volumes from (i, u) to (t, x)
to compute volumes from (i, u) to (t′, w), for increasing pairs of consecutive event times t and
t′. Indeed, as illustrated in Figure 3, the volumes at t′ can be derived from the ones at t. The
temporal BFS also uses two queues, named Q and X, to compute the distances that are also needed
to compute volumes of shortest paths. It stops when it reaches time j.

Theorem 1 Given two temporal nodes (i, u) and (j, v) in T×V , Algorithm 1 computes the volume
of shortest paths from (i, u) to (j, v).
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Algorithm 1: Volume of shortest paths between two temporal nodes.
1 Function VSP:

Input: a link stream L = (T, V,E), (i, u) ∈ T × V , and (j, v) ∈ T × V
Output: volume of shortest paths from (i, u) to (j, v)

2 Dist← Dictionary initialized to ∞ for any key
3 vol← Dictionary intialized to (0, 0) for any key
4 for each w reachable from u in Gi do
5 Dist[(i, w)]← di(u,w) and vol[(i, w)]← (σi(u,w), 0)

6 for each t, t′ consecutive times in {i, j} ∪ (T ∩ [i, j]) in increasing order do
7 Q← empty queue
8 set all nodes as unmarked
9 X ← list of all (w,Dist[(t, w)]) in increasing order of Dist[(t, w)]

10 while Q or X is not empty do
11 (w, d)← get and remove the first element of Q or X with minimal d
12 if w is unmarked then Dist[(t′, w)]← d and mark w
13 for all unmarked node y in Nt′(w) do add (y, d+ 1) to Q

14 for all marked node w in increasing order of Dist[(t′, w)] do
15 for all marked node x such that Dist[(t, x)] + d+t (x,w) = Dist[(t′, w)] do

16 vol[(t′, w)]← vol[(t′, w)]⊞ vol[(t, x)] �
(
σ+
t (x,w) ·

(t′−t)d
+
t (x,w)

d+
t (x,w)!

, d+t (x,w)

)
17 for all marked node y in Nt′(w) such that Dist[(t′, w)] = Dist[(t′, y)] + 1 do
18 vol[(t′, w)]← vol[(t′, w)]⊞ vol[(t′, y)]

19 return vol[(j, v)]

t t’i,u

t’,w

t,x

t t’i,u

t’,y

t’,w

Figure 3: If t and t′ are two consecutive event times, then a shortest path from (i, u) to (t′, w)
is the concatenation of either (left) a blue path from (i, u) to a given (t, x) and a green path from
this (t, x) to (t′, w) in G+

t ; or (right) a blue path from (i, u) to a specific (t′, y) and then a jump
from y to w at time t′ using (t′, yw) ∈ Et′ .

Proof: Let us consider any time t < j in {i, j} ∪ (T ∩ [i, j]) and let t′ be the next time in this
set. We show below that, if Dist[(t, w)] = d((i, u), (t, w)) and vol[(t, w)] = |SP((i, u), (t, w))| for all
w when one enters the main loop at line 6, then at the end of the loop we have Dist[(t′, w)] =
d((i, u), (t′, w)) and vol[(t′, w)] = |SP((i, u), (t′, w))|. This is sufficient to prove that the algorithm
returns |SP((i, u), (j, v))|, since the loop at line 4 initializes Dist and vol correctly.

Lines 7 to 13 deal with the computation of d((i, u), (t′, w)) from the distances at time t, for
all w. It is similar to a BFS on the graph Gt′ , except that distances at t′ are bounded by the
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ones at t: d((i, u), (t′, w)) ≤ d((i, u), (t, w)). The loop therefore uses two queues: a list X of nodes
in increasing distance at time t, and a queue Q for the exploration of Gt′ . At each round, we
consider a node w with minimal distance in these queues: Line 11 takes the first element of X or
Q, depending on which has the minimal second field d. This is its actual distance d((i, u), (t′, w))
(line 12). Then we add its neighbors to Q, together with the information that their distance from
(i, u) cannot be larger than d((i, u), (t′, w)) + 1 (line 13). The loop ends when both X and Q are
empty, i.e. the distances to all reachable nodes are found.

Then, Lines 14 to 18 deal with the computation of |SP((i, u), (t′, w))| from the volumes at time
t, for all reachable w. They are a straightforward application of Lemma 2. □

4 Latency pairs

Let us consider a link stream L = (T, V,E), and two nodes u and w in V . The previous section
shows how to compute the volume of shortest paths from u to w between two given time instants i
and j. However, betweenness computations rely on volumes of shortest fastest paths from u to w.
These paths are the shortest paths from (s, u) to (a,w) if the latency from (s, u) to (a,w) is equal
to a − s. We then say that (s, a) in T × T is a latency pair from u to w (in L). This section is
devoted to the computation of such latency pairs.

In the case of Figure 1, for instance, (2, 9) is a latency pair from a to e, because the fastest
paths from (2, a) to (9, e) start at 2 and end at 9. Similarly, (9, 16), (16, 23) and (24, 31) are the
other latency pairs from a to e. Instead, (3, 8) is not a latency pair from a to e since there is no
path from (3, a) to (8, e), and (1, 9) is not a latency pair from a to e either because the fastest
paths from (1, a) to (9, e) start at time 2.

For any t in T , the pair (t, t) is a latency pair from u to w exactly if there is an instantaneous
path between (t, u) and (t, w), i.e. there is a path between u and w in Gt. The latency between
(t, u) and (t, w) is then equal to 0, and we call (t, t) an instantaneous latency pair. In the case
of Figure 1, such latency pairs occur from b to d at all times from 12 to 14, at time 19, and at all
times from 27 to 28.

Notice that there may exist an infinite amount of instantaneous latency pairs from a node to
another one, like in this last example, but there is only a finite number of non-instantaneous latency
pairs. Indeed, if (s, a) is a latency pair with a − s ̸= 0, then s and a necessarily are event times,
and as said in Section 2 all link streams considered here have a finite number of event times.

Notice also that if (s, a) is a latency pair from u to w, then there cannot be any latency pair
(s′, a′) from u to w with [s′, a′] ⊊ [s, a]. Indeed, this would imply that the latency from (s, u) to
(a,w) is equal to s′ − a′ < s − a, which contradicts the fact that (s, a) is a latency pair. This
also implies that, if (s, a) is a latency pair with s ̸= a, then necessarily s and a are event times:
otherwise, there is a pair (s′, a′) such that [s′, a′] ⊊ [s, a], with Gs′ = Gs and Ga′ = Ga, which
would imply that (s′, a′) also is a latency pair, which contradicts our previous remark.

As a consequence, latency pairs are componentwise ordered: if (s, a) and (s′, a′) are two distinct
latency pairs, then [s′, a′] ̸⊆ [s, a] and [s, a] ̸⊆ [s′, a′]. Therefore, either s < s′ and a < a′, or
s′ < s and a′ < a. However, two latency pairs may correspond to overlapping time intervals:
s < s′ ≤ a < a′ is possible.

In this section, we compute the latency list from u to w, defined as the (finite) componentwise
ordered list of all latency pairs (s, a) such that s and a are event times. For instance, in the case
of Figure 1, the latency list from a to e is (2, 9), (9, 16), (16, 23), (24, 31), and the latency list from
b to d is (5, 6), (12, 12), (14, 14), (19, 19), (27, 27), (28, 28).
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Our algorithm considers all event times in increasing order. It maintains the latency lists from
a given node to all others before the current event time. It then updates these latency lists for
the current time by computing the connected components of the graph at this time. For each of
these components, it considers the latest starting time from which a node in this component can
be reached, which is given by the previously computed latency lists. This time is the beginning
of latency pairs for its nodes, that ends at current time, and so the algorithms updates the lists
accordingly.

Algorithm 2: Computation of all latency lists from a given node.
1 Function Latency-lists:

Input: a link stream L = (T, V,E) and u ∈ V
Output: for each w ∈ V , the latency list from u to w

2 create LL← empty dictionary and LL[w]← empty list for all w
3 for t in T do
4 append (t, t) to LL[u]
5 for each connected component C of Gt do
6 s← None and X ← ∅
7 for w ∈ C with non-empty LL[w] do
8 (s′, a′)← last element of LL[w]
9 if s = None or s′ > s then s← s′ and X ← {w}

10 else if s′ = s then add w to X

11 if X is non-empty then
12 for w ∈ C \X do append (s, t) to LL[w]

13 return LL

Theorem 2 Given a link stream L = (T, V,E) and a node u ∈ V , Algorithm 2 computes the
ordered latency lists from u to any node w ∈ V .

Proof: We claim that, at the end of each iteration of the main loop, for all w in V , LL[w] is the
list of all latency pairs (s, a) from u to w such that s and a are event times with a ≤ t.

Assume this is true for all iterations before a given event time t. When it reaches this event
time, the loop starts by adding (t, t) to LL[u], which makes the claim true for w = u. Consider any
connected component C of Gt; the nodes w ∈ C, with non-empty LL[w] are the nodes reachable
from u with an arrival time before t or at t. Then, the value of s′ computed by the loop at Line 7
is the latest starting time such that one of these nodes is reachable from (s′, u) before t or at t,
and X is the set of these reachable nodes.

Therefore, if X is non-empty, there exists a path from (s′, u) to (t, w) for any w ∈ C\X: for
any x ∈ X, the path from (s′, u) to (t, x) and then from (t, x) to (t, w) (which exists since x and
w are in the same connected component C of Gt) is such a path. As a consequence, (s′, t) is a
latency pair for any w ∈ C\X. Notice that (s′, t) is not a latency pair for any node x ∈ X, x ̸= u,
since they all have a latency pair (s′, tx) with tx < t.

Finally, if the claim is true for all event times lower than t, it is true for t too. It is true for
the first iteration, i.e. when t is the first event time: it sets LL[w] to {(t, t)} for all node w in the
same connected component of Gt as u, which is the correct value. Therefore, for all w in V , the
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returned value of LL[w] is the list of latency pairs (s, a) from u to w such that s and a are event
times, and it is ordered by construction.

□

5 Contribution of a node pair

In all this section, we consider a link stream L = (T, V,E) and two nodes u and w in V . In
addition, we consider a temporal node (t, v) in T × V .

For any i and j in T , we denote by Cij
tv(u,w) the fraction σ((i,u),(j,w),(t,v))

σ((i,u),(j,w)) of shortest fastest
paths from (i, u) to (j, w) that involve (t, v), and we call it the contribution of (i, j). If
there is no path from (i, u) to (j, w), we consider that Cij

tv(u,w) = 0. By extension, we call∫
i,j∈T

Cij
tv(u,w) di dj the contribution of (u,w) to the betweenness of (t, v), and we denote it by

Ctv(u,w). The goal of this section is to compute Ctv(u,w).
First notice that the contribution of (i, j) is derived from volumes of paths as follows. Given

x, y and z in T × V , we denote by SFP(x, y) the set of all shortest fastest paths from x to y,
and by SFP(x, y, z) the set of these paths that involve z. Then, we define σ(x, y) and σ(x, y, z)
as the volumes of SFP(x, y) and SFP(x, y, z), respectively. It follows that Cij

tv(u,w) is equal to
σ((i, u), (j, w), (t, v)) � σ((i, u), (j, w)) if there is a path from (i, u) to (j, w). Otherwise, Cij

tv(u,w)
is 0.

This gives a rigorous ground to the definition of Cij
tv(u,w), which, as discussed at the end of

Section 2, was loosely defined as the fraction σ((i,u),(j,w),(t,v))
σ((i,u),(j,w)) of shortest fastest paths from (i, u) to

(j, w) that involve (t, v); it is indeed equal to the ratio between the two volumes σ((i, u), (j, w), (t, v))
and σ((i, u), (j, w)) now defined, with volume ratio operation from Definition 4: Cij

tv(u,w) =
σ((i,u),(j,w),(t,v))

σ((i,u),(j,w))
.

Consider for instance the case of Figure 1 with u = a and w = e, and let us consider
i = 0 and j = 18. Then, the shortest fastest paths from (i, u) = (0, a) to (j, w) = (18, e)
are the elements of the set SFP((0, a), (18, e)) = X ⊔ Y where X and Y are the sliding sets
a, {2}, b, [3, 5], c, [6, 7], d, {9}, e and a, {9}, c, {11}, b, [12, 14], d, {16}, e, respectively. If (t, v) = (7.5, c)
or (t, v) = (10, b), for instance, then none of these paths involve (t, v) and so we obtain a 0
contribution. If (t, v) = (5.5, c) or (t, v) = (8, d), for instance, then all paths in X involve
(t, v) and no path in Y does, leading to Cij

tv(u,w) = σ((0, a), (18, e), (t, v)) � σ((0, a), (18, e)) =
|X|� (|X|⊞ |Y |) = (2, 2)� ((2, 2)⊞ (2, 1)) = (2, 2)� (2, 2) = 1. If (t, v) = (10, c) or (t, v) = (14, d),
then Cij

tv(u,w) = |Y |� (|X|⊞ |Y |) = 0.

Before presenting the algorithm computing these path volumes and associated contributions,
we characterize more precisely which pairs (i, j) have non-zero contribution.

Lemma 3 There is at most one latency pair from u to w with non-zero contribution.

Proof: Consider two distinct latency pairs (s, a) and (s′, a′); we can assume s < s′ and a < a′,
since, as explained in previous section, [s′, a′] ⊆ [s, a] is impossible. Suppose both latency pairs
have non-zero contribution: there are shortest fastest paths from (s, u) to (a,w) that involve (t, v)
and from (s′, u) to (a′, w) that also involve (t, v). Therefore, there is a path from (s′, u) to (t, v)
and a path from (t, v) to (a,w), and so a path from (s′, u) to (a,w). It has duration a− s′ which
is strictly lower than both a − s and a′ − s′, thus contradicting both that (s, a) and (s′, a′) are
latency pairs. □
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If all latency pairs from u to w have contribution 0, then the contribution of (u,w) itself is 0.
Otherwise, let us denote by (s, a) the unique latency pair with non-zero contribution.

We now introduce two specific times, S and A, that we will use to find all time instants
with non-zero contribution. We define ]S,A[ as the largest interval containing ]s, a[ such that:
for all other latency pair (s′, a′) in this interval, either a′ − s′ > a − s, or a′ − s′ = a − s and
d((s′, u), (a′, w)) ≥ d((s, u), (a,w)); and the number of instantaneous paths from (S, u) to (A,w)
of length d((s, u), (a,w)) is finite. We illustrate this definition in Figure 4.

timeAS

t,v

w

u

s a

< a−s> a−s< a−s> a−s= a−s= a−s= a−s= a−s< a−s

i j

<d

=d >d
=d

Figure 4: An abstract example of link stream L = (T, V,E) in which we consider a specific (t, v)
in T × V (in red), two nodes u and w in V (in black, horizontal lines), as well as the latency pair
(s, a) containing t such that shortest (necessarily fastest) paths from (s, u) to (a,w) have length d
and some of them involve (t, v). We display all latency pairs from u to w with two green vertical
lines topped by a dotted horizontal line indicating the corresponding latencies (= a − s, < a − s
or > a − s). In addition, we also indicate the length (= d, < d or > d) of corresponding shortest
paths within each latency pair, when this is useful (in grey). We indicate in blue the two specific
times S and A defined above, as well as the time periods for i and j such that the contribution of
(i, j) may be non-zero (Lemma 4).

We then have the following result.

Lemma 4 All pairs (i, j) in T × T that have non-zero contribution are in [S, s]× [a,A].

Proof: If a given pair (i, j) has non-zero contribution, then there is a latency pair (s′, a′) with
s′ ≥ i and a′ ≤ j that has non-zero contribution. Remind that (s, a) is itself such a latency pair.
From Lemma 3, we then have (s′, a′) = (s, a), and so i ≤ s and j ≥ a.

If i < S and j ≥ a, or if i ≤ s and j > A, then by definition of S and A we are in one of the
following situations.

There exists a latency pair (s′, a′) in [i, j] such that: either a′ − s′ < a − s, or a′ − s′ = a − s
and d((s′, u), (a′, w)) < d((s, u), (a,w)). Then, shortest fastest paths from (s, u) to (a,w) are
not shortest fastest paths from (i, u) to (j, w). All shortest fastest paths from (i, u) to (j, w) are
from (s′, u) to (a′, w) where (s′, a′) is a latency pair as described above. Suppose such a shortest
fastest path involves (t, v). Then there are paths from (s′, u) to (t, v) and from (t, v) to (a′, w).
As a consequence, s′ ̸∈ [s, t], otherwise (s, a) would not be a latency pair. Likewise, a′ ̸∈ [t, a].
Therefore, s′ < s and a′ > a, but this contradicts the fact that a′ − s′ ≤ s − a. This means that
shortest fastest paths from (s′, u) to (a′, w) cannot involve (t, v), and so the contribution of (i, j)
is 0.
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Or there is an infinite number of instantaneous paths from (i, u) to (j, w) with length d((s, u),
(a,w)). Only the σt(u,w) ones starting and arriving at time t involve (t, v). There is a finite
number of such paths, as they are paths in the graph Gt. Therefore, the contribution of (i, j) is
zero.

In conclusion, i ≤ s, j ≥ a, i cannot be smaller than S, and j cannot be larger than A, which
proves the claim. □

This lemma says that all pairs (i, j) with non-zero contribution are in [S, s] × [a,A]. Notice
however that some pairs (i, j) in [S, s] × [a,A] may have a contribution equal to 0. This happens
whenever the volume of shortest fastest paths from (s, u) to (a,w) has a lower dimension than the
one from (i, u) to (j, w).

We now define specific latency pairs that play a special role, as any shortest fastest path
from (i, u) to (j, w) must start and arrive within one of these pairs. To do this, we introduce an
ordered list LP of latency pairs centered on (s, a), which means that latency pairs preceding
(s, a) have negative indexes in the list and the others have positive indexes. It is the list LP =
(s−l, a−l), (s−l+1, a−l+1)), . . . , (s0 = s, a0 = a), . . . , (sr, ar) such that, for all k, [sk, ak] ⊆ [S,A],
ak − sk = a− s, and d((sk, u), (ak, w)) = d((s, u), (a,w)). We also define s−l−1 = S and ar+1 = A.
Notice that s−l−1 = sl or ar = ar+1 are not forbidden; this happens for instance when s−l = α or
ar = ω. We show now that the latency pairs in LP give precisely the shortest fastest paths from
u to w.

Lemma 5 For any pair (i, j) in ]S, s] × [a,A[, the set SFP((i, u), (j, w)) is the disjoint union of
all sets SFP((sk, u), (ak, w)) such that (sk, ak) in LP and [sk, ak] ⊆ [i, j].

Proof: We first show that for any k such that [sk, ak] ⊆ [i, j], SFP((sk, u), (ak, w)) ⊆ SFP((i, u),
(j, w)). Let us consider a path in SFP((sk, u), (ak, w)). Since [sk, ak] ⊆ [i, j], it is a path from (i, u)
to (j, w). It has duration sk − ak = s − a because (sk, ak) is in LP. Moreover, since i > S and
j < A, there exists no latency pair (s′, a′) such that [s′, a′] ⊆ [i, j] and a′ − s′ < a− s. Therefore,
it is a fastest path from (i, u) to (j, w). Similarly, because (sk, ak) is in LP, this path has length
d((s, u), (a,w)) and therefore it is a shortest fastest path from (i, u) to (j, w).

Now consider any shortest fastest path from (i, u) to (j, w), and let us denote by s′ and a′

its starting and arrival times. Since it is a fastest path, (s′, a′) is a latency pair, and obviously
[s′, a′] ⊆ [i, j]. In addition, s′−a′ = s−a: if it was larger then the paths from (s′, u) to (a′, w) would
not be fastest paths from (i, u) to (j, w); and if it was smaller, then the paths from (s, u) to (a,w)
would not be fastest paths from (i, u) to (j, w). Similarly, d((s′, u), (a′, w)) = d((s, u), (a,w)): if it
was larger then the paths from (s′, u) to (a′, w) would not be shortest paths from (i, u) to (j, w);
and if it was smaller, then the paths from (s, u) to (a,w) would not be shortest paths from (i, u)
to (j, w). Therefore, (s′, a′) is in LP, leading to the fact that SFP((i, u), (j, w)) is included in the
union of all sets SFP((sk, u), (ak, w)) such that (sk, ak) in LP and [sk, ak] ⊆ [i, j].

Finally, notice that the sets SFP((sk, u), (ak, w)) are disjoint for different values of k, since all
the paths they contain start at sk and arrive at ak. We therefore obtain the claim. □

Thanks to these results, we obtain an expression giving the contribution of a node pair as a
discrete sum.

Lemma 6 The contribution of (u,w) to the betweenness of (t, v), i.e. the fraction of shortest
fastest paths from u to w that involve (t, v), namely Ctv(u,w) =

∫
i,j∈T

σ((i,u),(j,w),(t,v))
σ((i,u),(j,w))

di dj, can
be written as a discrete sum:

Ctv(u,w) =

−1∑
k=−l−1

r∑
k′=0

(sk+1 − sk)(ak′+1 − ak′)
σ((s, u), (a,w), (t, v))

⊞k′
h=k+1σ((sh, u), (ah, w))

. (1)
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Algorithm 3: Compute the list of starting times for latency pairs in LP, as well as
associated volumes of sets of shortest fastest paths.
1 Function PrevList:

Input: a link stream L = (T, V,E), u ∈ V , w ∈ V , (s, a) a latency pair from u to w,
and the ordered latency list LL from u to w

Output: the list ((s−1, f−1), (s−2, f−2), . . . , (s−l−1 = S, f−l−1) with sk defined by LP
and with fk = σ((sk+1, u), (a−1, w))

2 init Result to empty list and vol to (0, 0)
3 if s = a and d−s (u,w) = d((s, u), (a,w)) then
4 return Result

5 foreach (s′, a′) with s′ < s in LL backwards do
6 if a′ − s′ < a− s then
7 append (s′, vol) to Result and return Result

8 if a′ − s′ = a− s then
9 if d((s′, u), (a′, w)) < d((s, u), (a,w)) then

10 append (s′, vol) to Result and return Result

11 if d((s′, u), (a′, w)) = d((s, u), (a,w)) then
12 append (s′, vol) to Result
13 if s′ = a′ and d−s′(u,w) = d((s, u), (a,w)) then
14 return Result

15 vol← vol ⊞ VSP(L, (s′, u), (a′, w))

16 append (α, vol) to Result and return Result

Proof: According to Lemma 4, the contribution of time instants (i, j) is equal to zero whenever
(i, j) ̸∈ [S, s] × [A, a]. For (i, j) ∈ [S, s] × [A, a], all shortest fastest paths from (i, u) to (j, w)
involving (t, v) start at time s and arrive at time a and the contribution of (i, j) is therefore equal to
σ((s, u), (a,w), (t, v)) � σ((i, u), (j, w)). Therefore, Ctv(u,w) =

∫
[S,s]×[a,A]

σ((s,u),(a,w),(t,v))
σ((i,u),(j,w))

didj =∫
]S,s]×[a,A[

σ((s,u),(a,w),(t,v))
σ((i,u),(j,w))

di dj.
According to Lemma 5, for any k < 0, any k′ ≥ 0, any i ∈ ]sk, sk+1], and any j ∈ [ak′ , ak′+1[,

the value of σ((i, u), (j, w)) is constant and it is equal to ⊞k′

h=k+1σ((sh, u), (ah, w)).
Therefore,

∫ sk+1

sk

∫ ak′+1

ak′

σ((i, u), (j, w), (t, v))

σ((i, u), (j, w))
di dj =

∫ sk+1

sk

∫ ak′+1

ak′

σ((s, u), (a,w), (t, v))

σ((i, u), (j, w))
di dj

=

∫ sk+1

sk

∫ ak′+1

ak′

σ((s, u), (a,w), (t, v))

⊞k′
h=k+1σ((sh, u), (ah, w))

didj

= (sk+1 − sk)(ak′+1 − ak′)
σ((s, u), (a,w), (t, v))

⊞k′
h=k+1σ((sh, u), (ah, w))

and we obtain the claim. □



JGAA, 27(3) 195–217 (2023) 209

In order to compute the sum of Lemma 6, we need to iterate over all sk, −l − 1 ≤ k ≤ −1
and all ak′ , 0 ≤ k′ ≤ r. For this purpose, we first give an algorithm computing the values of sk.
The algorithm also associates to each sk a volume of shortest fastest paths that will be useful for
computing the denominator of the fraction in the sum.

Lemma 7 Algorithm 3 computes the list (s−1, f−1), (s−2, f−2), . . . , (s−l−1 = S, f−l−1) with sk
defined by LP and with fk = σ((sk+1, u), (a−1, w)).

Proof: The algorithm builds and returns the (initially empty) list Result. The algorithm ter-
minates when S is found. Indeed, a return is triggered in three different cases. If the empty
list is returned at Line 4, this means that there exists an ϵ > 0 such that for all t ∈ [s − ϵ, s],
there is an instantaneous path of length d((s, u), (a,w)) from (t, u) to (t, w), which implies that
S = s. If the return happens after the last value is added to Result during the for loop, then either
s′ < s, and s′ is the largest value such that: a′ − s′ < a − s (Line 7); or a′ − s′ = a − s and
d((s′, u), (a′, w)) < d((s, u), (a,w)) (Line 10); or there exists ϵ > 0 such that for any t ∈ [s′ − ϵ, s′]
there is an instantaneous path of length d((s, u), (a,w)) from (t, u) to (t, w) (Line 14). This corre-
sponds exactly to the definition of S. Finally if the function returns at Line 16, then this means
that S = α because none of the above conditions is true for any s′ > α.

The elements (s′, vol) added to Result correspond to all latency pairs (s′, a′) such that s′ ∈ [S, s[,
a′ − s′ = a− s, and d((s′, u), (a′, w)) = d((s, u), (a,w)). These are therefore the (si, ai) in LP with
i < 0.

Let us now show that vol contains the desired value when (s′, vol) is added to Result.
If the empty list is returned at Line 4, then this is true. Otherwise, vol is initialized to (0, 0) and

this value is not changed before the first time the pair (s′, vol) is appended to Result. Therefore the
first pair appended to Result is (s−1, (0, 0)), which is correct since f−1 = σ((s0, u), (a−1, w)) = (0, 0)
(since there are no paths from (s0, u) to (a−1, w)).

Assume now that the correct value (si, fi) has been added to Result at one loop iteration, and
that si > S (otherwise, as shown above, a return is triggered just after the append and the function
returns). We then have s′ = si and the value σ((s′, u), (a′, w)) is then added to vol. vol is therefore
now equal to σ((s′, u), (a′, w)) ⊞ fi = σ((si, u), (ai, w)) ⊞ σ((si+1, u), (a−1, w)) = fi−1. Moreover,
the loop will skip latency pairs not in LP and the next value of s′ that will be considered is si−1.
Therefore the next value that is added to Result is (si−1, fi−1) and finally all the correct values are
added to Result, which completes the proof. □

We also introduce the function NextList by replacing in PrevList of Algorithm 3: d−s by d+a in
Line 3; s by a in Line 4; s′ < s in LL backwards by a′ > a in LL forwards in Line 5; all (s′, vol)
appended to Result by (a′, vol); d−s′ by d+a′ in Line 13; and (α, vol) by (ω, vol) in the last line.

The obtained function computes the list (a1, g1), (a2, g2), . . . , (ar+1 = A, gr+1) with ak defined
by LP and with gk = σ((s1, u), (ak−1, w)).

We finally reach the objective of this section.

Theorem 3 Given a link stream L = (T, V,E), a temporal node (t, v) in T × V , and two nodes
u and w in V , Algorithm 4 computes the contribution of u and w to the betweenness of (t, v), i.e.

Ctv(u,w) =
∫
i∈T,j∈T

σ((i, u), (j, w), (t, v))

σ((i, u), (j, w))
di dj.

Proof: If there exists a latency pair (s, a) with non-zero contribution, then, for any i ≤ s and any
j ≥ a, we have: σ((i, u), (j, w), (t, v)) = σ((s, u), (a,w), (t, v)). The for loop of Line 3 computes
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Algorithm 4: Contribution of two given nodes to the betweenness of a given temporal
node
1 Function Contribution:

Input: a link stream L = (T, V,E), u ∈ V , w ∈ V , (t, v) ∈ T × V , and the latency list
LL from u to w

Output: the contribution
∫
T×T

σ((i, u), (j, w), (t, v)) � σ((i, u), (j, w)) di dj

2 vol_tv ← (0, 0)
3 for (x, y) in LL do
4 if t ∈ [x, y] and (x, u) −→ (t, v) and (t, v) −→ (y, w) then
5 if d((x, u), (y, w)) = d((x, u), (t, v)) + d((t, v), (y, w)) then
6 vol_tv ← V SP (L, (x, u), (t, v)) � V SP (L, (t, v), (y, w))

7 set (s, a) to (x, y) and exit the loop

8 if vol_tv = (0, 0) then
9 return 0

10 middle← VSP(L, (s, u), (a,w))
11 Prev← PrevList(L, u,w, s, a,LL)
12 Next← NextList(L, u,w, s, a,LL)
13 contrib← 0
14 s′ ← s
15 for (s_left, left) in Prev do
16 a′ ← a
17 for (a_right, right) in Next do
18 contrib← contrib+(s′−s_left)(a_right−a′) ·vol_tv� (left⊞right⊞middle)
19 a′ ← a_right

20 s′ ← s_left

21 return contrib

σ((s, u), (a,w), (t, w)) and stores it in vol_tv. Indeed, since (t, v) is involved in a shortest fastest
path from (s, u) to (a,w), necessarily (s, a) is such that t ∈ [s, a], (s, u) −→ (t, v), (t, v) −→
(a,w), and d((s, u), (a,w)) = d((s, u), (t, v)) + d((t, v), (a,w)). Since there is at most one such pair
satisfying the first three conditions, the algorithm breaks out of the for loop if one is found. If
no such latency pair is found, vol_tv is equal to (0, 0) at the end of the loop and the Algorithm
returns 0. Notice that, in the special case where t is not an event time and (t, u) −→ (t, w), then
the arguments above do not apply, but the algorithm still returns the correct value: (t, t) is a
latency pair that does not belong to the latency list, and the contribution of (u,w) is 0, which is
the returned value.

Remember that LP = (s−l, a−l), (s−l+1, a−l+1)), . . . , (s0 = s, a0 = a), . . . , (sr, ar) and that
s−l−1 = S and ar+1 = A. PrevList (Algorithm 3) then computes, according to Lemma 7, the
list Prev = ((s−1, f−1), (s−2, f−2), . . . , (s−l−1 = S, f−l−1) with sk defined by LP and with fk =
σ((sk+1, u), (a−1, w)); its dual algorithm NextList computes the list Next = (a1, g1), (a2, g2), . . . ,
(ar+1 = A, gr+1) with ak defined by LP and with gk = σ((s1, u), (ak−1, w)).
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According to Lemma 6,

Ctv(u,w) =

−1∑
k=−l−1

r∑
k′=0

(sk+1 − sk) · (ak′+1 − ak′) · σ((s, u), (a,w), (t, v))

⊞k′
h=k+1σ((sh, u), (ah, w))

.

Lines 15 to 20 of Algorithm 4 compute this sum. First notice that s′ is initialized to s = s0 and
s_left loops over values in Prev, starting with s−1. At the end of each iteration s′ is set to s_left
and therefore s′ and s_left loop over all consecutive values sk+1, sk for sk in Prev. The value of
left is fk = σ((sk+1, u), (a−1, w)) = ⊞−1

h=k+1σ((sh, u), (ah, w)), as explained in the characterization
of Prev above.

Similarly, in the inner for loop a′ and a_right loop over all values ak′ , ak′+1 for ak′+1 in Next,
and right = gk′+1 = σ((s1, u), (ak′ , w)) = ⊞k′

h=1σ((sh, u), (ah, w)).
The value of middle has been set to σ((s, u), (a,w)) (Line 10). Therefore left⊞right⊞middle =

⊞k′

h=k+1σ((sh, u), (ah, w)). Finally, one iteration of the inner loop adds the value (sk+1−sk)(ak′+1−
ak′)σ((s, u), (a,w))�⊞k′

h=k+1σ((sh, u), (ah, w)), which is exactly one term of the sum in Equation 1,
and the loop itself ensures we obtain the whole sum. □

6 Betweenness of a temporal node

We now have all needed building blocks for computing the betweenness of any given temporal
node: we just have to sum the contribution of each node pair, see Algorithm 5.

Algorithm 5: Betweenness of a temporal node
1 Function Betweenness:

Input: a link stream L = (T, V,E) and (t, v) ∈ T × V
Output: the betweenness of (t, v)

2 B ← 0
3 for u ∈ V do
4 LL← Latency-lists(u)
5 for w ∈ V do
6 B ← B + Contribution(L, u,w, (t, v),LL[w])

7 return B

The key variables describing the size of our algorithm inputs, for a given link stream L =
(T, V,E), are the number of nodes n = |V | and the number of link segments m, i.e. the number
of maximal intervals in E. Notice that the number of event times |T | is at most 2 ·m, and so it
is in O(m). Likewise, the number of links mt = |{uv, (t, uv) ∈ E}| at time t, for any t, as well
as the number of links m = |{uv,∃t, (t, uv) ∈ E}| in the induced graph, also are in O(m). Then,
the complexity of all algorithms presented in this paper is clearly polynomial in n and m, which
makes Algorithm 5 polynomial itself.

We display in Figure 5 the results obtained in the case of Figure 1, where we computed the
betweenness of more than 5000 temporal nodes in a few seconds. We provide the implementation
at [19].
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Figure 5: Results of betweenness computations on the example of Figure 1. We computed the
betweenness of (t, v) for all v and t equal to α + i · ω−α

1000 , for i = 0..1000. The obtained value is
displayed at (t, v) as a black rectangle of width ω−α

1000 and height propotional to the betweenness of
(t, v). Dotted lines represent betweenness values equal to 0.

7 Related work

Betweenness computations are first related to path computations. Temporal paths already
received much attention, in particular optimal path computations according to several criteria
(like length, duration, and/or arrival time), see for instance [5, 39, 40]. However, most of these
works are limited to discrete time and instantaneous links; only few consider continuous time and
links with duration [37, 41, 29]. Then, the focus is on finding optimal paths or computing distances
and latencies [29], not counting them as we do here. The authors of [1] notice that the number of
foremost paths (temporal paths with minimal arrival time) may be exponential. The problem that
we consider here is quite different because we handle continuous time and links with duration. This
leads to the concept of finite volumes of uncountable path sets, that never appeared in previous
literature, up to our knowledge.

The graph betweenness itself also has been studied in temporal settings. A first line of study
focuses on updating betweenness values upon link arrival or departure, see for instance [3, 13].
This is quite different from our work: the considered paths are classical (static) graph paths, and
the considered betweenness is the classical one, at each time instant.

Several works consider temporal betweenness extensions that rely on various kinds of
optimal (fastest, shortests, foremost, etc) paths. Among those, Rymar et al. [28] is the closest to
our work. The authors propose an algorithm similar to the one by Brandes [4] for the corresponding
centralities.

This work, and the works discussed below, assume discrete time, which implies finite sets of
shortest paths. Instead, we consider continuous time, leading to uncountable sets of paths, with
finite volume which requires to introduce the notion of volume to quantify them. In addition, these
works keep a partly node-centric point of view by considering paths between nodes; we push the
integration of temporal aspects further by considering paths between temporal nodes. This makes
an important difference, since the node-centric view misses locally-optimal paths: they only count
paths with a given duration or length between pairs of nodes (for any starting and arrival times),
whereas our approach combines a variety of locally shortest fastest paths, with different durations
and lengths. because in our case all paths that are shortest fastest paths for some source and
destination temporal nodes are taken into account in the computation, with weights depending
on the amount of source and destination nodes they correspond to. The computation of these
weights is the focus of Section 5. This raises different algorithmic challenges, like the computation
of latency lists and the selection of appropriate contributing latency pairs.

Most temporal betweenness extensions have a node-centric view: they define a value for each
node, not for each temporal node, see for instance [15, 32, 24, 38, 17]. Others define a value for each
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temporal node, like in our case. For instance, [31] proposes coverage centrality of (t, v), defined as
the fraction of pairs of (non-temporal) nodes for which there exists a fastest path involving (t, v).
Buß et al. [6] deals with betweenness centrality of temporal nodes, in the case of instantaneous
links and with various types of optimal temporal paths. The authors of [32, 14] also define a
betweenness value for each temporal node, based on foremost paths or other optimal paths. The
algorithm in [14] starts by identifying time instants for which foremost path trees are stable, which
is related to our latency pairs. In [33], the authors combine the length and duration of paths using
a tunable parameter, and focus on instantaneous links.

Another line of works uses algebraic approaches to compute path-related features like dis-
tances in graphs [12]. In particular, the authors of [34] design a semiring structure in which they
express the Brandes algorithm for betweenness [4]. Such approaches are also used in the case of
temporal graphs [18, 26, 2, 9, 38]. They generally use a matrix that gives the number and length
of shortest paths between each pair of nodes. Then, they define algebraic operators that compute
the number of paths corresponding to unions and concatenations of sets of paths. Indeed, shortest
paths from a node a to another one c are in general concatenations of shortest paths from a to b
and shortest paths from b to c, for various intermediate nodes b. Then, it is in most cases easy to
infer the number of shortest paths from a to c from the ones from a to b and from b to c, with b in
a well chosen set of nodes. As seen in Section 3, this does not hold for shortest fastest paths in link
streams, though: computing the volume corresponding to the concatenation of two sets of such
paths requires more information than just the volume of these two sets. In addition, a prefix of a
shortest fastest path is not necessarily a shortest fastest path itself, a condition usually required
by algebraic approaches (and true for shortest paths in graphs). Extending existing algebraic ap-
proaches to betweenness in link streams, although appealing, therefore seems non-trivial. It would
at least require to store additional information in order to handle the more complex concatenation
operations. For instance, one may store the number of identical time intervals in the end of the
sliding sets under concern. Even then, it is unclear what matrix operations would lead to the
wanted results, if they exist, and that the corresponding structure would be a semiring. Moreover
this would not necessarily be simpler than Algorithm 1. Finally, deepening these questions is a
non-trivial perspective that seems to raise significant challenges; we leave them for future work.

In another approach, [1] and [25] obtain a betweenness value for each node for each time slice
by considering optimal paths within time slices. Again, they only consider discrete time, and only
a limited number of source and target temporal nodes.

Finally, the generalized betweenness that we consider in this paper, by dealing with continuous
time, links with or without duration, as well as paths between all pairs of temporal nodes, raises
original algorithmic questions that are not present in previous literature.

8 Conclusion
We presented the first algorithms to compute betweenness centrality of temporal nodes in link
streams. To obtain these algorithms, we identified and addressed several original challenges, like
the definition and computation of volumes of infinite sets of paths, the computation of all latency
pairs from any node to all others, or the transformation of continuous-time integrals into discrete
sums over finite numbers of time intervals. Each of these building blocks has its own interest, in
particular the computation of shortest path volumes from a given temporal node. The complexity
of obtained algorithms is polynomial in time and space, and we provide an implementation in
python [19].

Our algorithm leaves room for complexity improvement. In particular, it seems promising
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to explore extensions to link streams of approaches like Brandes’ for betweenness on graphs [4].
Another important direction is to design algorithms to compute the betweeness of all temporal
nodes rather than just one: iterating our algorithm over many temporal nodes leads to much
redundancy. However, keep in mind that there is an infinite number of temporal nodes; one may
then try to infer the betweenness of any of them from the betweenness of a finite number of them,
for instance each node at each event time. This seems non-trivial, though, and an open question.

Going further, one may try to design approximate algorithms. Indeed, the best known time
complexity of betweenness computations in graphs is O(nm) [4] and it cannot be lower in link
streams, since graphs are special cases [21]. This is prohibitive in many practical cases, leading to
much work on approximate computations, that typically compute shortest paths from some nodes
only [27, 35]. Such approaches are very relevant in link streams too, where the contribution of
only a few node pairs may give reasonably accurate approximates, at a much lower cost than exact
computations. This remains to explore, though.

An even more challenging direction is to embrace the streaming nature of link streams, and
design on-line and/or streaming algorithms for betweenness. Such algorithms do not store the data
in memory; they compute results on-the-fly and output them as soon as they are available. They
would be of high theoretical and practical interest, but they raise many challenges.

Another interesting family of perspectives consists in extending or restricting the considered
input. In particular, one may consider stream graphs instead of link streams: in stream graphs,
nodes are not always present, leading to more subtle path, distance, and latency concepts [21].
We considered here streams with link (and node) presence times equal to unions of disjoint closed
intervals (including singletons); another extension would be to consider more general cases, like for
instance unions of disjoint closed or open intervals. Also, weighted and/or directed stream graphs
and link streams [20] lead to more complex concepts of shortest fastest paths, and our definitions
of volumes may be extended to these cases. Conversely, one may consider more specific situations,
like discrete time streams, or link stream with instantaneous links only. Such cases often appear
in practice, and it may be possible to design more efficient algorithms for them.

Extending our algorithms to variants of the betweenness concept itself also is an interesting
perspective. One may for instance consider betweenness of links rather nodes, or consider paths of
other kinds than shortest fastest ones, e.g. foremost ones [21]

Finally, this paper opens the perspective of practical uses of betweenness in link streams,
since until now only the definition was available. It is now possible to explore how betweenness
is distributed in (small scale) real-world cases, and gain insight from this. It may also be used
to extend important graph algorithms to link streams, like the computation of communities by
iteratively removing temporal nodes of highest betweenness, in a way similar to [11] that iteratively
removes links of highest betweenness.
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