
Journal of Graph Algorithms and Applications
http://jgaa.info/ vol. 27, no. 3, pp. 173–194 (2023)
DOI: 10.7155/jgaa.00619

Towards Classifying the Polynomial-Time Solvability of
Temporal Betweenness Centrality

Maciej Rymar 1 Hendrik Molter 1,2 André Nichterlein 1 Rolf Niedermeier 1

1TU Berlin, Algorithmics and Computational Complexity, Berlin, Germany
2Department of Computer Science, Ben-Gurion University of the Negev, Beer-Sheva, Israel

Submitted: August 2021 Reviewed: July 2022 Revised: October 2022

Accepted: February 2023 Final: March 2023 Published: May 2023

Article type: Regular paper Communicated by: U. Brandes

Abstract. In static graphs, the betweenness centrality of a graph vertex measures
how many times this vertex is part of a shortest path between any two graph vertices.
Betweenness centrality is efficiently computable and it is a fundamental tool in network
science. Continuing and extending previous work, we study the efficient computability
of betweenness centrality in temporal graphs (graphs with fixed vertex set but time-
varying edge sets). Unlike in the static case, there are numerous natural notions of being
a “shortest” temporal path (walk). Depending on which notion is used, it was already
observed that the problem is #P-hard in some cases while polynomial-time solvable
in others. In this conceptual work, we contribute towards classifying what a “shortest
path (walk) concept” has to fulfill in order to gain polynomial-time computability of
temporal betweenness centrality.

Keywords: temporal graphs, temporal paths and walks, network science, network
centrality measures, counting complexity.

1 Introduction

Network science is a central pillar of data science. It relies on spotting and analyzing important
network (graph) properties. Betweenness centrality, introduced by Freeman [16] and made a prac-
tical tool of high relevance by Brandes [9], is a key instrument in this area, in particular in the
context of social network analysis.

MR partially supported by the DFG, project MATE (NI 369/17). HM supported by the DFG, project MATE

(NI 369/17), and by the ISF, grants No. 1456/18 and No. 1070/20, and the ERC, grant number 949707. Main part
of this work was done while HM was affiliated with TU Berlin. An extended abstract of this work appears in the
proceedings of the 47th International Workshop on Graph-Theoretic Concepts in Computer Science (WG 2021) [26].
Here, we provide full details and proofs.

E-mail addresses: m.rymar@tu-berlin.de (Maciej Rymar) molterh@post.bgu.ac.il (Hendrik Molter)
andre.nichterlein@tu-berlin.de (André Nichterlein)

This work is licensed under the terms of the CC-BY license.

http://dx.doi.org/10.7155/jgaa.00619
mailto:m.rymar@tu-berlin.de
mailto:molterh@post.bgu.ac.il
mailto:andre.nichterlein@tu-berlin.de
https://creativecommons.org/licenses/by/4.0/

174 Rymar et al. Polynomial-Time Solvability of Temporal Betweenness Centrality

Informally, the betweenness centrality value of a graph vertex v correlates to the probability
that v is visited by a randomly chosen shortest path. With the advent of investigating dynamically
changing network structures and, thus, the growing interest in temporal graphs, studying concepts
of temporal betweenness centrality and their algorithmic complexity became very popular over the
recent years [1, 3, 11, 13, 14, 19, 20, 22, 23, 28, 29, 30, 32].

The temporal graphs we are considering have a fixed vertex set and edge set(s) that change
over discrete time steps. A temporal path in such a graph has to respect time, that is, the path
has to traverse edges at non-decreasing time steps. The study of temporal betweenness centrality
is significantly richer than in classical, static graphs since in temporal graphs the term “shortest
path” may have numerous different but natural interpretations. Indeed, the shortest transfer from
a start vertex to a target vertex may even be a walk (and not just a path). There is intensive
research on shortest-path and shortest-walk computations in temporal graphs [8, 10, 12, 33]. We
refrain from going into the details here but refer to our predecessor work [11] for a more extensive
discussion. What is important to note, however, is that the complexity of temporal betweenness
centrality computation, which essentially boils down to a counting problem, crucially depends on
the concept used. More specifically, the complexity may vary from polynomial-time solvable (with
different polynomial degrees) to very hard (#P-hard). To systematically investigate this issue and
to develop a better understanding of when one has to expect such a huge jump in computational
complexity is the main motivation behind our work.

The by far closest reference point for our work is a previous paper from our group [11]. It
also surveys the literature roughly till the year 2020. While this previous work also explored the
practical side (algorithm engineering and experiments), the focus of this work is purely theoretical.
After 2020, Simard et al. [28] studied a continuous-time scenario and betweenness based on short-
est fastest paths, while we here focus on discrete time. Enright et al. [13] study the parameterized
complexity and approximability of temporal betweenness variants that are #P-hard to compute.
Our work has a significantly stronger conceptual objective than Buß et al.[11] had, so our classi-
fication results comprise the results there. Our contributions are based on coining the concept of
prefix-compatible temporal walks. These walks can be counted in polynomial time and thus the
corresponding temporal betweenness centrality value can be computed in polynomial time. To
this end, we provide simple (still tunable) polynomial-time algorithms that apply to a whole class
of temporal betweenness centrality problems. Moreover, we indicate that slightly relaxing from
prefix-compatibility typically already yields #P-hardness.

2 Preliminaries

The fundamental concept we use in this work is the one of temporal graphs. A directed temporal
graph G is a triple (V, E , T) such that V is a set of vertices, E ⊆ {(u, v, t) | u, v ∈ V, u ̸= v, t ∈ [T]}
is a set of time arcs, and T ∈ N, where [T] := {1, . . . , T} is a set of time steps; see Figure 1 for an
illustration.

Throughout this work, let n := |V | and M := |E|. We call V × [T] the set of (possible) vertex
appearances. We consider directed temporal graphs as temporal paths and walks are implicitly
directed because of the ascending time labels. We call a time arc e = (v, w, t) also the transition
from v to w at time step t. We call v the starting point and w the endpoint of the transition.
Using this, we can now define temporal walks and temporal paths; see Figure 1 for an illustration.

Definition 1 (Temporal Walk) A temporal walk W is an ordered sequence (e1, . . . , ek) ∈ Ek
of transitions such that for each i ∈ [k − 1] the endpoint of ei is the starting point of ei+1 and

JGAA, 27(3) 173–194 (2023) 175

1

1

2

3 5

6,9

4

5

7

10

8 11

s v z
1

1

2

3 5

6,9

4

5

7

10

8 11

s v z

Figure 1: Our running example for a temporal graph G with 9 vertices and 13 time-arcs (the
outgoing arc from vertex v denotes two time-arcs at time steps 6 and 9). The number(s) on the
arcs denote the time steps. Left: Highlighted are the unique shortest s-z-path (top path in green)
in G and a fastest s-z-walk (bottom walk in blue, v and its successor appear twice in the walk).
Right: Three foremost s-z-paths in G are highlighted (G has two more foremost s-z-walks; for
visibility not highlighted).

ti ≤ ti+1, where ti and ti+1 are the time labels of transitions ei and ei+1, respectively. A temporal
walk is strict if t(ei) < t(ei+1) for each i ∈ {1, . . . , k − 1}. The length of W is length(W) := k.

Let W = (e1, . . . , ek) be a temporal walk. We call W a temporal s-z-walk if e1 = (s, v, t) and
ek = (w, z, t′) for some v, w and some t, t′, and we call W a temporal s-(z, t′)-walk if e1 = (s, v, t)
and ek = (w, z, t′) for some v, w and some t. We say that W ends in z at time t′.

A temporal walk may visit the same vertex more than once. In contrast to that, a temporal
path visits each vertex at most once. This is analogous to static graphs. In contrast to the static
setting, there are several canonical notions of “optimal” temporal walks. The three most important
ones [10] are

• shortest temporal walks, which are temporal walks between two vertices that use a minimum
number of time arcs,

• fastest temporal walks, which are temporal walks between two vertices with a minimum
difference between the time steps of the first and the last transition used by the walk, and

• foremost temporal walks, which are temporal walks between two vertices with a minimum
time step on their last transition, that is, they have an earliest arrival time.

See Figure 1 for an illustration. The corresponding optimal temporal paths are defined analogously.
We remark that in the case of “shortest”, every shortest temporal walk is in fact a temporal path,
similarly to the static case.1 However, for “fastest” and “foremost” temporal walks this is generally
not the case.

For readability, we use the notation v
t→ w instead of the triple (v, w, t). If a temporal walk W

contains the transition v
t→ w, then we say that W visits (or goes through) vertex appearance

(w, t) (in Figure 1 (left) the blue walk visits (v, 5) and (v, 8)). For any 0 ≤ i < j ≤ ℓ, we write (if
i = 0, then we define the following for t0 = 0):

1In fact, all optimal temporal path concepts (we are aware of) where path counting and computing the be-
tweenness centrality can be done in polynomial time have this property, ensuring that optimal walks are indeed
paths.

176 Rymar et al. Polynomial-Time Solvability of Temporal Betweenness Centrality

P [(vi, ti), (vj , tj)] := vi
ti+1→ vi+1

ti+2→ . . .
tj→ vj ,

P [•, (vj , tj)] := v0
t1→ v1

t2→ . . .
tj→ vj ,

P [(vi, ti), •] := vi
ti+1→ vi+1

ti+2→ . . .
tℓ→ vℓ.

We use an analogous notation for temporal walks. Note that for a non-strict temporal walk W
the above notation may not be well-defined since the same vertex appearance (v, t) may appear
more than once in W . In this case, we define W [(vi, ti), (vj , tj)] to be the subwalk of W from the

first appearance of u
ti→ vi for any u to the last appearance of u

tj→ vj for any u. The cases of
P [•, (vj , tj)] and P [(vi, ti), •] are handled analogously.

Furthermore, we use ◦ to denote concatenations of temporal walks, that is, let W,W ′ be two
temporal walks such that W ends in v and W ′ starts in v. Let t be the time label on the last
transition of W and t′ the label on the first transition of W ′. Then, if t′ ≥ t, we denote with W ◦W ′

the concatenation of W and W ′.
Given a temporal graph G, we denote by walks(G) the set of all temporal walks in G. Sub-

sequently, we will need to consider the successors (or dually, the predecessors) of each vertex
appearance on temporal walks in some W ⊆ walks(G).

Definition 2 (Direct predecessor set, direct successor set) Let G = (V, E , T) be a temporal
graph and W ⊆ walks(G) be a subset of its temporal walks. Fix a source vertex s ∈ V . Let Ws ⊆ W
be the set of temporal walks inW that start in s. Now let (w, t′) ∈ V ×[T] be any vertex appearance.
Then PreWs (w, t′) is the set of all direct predecessors of (w, t′) on temporal walks in Ws:

PreWs (w, t′) :=
{
(v, t) ∈ V × [T] | ∃W ∈ Ws : u

t→ v
t′→ w ∈W

}
∪
{
(s, 0) | ∃W ∈ Ws : s

t′→ w ∈W
}
.

The set SuccWs (v, t) of successors of a vertex appearance (v, t) is the inverse of the predecessor
relation:

SuccWs (v, t) :=
{
(w, t′) | (v, t) ∈ PreWs (w, t′)

}
.

Clearly, the direct predecessor sets induce a relation over vertex appearances. We use this to
define the following directed graph. We remark that this graph is similar to the so-called static
expansion [21, 33, 34] that is tailored to a specific source vertex, see Figure 2 for an example.

Definition 3 (Predecessor graph) Let G = (V, E , T) be a temporal graph and W ⊆ walks(G) be
a subset of its temporal walks. Fix a source vertex s ∈ V . Then G

Pre
s := (U,A) is the predecessor

graph (of s, with respect to W), where

U := {(s, 0)} ∪ {(w, t′) | PreWs (w, t′) ̸= ∅}, and

A := {((v, t), (w, t′)) | (v, t) ∈ PreWs (w, t′)}.

We next introduce some notation and definitions for temporal walk counting and temporal
betweenness.

JGAA, 27(3) 173–194 (2023) 177

1

1

2

3 5

6,9

4

5

7

10

8 11

s a b v

c

d

e

f

z

(s, 0) (d, 2) (v, 5) (f, 6) (e, 7) (v, 8) (f, 9) (z, 10)

(a, 1) (b, 3)

Figure 2: An illustration of the predecessor graph. Top: A temporal graph G = (V, E , T) with a

set W of three highlighted temporal walks. Bottom: The predecessor graph G
Pre
s of s with respect

to W. The horizontal position of each vertex corresponds to the time of the corresponding vertex
appearance and the walks corresponding to W are highlighted.

Definition 4 Let G = (V, E , T) be a temporal graph and W ⊆ walks(G) be a subset of its temporal
walks. Let s, v, z ∈ V and t ∈ [T]. Then,

• σW
sz is the number of temporal s-z-walks in W that start in s and end in z.

• σW
s(z,t) is the number of temporal s-z-walks in W that start in s and end in z at time t.

• σW
sz (v) is the number of temporal s-z-walks in W that go through the vertex v. Further-

more, σW
sz (z) = σW

sz (s) = σW
sz and σW

ss (s) = σW
ss ;

• σW
sz (v, t) is the number of temporal s-z-walks inW that go through the vertex appearance (v, t).

Furthermore, σW
sz (s, 0) = σW

sz (s) = σW
sz and σW

sz (s, t
′) = 0 for all t′ ∈ [T].

Based on this definition, we can introduce the notions of dependency of vertices on other
vertices, similarly to how it was done by Brandes [9] in the static case. We remark that the notions
for the temporal setting introduced in the following are very similar to the ones used by Buß et
al. [11]. We present them again here for completeness and since we adapt them for general sets of
temporal walks.

Definition 5 (Pair dependency, cumulative dependency) Let G be a temporal graph and
W ⊆ walks(G) be a subset of its temporal walks. Then,

δWsz (v) :=

{
0, if σW

sz = 0,

σW
sz (v)/σ

W
sz , otherwise;

δWs• (v) :=
∑
z∈V

δWsz (v)

are the pair dependency of s and z on v and the cumulative dependency of s on v, respectively.

In other words, δWsz (v) is the fraction of temporal s-z-walks that go through v. Intuitively, the
higher this fraction is, the more important v is to the connectivity of s and z in the graph.

178 Rymar et al. Polynomial-Time Solvability of Temporal Betweenness Centrality

Furthermore, δWs• (v) is the cumulative dependency of s on v for all possible destinations. These
notions can be used to define temporal betweenness centrality, which intuitively captures how all
other vertices depend on v for their connectivity.

Definition 6 (Temporal betweenness centrality) Let G be a temporal graph andW ⊆ walks(G)
be a subset of its temporal walks. Then, for any vertex v ∈ V ,

CW
B (v) :=

∑
s ̸=v ̸=z

δWsz (v) and ĈW
B (v) :=

∑
s,z∈V

δWsz (v)

are the temporal betweenness centrality CW
B (v) of v and the total temporal betweenness central-

ity ĈW
B (v) of v (with respect to W).

If the set of walks W in question is clear from the context, then we omit the superscript W. The
central reason behind mainly using total temporal betweenness centrality instead of the standard
temporal betweenness in the following is that it simplifies some of our proofs as it works well with
our definition of cumulative dependency:

Observation 1 For any vertex v ∈ V , ĈW
B (v) =

∑
s∈V δWs• (v).

We have that ĈW
B (v) and CW

B are tightly related:

Observation 2 (Lemma 2.8 in Buß et al.[11]) For any vertex v ∈ V ,

CW
B (v) = ĈW

B (v)−
∑
w∈V

([
σW
vw > 0

]
1
+

[
σW
wv > 0

]
1

)
+
[
σW
vv > 0

]
1
.

We use a straightforward generalization of Definition 5 to vertex appearances. Using this
definition will be more convenient in our proofs.

Definition 7 (Temporal pair dependency, temporal cumulative dependency) Let G be a
temporal graph and W be a subset of its walks. Then,

δWsz (v, t) :=

{
0, if σW

sz = 0

σW
sz (v, t)/σ

W
sz , otherwise

and δWs• (v, t) :=
∑
z∈V

δWsz (v, t)

are the temporal pair dependency of s and z on (v, t) and the temporal cumulative dependency of s
on (v, t), respectively. Additionally, the special case δWsv (v, t) denotes the appearance dependency
of s on (v, t).

We can observe a simple relation between dependencies on vertices and dependencies on vertex
appearances. In particular, we can compute dependencies on vertices using the dependencies on
vertex appearances, which allows us to focus on the latter.

Observation 3 For any vertex v ∈ V , it holds that

δWsz (v) =
∑
t∈[T]

δWsz (v, t) and δWs• (v) =
∑
t∈[T]

δWs• (v, t).

JGAA, 27(3) 173–194 (2023) 179

1

1

2

3 5

6,9

4

5

7

10

8 11

s v z 1

1

2

3 5

6,9

4

5

7

10

8 11

s v z

Figure 3: Examples for c-optimal walks for various c. Left: The top (green) s-z-path is the shortest
s-z-walk, that is, c(W) is the number of time arcs in the walk W . The blue walk and the purple
path are the two fastest s-z-walks in the graph; here c(W) is the difference of the time steps of the
first and last time arc in the walk W . Right: Highlighted is the only 2-restless s-z-walk, that is,
the difference between the time steps of two consecutive time arcs is at most two [8, 12]. This could
be encoded in c as follows: for a walk W = (e1, . . . , ek) we have c(W) = 1 if t(ei) + 2 ≥ t(ei+1) for
all i ∈ [k − 1] and c(W) =∞ otherwise. Notably, in general it is NP-hard to decide whether such
a 2-restless s-z-path exists [12], but for walks even the optimization variants (shortest, fastest, . . .)
are polynomial-time solvable [8].

3 Prefix-compatibility

In this section, our goal is to find an easy-to-understand-and-use property for optimality concepts
for temporal walks and paths that is sufficient for polynomial-time solvability of (1) counting opti-
mal temporal walks and (2) computing the temporal betweenness with respect to that optimality
concept for temporal walks. We call this property “prefix-compatibility”. Intuitively, a class of
temporal walks is prefix-compatible if prefixes of optimal temporal walks are also optimal (“prefix-
optimality”) and prefixes of optimal temporal walks can be exchanged (“prefix-exchangeability”).

3.1 Definition of prefix-compatibility

To formally define optimality concepts for temporal walks, we use cost functions.

Definition 8 (Cost function) Let W be the set of all temporal walks in a temporal graph G.
Then, a function of the form c :W → R ∪ {∞} is a cost function.

We remark that for this work we assume that the cost function can be computed in constant
time, which turns out to be a valid assumption for many optimality concepts. When considering
cost functions that need polynomial time to be evaluated, this polynomial factor would form an
extra multiplicative term in our running time results.

Let c be a cost function and let G = (V, E , T) be a temporal graph. Fix a source s ∈ V .
Then, for every vertex appearance (v, t) ∈ V × [T] we define c∗s(v, t) to be the minimum value of c
assumed over all temporal s-(v, t)-walks. That is, we have c∗s(v, t) = mins-(v,t)-walk W {c(W)}. If
the minimum is not defined or there is no temporal s-(v, t)-walk, then c∗s(v, t) :=∞. Similarly, we
define the optimal c-values for the vertices v ∈ V as c∗s(v) := mint∈[T]{c∗s(v, t)}. We call a temporal
s-(v, t)-walk W c-optimal if c(W) = c∗s(v, t) < ∞. Similarly, we call a temporal s-v-walk W c-
optimal if c(W) = c∗s(v) < ∞. Observe that this notion of c-optimal walks is very general and
allows to capture essentially all natural walk concepts, see Figure 3 for some examples.

For a temporal graph we can now define the set of walks that is optimal with respect to some
cost function c in a straightforward way:

180 Rymar et al. Polynomial-Time Solvability of Temporal Betweenness Centrality

Definition 9 (Induced set of optimal temporal walks) Let c be a cost function and let G =
(V, E , T) be a temporal graph. For s, z ∈ V , let Wsz be the set of all temporal s-z-walks in G. Then

W(c) :=
⋃

s,z∈V

{W ∈ Wsz | c(W) <∞∧ c(W) = c∗s(z)}

is the induced set of optimal temporal walks (of c).

From now on, we introduce the two properties for cost functions that we need to obtain prefix-
compatibility. We start with “prefix-optimality”, which intuitively states that prefixes of optimal
temporal walks are also optimal.

Definition 10 (Prefix-optimality) Let c be a cost function and let W(c) be a set of optimal
temporal walks in a temporal graph G = (V, E , T) that is induced by c. Then c is prefix-optimal if
for every s, z ∈ V , for every temporal s-z-walk W ∈ W(c), and for every vertex appearance (v, t) ∈
V × [T] that is visited by W it holds that c(W [•, (v, t)]) = c∗s(v, t).

Note that we do not require the prefixes to be optimal temporal walks to a vertex, so the tem-
poral walk c(W [•, (v, t)]) is not required to be in the induced set of optimal temporal walks W(c).
If c is clear from the context and there is no danger of confusion, then we drop the superscript (c).

The second property we introduce is “prefix-exchangeability”. It intuitively states that a prefix
of an optimal temporal walk can be exchanged by certain other temporal walks.

Definition 11 (Prefix-exchangeability) Let c be a cost function and letW(c) be a set of optimal
temporal walks in a temporal graph G = (V, E , T) that is induced by c. Then c is prefix-exchangeable
if for every vertex appearance (v, t) ∈ V × [T] such that there exist s, z ∈ V for which there is
a temporal s-z-walk W ∈ W(c) going through (v, t) and for every temporal s-(v, t)-walk W ′ with
c(W ′) = c∗s(v, t) it holds that W ′ ◦W [(v, t), •] ∈ W(c), that is, c(W ′ ◦W [(v, t), •]) = c∗s(z).

In other words, if there is an optimal temporal s-z-walk W going through (v, t), then all c-
optimal temporal s-(v, t)-walks can be substituted for the first part ofW to get a c-optimal temporal
s-z-walk.

It is convenient to combine the two main properties into one.

Definition 12 (Prefix-compatibility) Let c be a cost function. Then c is prefix-compatible if
it is both prefix-optimal and prefix-exchangeable.

In Figure 4 we illustrate that (∆-restless2) fastest paths do not satisfy prefix-compatibility.

3.2 Examples of prefix-compatible cost functions

We exemplarily show that five well-known optimality concepts for temporal paths and walks [8,
10, 33] can be expressed by prefix-compatible cost functions. The optimality concepts we consider
here are foremost temporal walks and shortest temporal paths. We further consider shortest fastest
temporal paths, which are temporal paths that are shortest among all fastest temporal paths and
shortest restless temporal walks [8], which are the shortest temporal walks among all temporal
walks where the difference of the time labels of two consecutive transitions is bounded by some
constant. Lastly, we consider strict prefix-foremost temporal paths [33]. A temporal path is strict
prefix-foremost if it is foremost and every prefix is also foremost and all transitions have increasing
time labels.

2A ∆-restless temporal path can only dwell at most ∆ time steps at any vertex [8, 12].

JGAA, 27(3) 173–194 (2023) 181

1

3

2

3 5

6,9

4

5

7

10

5 8

s v z
1

2

2

3 5

6,9

4

5

7

10

5 8

s v z

Figure 4: Counter-examples showing that (restless) fastest paths neither satisfy prefix-optimality
nor prefix-exchangeability. Inhere, three time steps (indicated by bold numbers) are updated in
our standard temporal graph. Left: The blue path (starting at time step 2) is the unique fastest
3-restless (cf. Figure 3) s-z-path with travel time 8 − 2 = 6; it is not prefix-optimal as the red
path is a faster s-(v, 5)-path (travel time 5− 2 = 3 vs. 5− 3 = 2). Right: The blue path (starting
at time step 2) is the fastest s-z-path with travel time 8 − 2 = 6; it is not prefix-exchangeable as
the red path is also a fastest s-(v, 5)-path but the corresponding prefix of the blue path cannot be
replaced with the red path as the resulting walk would not be a path.

Proposition 1 The cost functions describing the following optimality concepts are prefix-compatible:

• foremost temporal walk,

• shortest temporal path,

• shortest fastest temporal path,

• shortest restless temporal walks, and

• strict prefix-foremost temporal path.

Proof: For each of the concepts, let P = v0
t1→ v1

t2→ . . .
tℓ−1→ vℓ−1

tℓ→ vℓ be a temporal path (or
walk, depending on the concept).

Foremost temporal walks:

In this case, the cost function c maps temporal walks to the time label of their last transition,
that is, c(P) := tℓ. It is clear that this cost function is prefix-optimal, since every temporal
s-(v, t)-walk, that is, a temporal walk to a vertex appearance, is trivially c-optimal. The
cost function is also prefix-exchangeable, since every prefix of a foremost temporal walk to
some vertex appearance (v, t) can be substituted by a different temporal walk to that vertex
appearance and the overall temporal walk will remain foremost since the arrival time to the
last vertex is not changed.

Shortest temporal paths:

In this case, the cost function c maps temporal walks to the number of transitions in the
temporal walk, that is, c(P) := ℓ. Similarly to the static case, we can observe that every
c-optimal temporal walk is in fact a temporal path. We have that c is prefix-optimal, since
similarly to the static case we have that every prefix of a shortest temporal path is also a
shortest temporal path. The cost function c is also prefix-exchangeable, since substituting
a prefix by another optimal, that is, equally long, prefix does not change the length of the
temporal path. Furthermore, we still have a path since, otherwise, if a vertex is visited
multiple times, then there is a shorter path that waits in the vertex that is visited multiple
times, a contradiction to the assumption that the original path was shortest.

182 Rymar et al. Polynomial-Time Solvability of Temporal Betweenness Centrality

Shortest fastest temporal paths:

In this case, the cost function c maps temporal walks e. g. to the duration times n plus the
number of transitions in the temporal walk, that is, c(P) := n · (tℓ − t1) + ℓ. Similarly to
the case of shortest temporal paths, we can observe that every c-optimal temporal walk is
in fact a temporal path. We have that c is prefix-optimal since a prefix not being c-optimal
yields a contradiction to the assumption that the original temporal path was c-optimal: we
replace the presumably non-optimal prefix by an optimal one. Since both prefixes end at the
same vertex appearance, the optimal one is either faster or it has the same duration but is
shorter. In both cases substituting the original prefix by the optimal one yields a “better”
(according to c) temporal path (if it is not a path but a walk, we can wait at vertices that are
visited multiple times). The cost function c is also prefix-exchangeable, since substituting a
prefix by another optimal prefix does not change the duration or the length of the temporal
path. Furthermore, we still have a path since, otherwise, if a vertex is visited multiple times,
then there is a shorter path (with the same duration) that waits in the vertex that is visited
multiple times, a contradiction to the assumption that the original path was shortest fastest.

Shortest restless temporal walks:

Let ∆ be the upper bound on the difference of the time labels on two consecutive transitions.
Similarly to shortest temporal paths, the cost function c maps temporal walks to the number
of transitions in the temporal walk but under the condition that no two consecutive transitions
have time labels that differ by more than ∆. If the walk contains two consecutive transitions
where the corresponding time labels differ by more than ∆, then c maps this walk to infinity.
Formally,

c(P) :=

{
ℓ, if for all i ∈ [ℓ− 1] : ti − ti−1 ≤ ∆

∞, else.

We have that c is prefix-optimal, since a prefix not being c-optimal yields a contradiction to
the assumption that the original temporal walk was c-optimal: we replace the presumably
non-optimal prefix by an optimal one. Since both prefixes end at the same vertex appear-
ance, the optimal one is shorter. Now substituting the original prefix by the optimal one
yields a shorter restless temporal walk. The cost function c is also prefix-exchangeable, since
substituting a prefix by another optimal, that is, equally long prefix does not change the
length of the temporal walk.

Strict prefix-foremost temporal paths:

In this case, the cost function c maps to the last time label in the path if the path is indeed
strict and prefix-foremost. Formally,

c(P) :=

{
tℓ, if P is strict and prefix-foremost

∞, else.

Note that the property of being prefix-foremost does not only depend on P but also on
the given temporal graph. Nevertheless we have that, by definition, every prefix of a strict
prefix-foremost temporal path is strict and prefix-foremost, and hence the corresponding
cost function is prefix-optimal. Furthermore, we have that if we exchange a prefix of a strict

JGAA, 27(3) 173–194 (2023) 183

prefix-foremost temporal path with another optimal prefix, then we again have the property
that every prefix of the obtained path is foremost and we still have a path, since otherwise
we visit a vertex multiple times at different time steps (since we are in the strict case), which
is a contradiction to the original temporal path being prefix foremost. It follows that the
corresponding cost function is also prefix-exchangeable.

□

We believe that many other natural optimality concepts can be shown to be prefix-compatible in
a similar way to our examples.

Since we aim for a very general framework, it is not surprising that our running times for
temporal betweenness computation can be improved for specific optimality concepts by tailored
algorithms. As we will show in Theorems 1 and 2, we can count c-optimal temporal walks and
compute the temporal betweenness centrality with respect to optimal walks for prefix-compatible
cost functions c in O(n2MT 2) time. However, for example for strict prefix-foremost paths and
shortest temporal paths, the corresponding temporal betweenness computation can be done in
O(nM logM) and O(n3T 2) time, respectively [11]. Also the space requirements can be improved
for specific optimality concepts [11]. We remark that the well-known techniques for static graphs [6,
9, 15] can mostly be transferred to the temporal setting in straightforward ways.

3.3 Necessity of prefix-optimality and prefix-exchangeability

We now briefly motivate why we need a cost function c to be both prefix-optimal and prefix-
exchangeable in order to be able to count c-optimal temporal walks in polynomial time. We do
this by giving examples of cost functions which have only one of the two properties and where
the corresponding problem of counting c-optimal temporal walks is #P-hard. Note that this
implies that the corresponding temporal betweenness computation problem is also #P-hard [11].
We remark that this does not imply that prefix-optimality and prefix-exchangeability cannot be
replaced by some weaker requirements.

Proposition 2 There exists a prefix-optimal cost function c for which counting the number of c-
optimal temporal walks is #P-hard.

Proof: Consider the set of foremost temporal paths (strict or non-strict). It is easy to see that
this set is induced by the following cost function c:

c(W) :=

{
t, W is a (strict) temporal path with arrival time t,

∞, otherwise.

Moreover, c is trivially prefix-optimal since all temporal paths arriving at the same vertex appear-
ance have the same value of the criterion function. However, it is known that counting foremost
temporal paths is #P-hard [1, 11]. □

As demonstrated, now we have that if we leave out prefix-exchangeability, then we obtain
hardness. Next, we show that if we leave out prefix-optimality, then we also obtain hardness.

Proposition 3 There exists a prefix-exchangeable cost function c for which counting the number
of c-optimal temporal walks is #P-hard.

184 Rymar et al. Polynomial-Time Solvability of Temporal Betweenness Centrality

Proof: We reduce the #P-hard Paths problem [31] to the problem of counting c-optimal temporal
walks for a prefix-exchangeable cost function c. In Paths we are given a static graph G = (V,E)
and two vertices s, z ∈ V , and are asked to count the number of different paths from s to z in G.

Consider graph G and the two vertices s, z ∈ V . We add a special degree-one terminal vertex z⋆

to V and connect it to z.
Then,

c(W) :=


length(W), W is a temporal s-v-walk for a v ∈ V \ {z⋆},
1, W is a temporal s-z⋆-path,

∞, otherwise.

Intuitively, for all v ∈ V \ {z⋆} we consider only the shortest temporal s-v-walks as optimal
(and obviously such shortest walks are also paths). This set of shortest walks is also clearly
prefix-exchangeable (and prefix-optimal).

For the special vertex we proceed differently, however. We define every temporal s-z⋆-path as
optimal, whether it is shortest or not. Note that clearly all paths to z⋆ need to go through z and,
conversely, any temporal s-z-path can be extended to a temporal s-z⋆-path. Hence, the number
of c-optimal temporal s-z⋆-paths is precisely the number of temporal s-z-paths. Also note that, in
particular, any shortest temporal s-z-path can be extended to a temporal s-z⋆-path, so our cost
function will remain prefix-exchangeable. However, prefix-optimality is now violated since we may
have a non-shortest temporal s-z-path as a subpath of a c-optimal temporal s-z⋆-path. □

4 Counting walks

In this section, complementing the hardness shown in Section 3.3, we extend classic algorithms for
path and walk counting to our setting. This will provide a polynomial-time algorithm for counting
optimal walks with respect to a prefix-compatible cost function.

The general idea is roughly as follows: First, compute the static predecessor graph G
Pre
s (c)

with respect to c (see Definition 3) using a slightly modified version of the classic Bellman-Ford

algorithm [6, 15]. Second, count the walks in this static graph G
Pre
s (c) with known approaches;

the results correspond to the number of c-optimal walks in the temporal input graph.

We start with statements explaining the connection between G
Pre
s (c) and the number of walks

in the temporal input graph. Here, an important corner case is that there might be infinitely many
c-optimal walks.

Definition 13 (Finiteness) Let c be a cost function for a temporal graph G. Then, c is finite
on G if the induced set W(c) of optimal temporal walks of c has finite cardinality.

As stated next, finiteness of the cost function c coincides with the predecessor graph G
Pre
s (c)

containing directed cycles and is, thus, easy to detect.

Lemma 1 Let c be a prefix-compatible cost function. Then c is finite if and only if the predecessor

graph G
Pre
s (c) is acyclic.

Before proving Lemma 1, we show the following lemma.

Lemma 2 Let c be a prefix-compatible and finite cost function. Then no c-optimal walk visits the
same vertex appearance (v, t) twice.

JGAA, 27(3) 173–194 (2023) 185

(v, t)

W ′′W ′ W

Figure 5: Illustration of the connection of the walks W , W ′, and W ′′ in the proof of Lemma 2.

Proof: Assume for the purpose of contradiction that there exists a pair of vertices s, z ∈ V such
that there exists a c-optimal walk W that visits (v, t) (at least) twice.

Let now W ′ be the prefix of W that ends at the second time when (v, t) appears in W and
let W ′′ be the suffix of W that starts at the first appearance of (v, t) in W (see Figure 5).

By prefix-optimality, we have c(W ′) = c∗s(v, t). Hence, by prefix-exchangeability, the walkW ′′′ =
W ′ ◦W ′′ is also a c-optimal temporal s-z-walk. However, it visits (v, t) one more time than W
does.

We can now repeat the same procedure with W ′′′ to get a walk that visits (v, t) one more time
than W ′′′ does. By inductively carrying on the process, each time adding one more “loop” to our
walk, we can see that we can visit (v, t) arbitrarily many times on a c-optimal temporal s-z-walk.
This contradicts the finiteness of c. □

Using Lemma 2, we can prove the aforementioned equivalence:

Proof: [Proof of Lemma 1.] (“⇒”) Assume for the purpose of contradiction that the predecessor
relation is cyclic. Then there exist two vertex appearances (v, t) and (w, t) such that there exists
a walk W that first visits (v, t) and then (w, t) and a walk U that does the opposite.

Let now W ′ be the prefix of W that ends at the first appearance of (w, t) and U ′ the suffix of U
that starts at the first appearance of (w, t). Then, by prefix-optimality, we have c(W ′) = c∗s(w, t).
Hence, by prefix-exchangeability, we have that X = W ′ ◦ U ′ is c-optimal. However, X visits the
same vertex appearance (v, t) twice, contradicting Lemma 2.

(“⇐”) This direction is easy to see: clearly, there are only finitely many walks that do not visit
the same vertex appearance more than once. Hence, if the set of c-optimal walks is infinite, there
has to exist a c-optimal walk that visits some vertex appearance (v, t) twice. Therefore (v, t) is its
own predecessor (transitively), creating a cycle. □

Assuming that we can efficiently compute G
Pre
s (c), Lemma 1 allows us to detect and deal with

the cases of infinitely many c-optimal walks. Moreover, if c is finite, then G
Pre
s (c) is a DAG and,

hence, counting walks is easy. Hence, we arrive at the following statement.

Lemma 3 Let c be a prefix-compatible cost function and G
Pre
s (c) a predecessor graph for a temporal

graph G and a vertex s in G. Given G
Pre
s (c), the number of c-optimal temporal walks from s to any

vertex v and any vertex appearance (v, t) in G can be computed in O(|GPre
s (c)|) time.

Proof: First, run Kosaraju’s algorithm [2] on the graph G
Pre
s (c) to compute in linear time the

strongly connected components (SCCs) in G
Pre
s (c) while also keeping track of their size. Now

186 Rymar et al. Polynomial-Time Solvability of Temporal Betweenness Centrality

consider the DAG GSCC
s (c) of SCCs, that is, the DAG where every node is an SCC of G

Pre
s (c) and

there is an arc from one SCC A to another SCC B if there is an arc from a vertex in A to a vertex
in B in G

Pre
s (c). Mark every node in GSCC

s (c) corresponding to an SCC with more than one vertex
with ∞. Then, run a BFS on GSCC

s (c) starting in each node marked with ∞ and label all the
nodes reached during the BFS with ∞. Now, for every vertex appearance (v, t) belonging to an
SCC where the corresponding node in GSCC

s (c) is marked with ∞, we set the number of temporal

s-(v, t)-walks as ∞ and then remove it from G
Pre
s (c). The correctness of this step follows from the

proof of Lemma 1.

Let G′ be the remaining graph. Clearly, G′ is a DAG. We next show that counting paths to a
vertex in G′ will exactly correspond to counting c-optimal temporal walks to a vertex appearance
corresponding to that vertex:

We shall prove the statement above by induction on the vertices of G′, taken in the topological
ordering. First, (s, 0) must clearly be the first vertex in that ordering. Obviously, there is only
one c-optimal path to (s, 0), so the computed value will be correct here.

Now, consider a vertex vi corresponding to some appearance (v, t). By definition, all its direct
predecessors vj come before vi in the topological ordering in the graph. Since vj ∈ PreWs (vi),
by prefix-exchangeability, every c-optimal walk to vj can be extended to a c-optimal walk to vi.
Conversely, by prefix-optimality, we are also not missing any c-optimal walks to (v, t). Hence, the
computed number of paths to vi will also be correct.

To compute the number of c-optimal temporal walks to a vertex v ∈ V , we can first find c∗s(v) =
mint∈[T] c

∗
s(v, t), and then compute σW

sv =
∑

t|c∗s(v,t)=c∗s(v)
σW
s(v,t). This path counting in a DAG is

clearly doable in time linear in the size of G
Pre
s (c). □

To employ Lemma 3, we need to compute G
Pre
s (c). To this end, we run a slight variation of

the classical Bellman-Ford algorithm [6, 15]. This leads to the following lemma. Recall that we
assume here that c can be evaluated in O(1) time.

Lemma 4 Let c be a prefix-compatible cost function for a temporal graph G. Let s be a vertex

in G. Then the predecessor graph G
Pre
s (c) can be computed in O(nMT 2) time.

Proof: The algorithm is a straightforward generalization of the Bellman-Ford algorithm [6, 15],
adapted to our use case, see Algorithm 1.

The correctness can be easily proven by induction on the (maximal) length of an optimal walk
(similar as for the classical Bellman-Ford algorithm). Again, as in the proof of Lemma 3, the
key observation is that prefix-compatibility ensures that the walks can be extended step by step:
By prefix-exchangeability, every c-optimal walk to a vertex appearance (v, t) can be extended to
a c-optimal walk to a successor, and thus will be found during looping over all arcs (see Lines 3
and 4 in Algorithm 1). Conversely, by prefix-optimality, we are also not missing any c-optimal
walks to (v, t).

As for the running time, it is easy to see that Algorithm 1 runs in O(nMT 2) time. □

Applying Lemmas 3 and 4 starting from each vertex yields the following.

Theorem 1 (Walk counting) Let c be a prefix-compatible cost function for a temporal graph G =
(V, E , T). Then the number of c-optimal temporal walks from each vertex s ∈ V to any vertex
appearance (v, t) can be computed in O(n2MT 2) time.

JGAA, 27(3) 173–194 (2023) 187

Algorithm 1 A generalized Bellman-Ford algorithm for finding the predecessor sets PreWs for a
given source s ∈ V .

Input: A temporal graph G = (V, E , T), a source vertex s ∈ V , and a cost function c.

Output: Predecessor graph G
Pre
s (c) and the optimal values c∗s(v, t) for all appearances.

1: PreWs (v, t)← ∅;cur-best[v, t]←∞ for all v ∈ V, t ∈ [T] ▷ Initialization
2: for i = 1 to nT do

3: for (v
t′→ w) ∈ E do

4: for 1 ≤ t ≤ t′ do
5: Relax((v, t), (w, t′))

6: return PreWs , cur-best

Algorithm 2 Function relaxing the transition from (v, t) to (w, t′). Note that by ⟨v, t⟩ we
mean an arbitrary temporal s-(v, t)-walk that is implicitly represented by PreWs (v, t). (By prefix-
compatibility, all such walks are effectively interchangeable.)

1: function Relax((v, t), (w, t′))
2: if cur-best[v, t] =∞ then
3: return

4: if c(⟨v, t⟩ ◦ (v t′→ w)) < cur-best[w, t′] then
5: PreWs (w, t′)← ∅
6: cur-best[w, t′]← c(⟨v, t⟩ ◦ (v t′→ w))

7: if c(⟨v, t⟩ ◦ (v t′→ w)) = cur-best[w, t′] then
8: PreWs (w, t′)← PreWs (w, t′) ∪ {(v, t)}

5 Computing temporal betweenness

In this section, we discuss how to compute temporal betweenness centrality efficiently for optimal
temporal walks defined by a prefix-compatible cost function. In order to do this, we adapt the ma-
chinery of showing a recursive relation of the temporal dependencies [11] to our generalized setting.
Together with the fact that we can compute the walk-counts in polynomial time (Theorem 1), we
can use a Brandes-like [9] approach to compute the temporal betweenness values in polynomial
time.

We prove a general dependency accumulation formula, alongside some of its implications. Note
that we essentially adapt the results of (author?) [11] to our generalized setting, the proofs are
quite similar. In the following, for convenience we use W (instead of W(c)) to denote a set of c-
optimal walks for some arbitrary cost function c. As betweenness centrality is not well-defined for
infinite cost functions, we assume here that c is finite (in the sense of Definition 13). Note that we
can detect whether c is finite in polynomial time (see Section 4).

First, we define “edge dependency” which we need for the general dependency accumulation
lemma.

Definition 14 (Edge dependency) δWsz (v, t, (v, w, t
′)) denotes the fraction of temporal s-z-walks

in W that go through the appearance (v, t) and use the temporal arc (v, w, t′).

The next lemma shows us how to compute the edge dependency.

188 Rymar et al. Polynomial-Time Solvability of Temporal Betweenness Centrality

s (v, t) (w, t′) z

σWs(v,t)

σWs(w,t′)

σW
sz (w,t

′)
σW
s(w,t′)

Figure 6: Lemma 5: combining an arbitrary prefix which ends in (v, t) with an arbitrary suffix
from (w, t′).

Lemma 5 Let c be a finite prefix-compatible cost function and let G = (V, E , T) be a temporal
graph. Let W be the set of optimal temporal walks in G induced by c. Fix a source s ∈ V . If
δWsz (v, t, (v, w, t

′)) is positive, then

δWsz (v, t, (v, w, t
′)) =

σW
s(v,t)

σW
s(w,t′)

· σ
W
sz (w, t

′)

σW
sz

.

Proof: Let W be an arbitrary c-optimal temporal s-z-walk that goes through (v, t) and makes the

direct transition v
t′→ w. By prefix-optimality, c(W [•, (v, t)]) = c∗s(v, t) and c(W [•, (w, t′)]) =

c∗s(w, t
′). Now, by prefix-exchangeability, we can substitute an arbitrary c-optimal temporal

s-(v, t)-walk for W [•, (v, t)] and still get a valid c-optimal temporal s-(w, t′)-walk. Similarly, we can
then substitute an arbitrary c-optimal temporal s-(w, t′)-walk for W [•, (w, t′)] and get a valid c-
optimal temporal s-z-walk.

Hence, we can combine an arbitrary prefix which ends in (v, t) with an arbitrary suffix which
starts at (w, t′) to get a valid temporal s-z-path in W (see Figure 6). With all of that in mind, we
can now make the following argument:

Of the σW
s(w,t′) many walk prefixes which end in (w, t′), exactly σW

s(v,t) go through (v, t) and use

the transition v
t′→ w. Now, there are also σW

sz (w, t
′)/σW

s(w,t′) many unique walk suffixes starting

from the appearance (w, t′) and going to the vertex z. Thus, there are σW
s(v,t) · σ

W
sz (w, t

′)/σW
s(w,t′)

many temporal s-z-walks that go through (v, t) and use the transition v
t′→ w. Finally, we divide

by the total number of temporal s-z-walks to get the expression in the statement of the lemma. □

The lemma allows to prove the following general dependency accumulation formula.

Lemma 6 (General dependency accumulation) Let c be a finite prefix-compatible cost func-
tion and let G = (V, E , T) be a temporal graph. Let W be the set of optimal temporal walks in G
induced by c. Fix a source s ∈ V . Then,

δWs• (v, t) = δWsv (v, t) +
∑

(w,t′)∈SuccWs (v,t)

σW
s(v,t)

σW
s(w,t′)

· δWs• (w, t′).

Proof: We start by expanding the sum in the formula defining δWs• (v, t), considering its summands
a bit more precisely.

JGAA, 27(3) 173–194 (2023) 189

δWs• (v, t) =
∑
z∈V

δWsz (v, t)

= δWsv (v, t) +
∑
z∈V

∑
(w,t′)∈SuccWs (v,t)

δWsz (v, t, (v, w, t
′)), (1)

where δWsz (v, t, (v, w, t
′)) is as defined in Definition 14. Since (v, t) is not a direct predecessor on

any temporal s-(v, t)-walk, we need to pull it out of the sum. Conversely, for any z ∈ V , the vertex
appearance (v, t) may be contained at most once in any temporal s-z-walk (by Lemma 2). Hence
the inner sum of Equation (1) precisely captures δWsz (v, t).

We can now use Lemma 5 to simplify the summation formula:∑
z∈V

∑
(w,t′)∈SuccWs (v,t)

δWsz (v, t, (v, w, t
′))

Lemma 5
=

∑
z∈V

∑
(w,t′)∈SuccWs (v,t)

σW
s(v,t)

σW
s(w,t′)

· σ
W
sz (w, t

′)

σW
sz

=
∑

(w,t′)∈SuccWs (v,t)

∑
z∈V

σW
s(v,t)

σW
s(w,t′)

· σ
W
sz (w, t

′)

σW
sz

=
∑

(w,t′)∈SuccWs (v,t)

σW
s(v,t)

σW
s(w,t′)

∑
z∈V

σW
sz (w, t

′)

σW
sz

Definition 7
=

∑
(w,t′)∈SuccWs (v,t)

σW
s(v,t)

σW
s(w,t′)

· δWs• (w, t′),

from which the result immediately follows. □

We now combine Lemma 6 with the results from Section 4 to show how temporal betweenness
centrality can be computed for all finite prefix-compatible cost functions.

Lemma 7 Let c be a finite prefix-compatible cost function for a temporal graph G = (V, E , T).
Given G

Pre
s (c) for each s ∈ V , the temporal betweenness centrality of all vertices in G can be

computed in O(
∑

s∈V |G
Pre
s (c)|+ nM) time.

Proof: Consider Algorithm 3. Count-Walks counts optimal temporal walks in a manner de-
scribed by Lemma 3. We first prove the correctness of the algorithm before analyzing its running
time. Denote with W the set of optimal temporal walks in G induced by c.

Correctness: The general idea of the algorithm is to use Lemma 6 to implicitly compute the total
temporal betweenness centrality and use Observation 2 to recover the CW

B values. As the equation
in Observation 2 has the constant summand +1, in Line 3 we initialize the temporal betweenness
values to 1.

The next step is to compute the cumulative dependencies δWs• (v, t) for each source vertex s and
appropriately update the temporal betweenness values. We do this in the loop starting on Line 4.
We first initialize the array holding the cumulative dependencies on Line 5.

190 Rymar et al. Polynomial-Time Solvability of Temporal Betweenness Centrality

Algorithm 3 General betweenness algorithm, see Lemma 7. It uses an auxiliary function Count-
Walks that computes the walk counts in a manner described by Lemma 3. Note that the prede-

cessor sets PreWs are encoded in the predecessor graphs G
Pre
s (c).

Input: A temporal graph G = (V, E , T), the predecessor graphs G
Pre
s (c) for all s ∈ V .

Output: Betweenness CW
B (v) of all vertices v ∈ V (G).

1: σW
sv , σ

W
s(v,t), δ

W
sv (v, t)← Count-Walks(G

Pre
s (c)) ▷ Lemma 3

2: for v ∈ V do
3: CW

B [v]← 1 ▷ Initialize to 1 per Observation 2

4: for s ∈ V do
5: for (u, v, t) ∈ E do
6: δWs• [v, t]← 0 ▷ Reset the array

7: for (w, t′) ∈ R in topological order determined by PreWs do
8: δWs• (w, t

′)← δWs• (w, t
′) + δWsw(w, t

′) ▷ Appearance dependency on (w, t′)
9: for (v, t) ∈ PreWs (w, t′) do

10: δWs• [v, t]← δWs• [v, t] + (σW
s(v,t)/σ

W
s(w,t′)) · δ

W
s• [w, t

′] ▷ Sum of Lemma 6

11: CW
B [v]← CW

B [v] + (σW
s(v,t)/σ

W
s(w,t′)) · δ

W
s• [w, t

′]

12: CW
B [s]← CW

B [s]− |{v | ∃t ∈ [T] : δWsv (v, t) > 0}| ▷ Connectivity correction

13: return CW
B

Finally, in the loop starting on Line 7 we compute the cumulative dependencies using the
recursive formula of Lemma 6. We proceed in reverse topological order, that is, we start with
vertices that have no successors (and hence for which the equation in Lemma 6 is trivial to evaluate)
as our base case and then proceed backwards. This is possible as finite prefix-compatible cost
functions always lead to acyclic predecessor graphs (see Lemma 1).

Finally, on Line 12 we apply a “connectivity correction.” This term corresponds to the∑
w∈V

[
σW
vw > 0

]
1
part of the equation in Observation 2. Notice that we do not have to han-

dle the term with
[
σW
wv > 0

]
1
as on Line 11 we only add terms which correspond to the sum of

the equation of Lemma 6, and never the δWsv (v, t) terms. (We do, however, add those terms to
the δWs• (v, t) values which then propagate into the CW

B array, which is why we need the correction
on Line 12.)

Running time: By Lemma 3, Count-Walks can be computed in O(|GPre
s (c)|) time for each s ∈ V .

We can easily see that for the loop on Line 5 we need O(M) time overall.
Before the execution of the for-loop on Line 7, we may first need to compute the topological

order on the predecessor graph. This can be done in time linear in the size of the graph. The

sum of the sizes of the graphs for all sources is
∑

s∈V |G
Pre
s (c)|. We also note that the for-loop on

Line 7 goes over each arc of the predecessor graph exactly once, so we get an O(
∑

s∈V |G
Pre
s (c)|)

bound for the overall execution time.
Finally, with some bookkeeping done in the loop of Line 7, the connectivity correction of Line 12

can easily be made to run in constant time.

Altogether, we get O(
∑

s∈V |G
Pre
s (c)|+ nM) for the total running time. □

Using the running time bound from Lemma 4 together with Lemma 7, we immediately get our
main result of this work.

JGAA, 27(3) 173–194 (2023) 191

Theorem 2 (General betweenness computation) Let c be a finite prefix-compatible cost func-
tion. Then the betweenness centrality of all vertices can be computed in O(n2MT 2) time.

Combining Proposition 1 and Theorem 2 yields the following corollary. Note that for all of the
optimality concepts mentioned in the corollary Algorithm 1 can easily be implemented so that c
can evaluated in amortized constant time, hence our results apply directly without any additional
multiplicative factors in the running time.

Corollary 1 The betweenness centrality of all vertices in a temporal graph can be computed in O(n2MT 2)
time with respect to

• foremost temporal walk,

• shortest temporal path,

• shortest fastest temporal path,

• shortest restless temporal walks, and

• strict prefix-foremost temporal path.

We remark that, while foremost temporal walk, shortest temporal path, shortest fastest temporal
paths, and strict prefix-foremost temporal path were known from previous work [1, 11, 22, 28], this
is a new classification for shortest restless temporal walks.

6 Conclusion

The very nature of this work is conceptual. It goes without saying that to achieve improved
efficiency, exploiting specific properties of the various temporal path and walk concepts may clearly
allow for further improved polynomial running times. As to future research, we wonder whether
our concept of prefix-compatibility may finally lead to a full characterization of polynomial-time
computable temporal betweenness centrality values. It would also be interesting to investigate
whether our concept is expressible as a property of so-called graph dioids [14, 18, 23]. As to the
computationally hard cases (but not only them), for high efficiency in practice, one might also
explore the possibilities of efficient data reductions or approximation algorithms. This proved
useful in the static graphs case, with respect to data reduction [5, 7, 24, 27] as well as with respect
to approximation [4, 17, 25].

Acknowledgements

The authors wish to thank anonymous reviewers of JGAA for their valuable feedback.
In memory of Rolf Niedermeier, our colleague, friend, and mentor, who sadly passed away

before this paper was published.

References

[1] A. Afrasiabi Rad, P. Flocchini, and J. Gaudet. Computation and analysis of temporal be-
tweenness in a knowledge mobilization network. Computational Social Networks, 4(1):5, 2017.
doi:10.1186/s40649-017-0041-7.

https://doi.org/10.1186/s40649-017-0041-7

192 Rymar et al. Polynomial-Time Solvability of Temporal Betweenness Centrality

[2] A. V. Aho, J. E. Hopcroft, and J. D. Ullman. Data Structures and Algorithms. Addison-
Wesley, 1983.

[3] A. Alsayed and D. J. Higham. Betweenness in time dependent networks. Chaos, Solitons &
Fractals, 72:35–48, 2015. doi:10.1016/j.chaos.2014.12.009.

[4] D. A. Bader, S. Kintali, K. Madduri, and M. Mihail. Approximating betweenness centrality. In
Proceedings of the 5th International Workshop on Algorithms and Models for the Web-Graph
(WAW ’07), pages 124–137. Springer, 2007. doi:10.1007/978-3-540-77004-6_10.

[5] M. Baglioni, F. Geraci, M. Pellegrini, and E. Lastres. Fast exact computation of betweenness
centrality in social networks. In Proceedings of the 4th International Conference on Advances
in Social Networks Analysis and Mining (ASONAM ’12), pages 450–456. IEEE Computer
Society, 2012.

[6] R. Bellman. On a routing problem. Quarterly of Applied Mathematics, 16(1):87–90, 1958.

[7] M. Bentert, A. Dittmann, L. Kellerhals, A. Nichterlein, and R. Niedermeier. An adaptive
version of Brandes’ algorithm for betweenness centrality. Journal of Graph Algorithms and
Applications, 24(3):483–522, 2020. doi:10.7155/jgaa.00543.

[8] M. Bentert, A.-S. Himmel, A. Nichterlein, and R. Niedermeier. Efficient computation of
optimal temporal walks under waiting-time constraints. Applied Network Science, 5(1):73,
2020. doi:10.1007/s41109-020-00311-0.

[9] U. Brandes. A faster algorithm for betweenness centrality. Journal of Mathematical Sociology,
25(2):163–177, 2001. doi:10.1080/0022250X.2001.9990249.

[10] B.-M. Bui-Xuan, A. Ferreira, and A. Jarry. Computing shortest, fastest, and foremost journeys
in dynamic networks. International Journal of Foundations of Computer Science, 14(02):267–
285, 2003. doi:10.1142/S0129054103001728.

[11] S. Buß, H. Molter, R. Niedermeier, and M. Rymar. Algorithmic aspects of temporal be-
tweenness. In Proceedings of the 26th ACM SIGKDD International Conference on Knowledge
Discovery & Data Mining (KDD ’20), pages 2084–2092. Association for Computing Machin-
ery, 2020. doi:10.1145/3394486.3403259.

[12] A. Casteigts, A. Himmel, H. Molter, and P. Zschoche. Finding temporal paths under waiting
time constraints. Algorithmica, 83(9):2754–2802, 2021. doi:10.1007/s00453-021-00831-w.

[13] J. A. Enright, K. Meeks, and H. Molter. Counting temporal paths. CoRR, abs/2202.12055,
2022. URL: https://arxiv.org/abs/2202.12055.

[14] L. Falzon, E. Quintane, J. Dunn, and G. Robins. Embedding time in positions: Temporal
measures of centrality for social network analysis. Social Networks, 54:168–178, 2018. doi:

10.1016/j.socnet.2018.02.002.

[15] L. R. Ford Jr. Network flow theory. Technical report, Rand Corp Santa Monica Ca, 1956.

[16] L. C. Freeman. A set of measures of centrality based on betweenness. Sociometry, 40(1):35–41,
1977. doi:10.2307/3033543.

https://doi.org/10.1016/j.chaos.2014.12.009
https://doi.org/10.1007/978-3-540-77004-6_10
https://doi.org/10.7155/jgaa.00543
https://doi.org/10.1007/s41109-020-00311-0
https://doi.org/10.1080/0022250X.2001.9990249
https://doi.org/10.1142/S0129054103001728
https://doi.org/10.1145/3394486.3403259
https://doi.org/10.1007/s00453-021-00831-w
https://arxiv.org/abs/2202.12055
https://doi.org/10.1016/j.socnet.2018.02.002
https://doi.org/10.1016/j.socnet.2018.02.002
https://doi.org/10.2307/3033543

JGAA, 27(3) 173–194 (2023) 193

[17] R. Geisberger, P. Sanders, and D. Schultes. Better approximation of betweenness centrality. In
Proceedings of the 10th Meeting on Algorithm Engineering & Expermiments (ALENEX ’08),
pages 90–100. SIAM, 2008. doi:10.1137/1.9781611972887.9.

[18] M. Gondran and M. Minoux. Graphs, dioids and semirings: new models and algorithms,
volume 41. Springer Science & Business Media, 2008.

[19] V. M. Gunturi, S. Shekhar, K. Joseph, and K. M. Carley. Scalable computational techniques
for centrality metrics on temporally detailed social network. Machine Learning, 106(8):1133–
1169, 2017. doi:10.1007/s10994-016-5583-7.

[20] Habiba, C. Tantipathananandh, and T. Y. Berger-Wolf. Betweenness centrality measure in
dynamic networks. Technical Report 19, Department of Computer Science, University of
Illinois at Chicago, Chicago, 2007. DIMACS Technical Report.

[21] D. Kempe, J. Kleinberg, and A. Kumar. Connectivity and inference problems for temporal
networks. Journal of Computer and System Sciences, 64(4):820–842, 2002. doi:10.1006/

jcss.2002.1829.

[22] H. Kim and R. Anderson. Temporal node centrality in complex networks. Physical Review E,
85(2):026107, 2012. doi:10.1103/PhysRevE.85.026107.

[23] N. Kontoleon, L. Falzon, and P. Pattison. Algebraic structures for dynamic networks. Journal
of Mathematical Psychology, 57(6):310–319, 2013. doi:10.1016/j.jmp.2013.11.002.

[24] R. Puzis, Y. Elovici, P. Zilberman, S. Dolev, and U. Brandes. Topology manipulations for
speeding betweenness centrality computation. Journal of Complex Networks, 3(1):84–112,
2015. doi:10.1109/ASONAM.2012.79.

[25] M. Riondato and E. M. Kornaropoulos. Fast approximation of betweenness centrality
through sampling. Data Mining and Knowledge Discovery, 30(2):438–475, 2016. doi:

10.1007/s10618-015-0423-0.

[26] M. Rymar, H. Molter, A. Nichterlein, and R. Niedermeier. Towards classifying the polynomial-
time solvability of temporal betweenness centrality. In L. Kowalik, M. Pilipczuk, and
P. Rzazewski, editors, Graph-Theoretic Concepts in Computer Science - 47th International
Workshop, WG 2021, Warsaw, Poland, June 23-25, 2021, Revised Selected Papers, vol-
ume 12911 of Lecture Notes in Computer Science, pages 219–231. Springer, 2021. doi:

10.1007/978-3-030-86838-3_17.

[27] A. E. Sariyüce, K. Kaya, E. Saule, and Ü. V. Çatalyürek. Graph manipulations for fast
centrality computation. ACM Transactions on Knowledge Discovery from Data, 11(3):26:1–
26:25, 2017. doi:10.1145/3022668.

[28] F. Simard, C. Magnien, and M. Latapy. Computing betweenness centrality in link streams.
CoRR, abs/2102.06543, 2021. URL: https://arxiv.org/abs/2102.06543.

[29] J. Tang, M. Musolesi, C. Mascolo, V. Latora, and V. Nicosia. Analysing information flows
and key mediators through temporal centrality metrics. In Proceedings of the 3rd Workshop
on Social Network Systems (SNS ’10). Association for Computing Machinery, 2010. doi:

10.1145/1852658.1852661.

https://doi.org/10.1137/1.9781611972887.9
https://doi.org/10.1007/s10994-016-5583-7
https://doi.org/10.1006/jcss.2002.1829
https://doi.org/10.1006/jcss.2002.1829
https://doi.org/10.1103/PhysRevE.85.026107
https://doi.org/10.1016/j.jmp.2013.11.002
https://doi.org/10.1109/ASONAM.2012.79
https://doi.org/10.1007/s10618-015-0423-0
https://doi.org/10.1007/s10618-015-0423-0
https://doi.org/10.1007/978-3-030-86838-3_17
https://doi.org/10.1007/978-3-030-86838-3_17
https://doi.org/10.1145/3022668
https://arxiv.org/abs/2102.06543
https://doi.org/10.1145/1852658.1852661
https://doi.org/10.1145/1852658.1852661

194 Rymar et al. Polynomial-Time Solvability of Temporal Betweenness Centrality

[30] I. Tsalouchidou, R. Baeza-Yates, F. Bonchi, K. Liao, and T. Sellis. Temporal betweenness
centrality in dynamic graphs. International Journal of Data Science and Analytics, 9(3):257–
272, 2020. doi:10.1007/s41060-019-00189-x.

[31] L. G. Valiant. The complexity of enumeration and reliability problems. SIAM Journal on
Computing, 8(3):410–421, 1979. doi:10.1137/0208032.

[32] M. J. Williams and M. Musolesi. Spatio-temporal networks: reachability, centrality and
robustness. Royal Society Open Science, 3(6), 2016. doi:10.1098/rsos.160196.

[33] H. Wu, J. Cheng, Y. Ke, S. Huang, Y. Huang, and H. Wu. Efficient algorithms for temporal
path computation. IEEE Transactions on Knowledge and Data Engineering, 28(11):2927–
2942, 2016. doi:10.1109/TKDE.2016.2594065.

[34] P. Zschoche, T. Fluschnik, H. Molter, and R. Niedermeier. The complexity of finding sep-
arators in temporal graphs. Journal of Computer and System Sciences, 107:72–92, 2020.
doi:10.1016/j.jcss.2019.07.006.

https://doi.org/10.1007/s41060-019-00189-x
https://doi.org/10.1137/0208032
https://doi.org/10.1098/rsos.160196
https://doi.org/10.1109/TKDE.2016.2594065
https://doi.org/10.1016/j.jcss.2019.07.006

	Introduction
	Preliminaries
	Prefix-compatibility
	Definition of prefix-compatibility
	Examples of prefix-compatible cost functions
	Necessity of prefix-optimality and prefix-exchangeability

	Counting walks
	Computing temporal betweenness
	Conclusion

