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Abstract. A drawing of a graph is fan-planar if the edges intersecting a common
edge a share a vertex A on the same side of a. More precisely, orienting a arbitrarily
and the other edges towards A results in a consistent orientation of the crossings. So
far, fan-planar drawings have only been considered in the context of simple drawings,
where any two edges share at most one point, including endpoints. We show that every
non-simple fan-planar drawing can be redrawn as a simple fan-planar drawing of the
same graph while not introducing additional crossings. The proof is constructive and
corresponds to a quadratic time algorithm. Combined with previous results on fan-
planar drawings, this yields that n-vertex graphs having such a drawing can have at
most 6.5n− 20 edges and that the recognition of such graphs is NP-hard. We thereby
answer an open problem posed by Kaufmann and Ueckerdt in 2014.

1 Introduction

In a fan-planar drawing of a graph, each edge a is either not involved in any crossing or its
crossing edges c1, . . . , ck have a common endpoint A that is on a common side of a, i.e., orienting a
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arbitrarily and the edges c1, . . . , ck towards A results in a consistent orientation of the crossings
on a (either a crosses each ci from left to right at each crossing, or it crosses each ci from right
to left at each crossing); for illustrations refer to Figure 1. We call A the special vertex of a. All
graphs in this paper are simple, that is, we do not allow parallel edges or self-loops. Hence, the
vertex A is uniquely defined if k ≥ 2. If k = 1, then A is an arbitrary endpoint of c1.

(a) (b) (c) (d)

Figure 1: Drawings that are (a) simple and fan-planar, (b) simple and not fan-planar, (c) non-
simple and fan-planar, and (d) non-simple and not fan-planar.

Previous literature is exclusively concerned with fan-planar drawings that are also simple,
meaning that each pair of edges intersects in at most one point, which can be either an endpoint
or a proper crossing. Simple drawings can be characterized in terms of two forbidden crossing
configurations1 (see Figure 2):

S1 Two adjacent edges cross.

S2 Two edges cross at least twice.

Simple drawings that are fan-planar can be characterized in terms of two additional forbidden
crossing configurations [19] (see Figure 2):

SF1 Two independent edges cross a common third edge.

SF2 Two adjacent edges cross a third edge a such that their common endpoint A is not on a
common side of a.

In this paper, we study non-simple fan-planar drawings and how to turn them into simple fan-
planar drawings.

(a) S1 (b) S2 (c) SF1 (d) SF2

Figure 2: Forbidden configurations in simple fan-planar drawings.

1In the literature, usually more obstructions are mentioned, which we exclude for all drawings (simple or not),
see Section 2.
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Previous and related work. A drawing is k-planar if each edge is crossed at most k times and
a graph is k-planar, if it admits such a drawing [22]. A k-quasiplanar graph can be drawn such that
no k edges mutually cross – such a drawing is called k-quasiplanar [2]. Kaufmann and Ueckerdt [19]
introduced the notion of fan-planarity in 2014. They describe the class of graphs representable
by simple fan-planar drawings2 as somewhere between 1-planar graphs and 3-quasiplanar graphs.
Indeed, every 1-planar graph admits a simple 1-planar drawing. Since such a drawing cannot
contain configuration SF1 or SF2, it is fan-planar. Moreover, a simple fan-planar drawing cannot
contain three mutually crossing edges and, therefore, it is 3-quasiplanar. Binucci et al. [10] have
shown that for each k ≥ 2 the class of graphs admitting simple k-planar drawings and the class
of graphs admitting simple fan-planar drawings are incomparable. In contrast, every so-called
optimal 2-planar graph can be drawn as a simple fan-planar drawing [8]. This follows from the
fact that these graphs can be characterized as the graphs obtained by drawing a pentagram in
the interior of each face of a pentangulation [8], which yields a fan-planar drawing. Angelini et
al. [4] introduced a drawing style that combines fan-planarity with a visualization technique called
edge bundling [16, 17, 24]. Each of their so-called 1-sided 1-fan-bundle-planar drawings represents
a graph that is also realizable as a simple fan-planar drawing, but the converse is not true [4].
Brandenburg [11] examines fan-crossing drawings, where all edges crossing a common edge share
a common endpoint (in particular, this implies that SF1 is forbidden), as well as adjacency-crossing
drawings, where SF1 is the only obstruction, i.e., every pair of edges crossing a common edge has
a common endpoint, though different pairs might have different common endpoints. Simple fan-
planar drawings are somewhat opposite to simple k-fan-crossing-free [12] drawings, where no k ≥ 2
adjacent edges cross another common edge.

The maximum number of edges in a simple fan-planar drawing on n vertices is upperbounded by
6.5n−20 [19], which follows from the known density bounds for 3-quasiplanar graphs [1]. A better
upper bound of 5n − 10 edges was claimed in a preprint [19]. However, the corresponding proof
appears to be flawed. We spoke with the authors and they confirmed that the current version
of their proof is not correct and that they do not see a simple way to fix it3. Kaufmann and
Ueckerdt [19] described an infinite family of simple fan-planar drawings with 5n − 10 edges. The
same lower bound also follows from the aforementioned connection to optimal 2-planar graphs [8].

The recognition of graphs realizable as simple fan-planar drawings is NP-hard [10]. The same
statement also holds in the fixed rotation system setting [6], where the cyclic order of edges incident
to each vertex is prescribed as part of the input. Consequently, efficient algorithms have only been
discovered for special graph classes [6] and for restricted drawing styles [6, 9].

For a more comprehensive overview of previous work related to fan-planarity, we refer to a
very recent survey article dedicated to fan-planarity due to Bekos and Grilli [7]. The study of
fan-planarity also falls in line with the recent trend of studying so-called beyond-planar graph
classes, whose corresponding drawing styles permit crossings in restricted ways only. Apart from
k-planar [22], k-quasiplanar [2, 3], k-fan-crossing-free [12], fan-bundle-planar [4], fan-crossing [11],
adjacency-crossing [19], and fan-planar [19] drawings, which have already been mentioned above,
several other classes of beyond-planar graphs and their corresponding drawing styles have been

2In [19], these graphs are called fan-planar. We do not use this terminology to avoid mix-ups with the class of
graphs admitting (not necessarily simple) fan-planar drawings.

3More specifically, the statement and proof of [19, Lemma 1] are incorrect. A counterexample can be obtained
by removing the edge g from the construction illustrated in Figure 15 (vertices R,B correspond to the vertices u,w
in [19, Lemma 1]); for a formal description of the construction see Lemma 3.

After the submission of the preliminary version of our paper to GD’21, the authors of [19] have uploaded a new
version [20] of their preprint in which they state a different definition of fan-planarity with an additional forbidden
crossing configuration. We discuss this new definition in Section 4; also see [20, last paragraph of Section 1].
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studied, e.g.: k-gap-planar drawings [5] (each crossing is assigned to one of the involved edges such
that each edge is assigned at most k crossings), RAC-drawings [14] (straight-line drawings with
right angle crossings), and many more. We refer to [15, 18] for recent surveys on beyond-planar
graphs.

Contribution. A fan-planar drawing that is not simple may contain configuration S1. Config-
uration S2 is allowed in a partial sense: two edges may cross any number of times, but only if
orienting them arbitrarily results in a consistent orientation of their crossings; cf. Figures 1(c)
and (d). Recall that every simple fan-planar drawing is 3-quasiplanar. In contrast, Figure 3(a)
depicts a non-simple fan-planar drawing that is not 3-quasiplanar, which suggests that graphs
admitting non-simple fan-planar drawings are not necessarily 3-quasiplanar. Consequently, the
density bound of 6.5n− 20 [1] for 3-quasiplanar graphs does not directly carry over. However, the
depicted graph is just a K3, which can obviously be redrawn as a simple (fan-)planar drawing.
This raises two very natural questions:

1. Is the largest number of edges in a n-vertex non-simple fan-planar drawing larger than the
number of edges in any n-vertex simple fan-planar drawing?

2. Which non-simple fan-planar drawings can be redrawn as simple fan-planar drawings of the
same graph?

(a) (b) (c)

Figure 3: (a) A non-simple fan-planar drawing that is not 3-quasiplanar. (b) A non-simple fan-
planar drawing. Applying the standard procedure for simplifying configuration S2 yields the draw-
ing in (c), which is not fan-planar since the black edge crosses two independent edges.

Question 1 is also mentioned as an open problem by Kaufmann and Ueckerdt [19]. Regarding
question 2, we remark that the standard method for simplifying the configurations S1 and S2 does
not necessarily maintain fan-planarity, see Figures 3(b) and (c). Consequently, it is not possible
to argue inductively when exhaustively applying these operations in a naive fashion. As our main
result, we answer both questions, thereby solving the open problem by Kaufmann and Ueckerdt:

Theorem 1 Every non-simple fan-planar drawing can be redrawn as a simple fan-planar drawing
of the same graph without introducing additional crossings.

Moreover, there is an algorithm that, given a non-simple fan-planar drawing Γ, constructs such
a redrawing in O(n+ k2 +mk) time, where n, m, and k denote the number of vertices, edges, and
crossings of Γ, respectively.

Combined with the aforementioned previous results regarding the density [1, 19] and the recog-
nition complexity [10] of graphs realizable as simple fan-planar drawings, we obtain:

Corollary 1 Every (not necessarily simple) fan-planar drawing realizes a 3-quasiplanar graph.
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Corollary 2 Every (not necessarily simple) fan-planar drawing on n vertices has at most 6.5n−20
edges.

Corollary 3 Recognizing graphs that admit (not necessarily simple) fan-planar drawings is NP-
hard.

We start with some basic terminology and conventions in Section 2. The algorithm for simpli-
fying non-simple fan-planar drawings is described in Section 3. We conclude with a discussion and
open problems in Section 4.

2 Terminology

In all drawings in this paper, edges are represented by simple curves. We assume no two edges
touch, that is, meet tangentially. Further, we assume that no three edges share a common crossing
and that edges do not contain vertices except their endpoints. Let Γ be a drawing of a graph G.
A redrawing of Γ is a drawing of G. Redrawing an edge e in Γ refers to the process of obtaining a
redrawing Γ′ of Γ such that (Γ− e) = (Γ′ − e).

In the beginning of Section 1, we introduced the notion of special vertices for crossed edges.
To streamline the arguments, we also assign an arbitrarily chosen special vertex to each uncrossed
edge. Let e and f be edges that cross and let E be the special vertex of e. We define the ith crossing
of f with e as the ith crossing between f and e encountered when traversing f from endpoint E.
For example, in Figure 6(a), the first crossing of g with b is x and the second crossing is y. Lastly,
to refer to the subarc of an edge e in between two crossings or endpoints a and b, we write one
of [a, b]/e, (a, b]/e, [a, b)/e, (a, b)/e depending on whether we want to include a and/or b into the
subarc.

3 The Redrawing Procedure

We prove Theorem 1 by providing an algorithm that redraws the edges of a non-simple fan-planar
drawing Γ to obtain a simple fan-planar drawing. It is based on three subroutines (Lemmata 1, 2
and 4), which can be iteratively applied to remove crossings between adjacent edges (configuration
S1) and multiple crossings between pairs of edges (configuration S2). More specifically, the first
procedure (Lemma 1) eliminates a particular type of adjacent crossings, namely, those that involve
an edge that is incident to its special vertex. The second procedure (Lemma 2) removes multiple
crossings between edge pairs. Both procedures reduce the overall number of crossings. Hence, they
can be exhaustively applied to obtain a redrawing Γ′ of Γ that does not contain multiple crossings
between edge pairs and where adjacent crossings only involve edges that are not incident to their
special vertices (Corollary 4). The procedure (Lemma 4) for removing these remaining crossings
is quite involved and based on a structural analysis (Lemma 3) of the drawing Γ′.

Algorithmic considerations. The standard data structure for encoding and traversing crossing-
free drawings on surfaces is the well-known doubly connected edge list (DCEL); for a detailed
description see [13]. A drawing with crossings can be interpreted as a crossing-free drawing by
replacing each crossing with a dummy vertex of degree four. Thus, a drawing with crossings may
also be encoded by means of a DCEL. We assume our given fan-planar drawing Γ, which represents
some graph G, to be represented in this fashion. We also assume to be given an adjacency list
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of G in which each edge is explicitly represented4 and such that each (half-)edge of our DCEL is
equipped with a pointer to its corresponding edge in the adjacency list. Due to the introduction
of the dummy vertices, each crossed edge e = (A,B) is represented as a sequence of edges (or half-
edge pairs) in the DCEL. We assume that the record for e in the adjacency list is equipped with
pointers to the first and last edges of this sequence, which are incident to A and B, respectively.
By means of a linear-time preprocessing, it is easy to equip each edge (record in the adjacency list)
with a pointer to its special vertex.

The first procedure, for getting rid of some of the adjacent crossings, is very simple and is
detailed in Lemma 1.

Lemma 1 Let Γ be a non-simple fan-planar drawing. Let b = (B,R) be an edge in Γ that is
incident to its special vertex B. If b has at least one crossing, then one of its crossing edges can
be redrawn such that

• one of the crossings on b is removed,

• the crossings in the resulting drawing form a proper subset of the crossings in the original
drawing, and

• fan-planarity is maintained and the special vertices do not change.

Given a pointer to b, the redrawing can be found in time that is linear in the number of removed
crossings.

B
R

W

b

g

x

(a) Edge g is adjacent to b and crosses b.

B
R

W

x

b

g

(b) Redrawing of edge g.

Figure 4: Illustration of Lemma 1. If b is incident to its special vertex B, then all crossings on
b are adjacent crossings. We redraw the edge g whose crossing x with b is closest to B along b.
Redrawing (B, x)/g along b cannot introduce any new crossings.

4I.e., we have a list of all vertices, each vertex is equipped with a list of its incident edges, and each edge has
pointers to its two incident vertices.
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Proof: Every edge that crosses b is incident to B. Traverse along the edge b from B to R, until
an edge g = (B,W ) that crosses b is encountered. Let this crossing be x. We redraw the edge g to
follow the drawing of b from B until x and then follow its previous drawing from x to W without
crossing b at x. The rerouting is illustrated in Figure 4.

[B, x)/b has no crossings by definition of x. Hence, the rerouting introduces no new crossings.
In particular, no new crossings are introduced on g and, hence, fan-planarity is maintained. Finally,
since the crossing between b and g at x is eliminated, the total number of crossings decreases.

Algorithmic considerations. By means of our data structures, the crossing x and the edge g can
be determined in constant time. The redrawing operation is then easily carried out in the claimed
runtime by traversing [B, x]/g starting from B. 2

We continue by describing the second procedure (Lemma 2), which eliminates crossings between
pairs of edges (independent or adjacent) that cross more than once. For the proof, we require the
following simple observation:

Proposition 1 Let Γ be a non-simple fan-planar drawing. Let e and f be edges that cross at least
three times in Γ and let E be the special vertex of e. Let x1, x2, . . . , xk be k ≥ 3 crossings of f and
e such that xi, where 1 ≤ i ≤ k, is the ith crossing of f with e. Then x1, x2, . . . , xk appear in this
order along e.

Proof: Edge f must be incident to E. Let the other endpoint of f be G. Towards a contradiction,
assume that the order of crossings is not as claimed and let i be the smallest index such that
xi, xi+1, xi+2 appear in the order xi, xi+2, xi+1 along e. Consider the closed curve δ formed by
the arcs [xi, xi+1]/e and [xi, xi+1]/f , see Figure 5 for an illustration. Since the crossing xi+2

lies on (xi, xi+1)/e, the arc (xi+1, G)/f must cross the curve δ. However, at the crossing between
(xi+1, G)/f and δ that is closest to xi+1, f either crosses itself or it crosses e such that the resulting
crossings of e and f do not have a consistent orientation. We thus obtain a contradiction, and
hence, the crossings xi, xi+1, xi+2 appear in this order along e. 2

xi xi+2 xi+1

f

e

E

Figure 5: Illustration of Proposition 1: crossings of f with e.

Lemma 2 Let Γ be a non-simple fan-planar drawing. Let b = (X,Y ) be an edge in Γ whose special
vertex B is not incident to b. If edge b has multiple crossings with at least one other edge, then an
edge that crosses b multiple times, say g = (B,W ) (where W could also be incident to b), can be
redrawn such that

• one of the crossings between b and g is removed,
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• there is an injective mapping that assigns each crossing of the redrawing to a crossing of the
original drawing that involves the same edges,

• fan-planarity is maintained and the special vertices do not change.

Given a pointer to b, the redrawing can be found in time that is linear in the number of crossings
in Γ.

Proof: We start by describing a procedure to pick the edge that will be redrawn. We traverse b
from X to Y , until the second crossing of an edge g = (B,W ) with b is encountered such that the
first crossing of g with b appeared before its second crossing, i.e., the second crossing y with b is
closer to Y than its first crossing x with b, see Figure 6(a). If no such edge exists, we exchange the
roles of Y and X and repeat the procedure. We are guaranteed to find an edge g with the desired
properties, since there is an edge crossing b multiple times.

So without loss of generality, assume that the edge g has its second crossing y with b closer to
Y than its first crossing x. We then walk from y towards X along b until we encounter a crossing
z between an edge p and b. The edge p must also be incident to B, the special vertex of b.

We can now describe the redrawing procedure; for illustrations see Figures 6(b) and 6(c). The
edge g is redrawn to follow its previous drawing from W to y, cross b at y, follow [y, z]/b, and,
finally, closely follow [z,B]/p until we encounter g, which is either at B or at a crossing of g with
p. If [z,B]/p crosses the old drawing of g, then we closely follow [z,B]/p until we encounter g,
cross p at this point, and then follow the previous drawing of g until B.

Proposition 2 The crossing z is the first crossing of p with b.

Proof: If p = g, then we claim that x = z, i.e., z is also the first crossing of p(= g) with b. Assume
otherwise that z is the ith crossing of p(= g) with b, where i > 2. Then the crossings x, y and z
must appear in this order along b due to Proposition 1, which is a contradiction. Thus, z is indeed
the first crossing of p(= g) with b if p = g.

Now assume p ̸= g and assume that the crossing at z is the ith crossing of p with b, where
i ≥ 2. We claim that the first crossing of p with b, say h, has to be located on (z, Y )/b. Otherwise,
the second crossing of p with b would be located on (h, z]/b due to Proposition 1 but in that case
we would have chosen to redraw p, not g. More specifically, the first crossing of p with b, i.e. h,
must be on (y, Y )/b since (z, y)/b has no crossings by construction; the situation is illustrated in
Figure 6(a). Consider the closed curve δ formed by [x, y]/b and [x, y]/g. Since p is incident to B
and h is the first crossing of p with b, the arc of p starting from B must cross (x, y)/g to enter
the region enclosed by δ before p crosses b at h. After p crosses b at h, it has to cross δ again in
order to cross z such that the crossing orientation of z and h is consistent. However, this second
crossing with δ implies that the crossings of p with g or the crossings of p with b are not consistently
oriented; a contradiction.

Hence, in any case, z is the first crossing of p with b. 2

Proposition 3 Redrawing g maintains fan-planarity. Moreover, there is an injective mapping
that assigns each crossing on the redrawn part of g to a crossing on the replaced part of g that
involves the same edges.

Proof: To show that fan-planarity is maintained, we have to prove that the crossings introduced
along the redrawn edge g satisfy the conditions of fan-planarity. If p = g, then fan-planarity is
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X Y

W

x z y

g

b

B

p
p

h

(a)

X Y

W

x z y

g

b

B = z′

p
c

r

rG

rR

φ

(b) Redrawing of edge g when z′ = B.

X Y

W

x z y

g

b

B

p
c

r

rG

rR

φ

z′

(c) Redrawing of edge g when z′ ̸= B.

Figure 6: Edges b and g cross multiple times and the special vertex B of b is not incident to b.
The figures do not reflect the case when W is incident to b. Any new crossing with the redrawn
version of g involves an edge r crossing (z, z′)/p, which has to cross the replaced part of g since it
is incident to X or Y .

maintained since then the crossings of the redrawing of g are a subset of the crossings on its original
drawing and the orientations of the crossings are preserved. So assume p ̸= g. If the old drawing
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of g was crossed by [B, z]/p, then let z′ be the first crossing between p and g that is encountered
while traversing along [B, z]/p from z to B. Otherwise, let z′ = B.

Note that [B, z]/p does not enter the side of the curve γ formed by the replaced part [x, y]/g
and [x, y]/b that does not contain B. This is true for the two endpoints of [B, z]/p by definition
and fan-planarity. Moreover, by Proposition 2, (B, z)/p does not cross b, so the only way to enter
the region would be to cross the replaced part [x, y]/g, but to leave the region this part would have
to be crossed again with an inconsistent orientation. Therefore, if z′ is a crossing, then it cannot
be on the arc [x, y]/g, which belongs to γ, nor on [y,W ]/g since this arc lies entirely on the side
of γ that does not contain B by fan-planarity. Thus, the crossing z′ must lie on the arc [B, x]/g
as illustrated in Figure 6(c). Moreover, the orientation of z′ has to be as depicted: Towards a
contradiction, assume otherwise. Since g and b cross p, they share a common endpoint, which has
to be W since b is not incident to B. We have W = Y since [y,W ]/g is entirely on the side of γ
that contains Y and not X. However, this implies an inconsistent orientation of the crossings z′

and z on p and we obtain a contradiction to fan-planarity.
Now, observe that new crossings introduced along g are on (z′, z)/g and the involved edges

have to cross edge p as well. Let an edge r cross p at a point c ∈ (z′, z)/p (and the redrawn version
of g nearby).

From Proposition 2, we know that z is the first crossing of p with b. This implies that b does not
cross (B, z)/p, and thus, r ̸= b. Let ϕ be the closed curve formed by the old drawing of [z′, y]/g,
the arc [y, z]/b, and the arc [z′, z]/p, see Figure 6(b) and 6(c) for an illustration of ϕ. The edge r
must cross ϕ by definition since c lies on ϕ. Since the second crossing of g with b is closer to Y
than the first crossing and due to fan-planarity, Y and X have to lie on distinct sides of ϕ. At c,
we split r into two parts. We use rY to denote the part that enters the side of ϕ that contains Y
– the other part of r is denoted by rX . The special vertex of p, say P , must be incident to edge b
since b crosses p, and the edge r must be incident to P since r also crosses p. We distinguish two
cases, namely P = X and P = Y . We show that in both cases, r crosses the original arc (z′, y)/g.

First, assume P = X. Since P (= X) must be on a common side of p for r and b, the part of r
that is incident to P (= X) has to be rY . This implies that rY has to cross the curve ϕ by definition
of rY . Let s be the crossing of rY with curve ϕ that is closest to c along rY . The crossing s cannot
lie on the arc of p on ϕ, since then two crossings at c and s between the two edges r and p would
result in an inconsistent crossing orientation. Further, s cannot lie on the arc of b on ϕ since this
part of b is uncrossed by the definition of z. Hence, s must lie on the original (z′, y)/g, i.e., along
the part of ϕ formed by the old drawing of g. This implies that r crosses the original (z′, y)/g.

It remains to consider the case that P = Y . Since P (= Y ) is on a common side of p for r and
b, the part of r that is incident to P (= Y ) has to be rX . The arguments why r crosses the original
(z′, y)/g are analogous to those used in the case P = X.

We have shown that r crosses the original (z′, y)/g. The corresponding crossing is eliminated
when redrawing g, and a crossing between r and g is introduced after the redrawing. Hence, even
though the redrawn version of g crosses r on (z′, z)/g, the number of crossings does not increase.
Moreover, the orientation of the crossings between r and g is consistent with the orientation of the
crossings in the redrawn version, i.e., fan-planarity is maintained. 2

The described redrawing of g eliminates the crossing between g and b at x. No special vertices
were changed during the procedure. Moreover, by Proposition 3, the remaining statements of
Lemma 2 are fulfilled.

Algorithmic considerations. We begin with the following preprocessing: let e be an edge that
crosses b. We traverse e from B towards its other endpoint and equip each encountered crossing
with b with a number such that the ith crossing of e with b is equipped with the number i. This
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process is repeated for each edge that crosses b. The entire preprocessing can be carried out in
time that is linear in the total number of crossings in Γ. Equipped with this information, the edge
g and its crossings x and y can now be found in time that is linear in the number of crossings on
b. Finally, the actual redrawing operation can easily be carried out in time that is linear in the
number of crossings on g. 2

Equipped with Lemmata 1 and 2, we can apply the following normalization to the drawing:

Corollary 4 Let Γ be a non-simple fan-planar drawing. There is a fan-planar redrawing Γ′ of Γ
such that

• no two edges cross more than once in Γ′;

• no edge is incident to its special vertex; and

• Γ′ does not have more crossings than Γ.

Proof: The redrawing procedures guaranteed by Lemma 2 and 1 decrease the number of crossings.
Hence, they can be exhaustively applied to Γ to obtain a drawing Γ′ with no more crossings than Γ
such that Γ′ does not satisfy the precondition of Lemma 1 or 2. In particular, if an edge e is
incident to its special vertex, all edges crossing e must be adjacent to e. If there is such an edge,
Lemma 1 is applicable. If there is no edge crossing e, we may choose a new special vertex for e,
which is not incident to it. Hence, Γ′ has the desired properties. 2

It is not always feasible to use the previously described edge-rerouting strategies to eliminate
adjacent crossings between edges that are not incident to their special vertices, e.g., consider
Figure 7. In the following lemma, we deal with some unproblematic cases and characterize the
remaining, more challenging, configurations in terms of a sequence of conflicting edges.

G
R

B

b

g

x

Figure 7: The redrawing strategy corresponding to Lemma 1 cannot be applied to remove the
adjacent crossing x since b and g are not incident to their special vertices.

Lemma 3 Let Γ be a non-simple fan-planar drawing in which no two edges cross more than once
and such that no edge is incident to its special vertex. Let b = (G,R) and g = (R,B) be adjacent
edges which cross each other at x.

We can redraw g such that

• the crossing x is removed,
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• the crossings in the resulting drawing form a proper subset of the crossings in the original
drawing, and

• fan-planarity is maintained and the special vertices do not change,

or, alternatively, we can determine a sequence of edges r0, b1, r2, b3, r4, . . . , rk such that the edges
b, g, r0, b1, r2, b3, r4, . . . , rk are pairwise distinct and the following properties are satisfied (we call
the edges ri“red” and the edges bi“black”; for an illustration, see Figure 8, as well as Figure 15,
which also depicts rk):

I1 B is incident to the red edges and R is incident to the black edges.

I2 B is the special vertex of the black edges and R is the special vertex of the red edges.

I3 For any odd i, the first crossing xi+1 of bi when traversed from R towards its other endpoint is
with ri+1. For any even i < k, the first crossing xi+1 of ri when traversed from B towards its
other enpoint is with bi+1.

I4 r0 crosses b1 but no other black edge. b crosses r0 and rk but no other red edges.

I5 For the purposes of the final two invariants, we define q−1 = b. For 0 ≤ i < k, let αi be the
closed curve defined by g, the arc of qi and the arc of qi−1, where q ∈ {r, b}, that connect R,B
and xi. Let Γi be the drawing induced by the edges b, g, r0, b1, r2, . . . , qi.

The curve αi is simple and bounds a region fi in Γi that contains only G, an arc of b that
connects G to a point x ∈ αi and, possibly, an arc of r0 that connects G to αi, in its interior.

I6 For 0 < i < k, fi ⊂ fi−1 and fi−1 \fi is an empty triangular face in Γi bounded by the following
three arcs:

• the arc of qi between xi and the special vertex of qi−1,

• [xi, xi−1]/qi−1,

• the arc of qi−2 between xi−1 and the special vertex of qi−1

where q ∈ {r, b}.

Given a pointer to x, the redrawing or the sequence can be obtained in time that is linear in the
number of crossings in Γ.

Remark 1 Note that invariant I5 implies that in Γi, g crosses only b and possibly r0. Moreover,
the arcs of qi and qi−1 connecting R and B via xi are uncrossed in Γi.

Proof: It follows from the preconditions that B is the special vertex of b and G is the special
vertex of g. We will construct the sequence of edges recursively.
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G R

B

b

g

r0

b1

r2

bi

ri−1

bi−2

x1 x2

xi

xi−2

x0

· ·
·

xi−1

ri+1

xi+1

ri−3

· ·
·

x

αi

fi−1 \ fi

fi−2 \ fi−1

Figure 8: An example of the sequence of edges described in Lemma 3. The face fi is the unbounded
region delimited by the dashed curve, the face fi−1 \ fi is depicted in blue and the face fi−2 \ fi−1

is depicted in green.

Base case.

For the induction base case, we show how to determine r0 and b1 such that all invariants are
satisfied with respect to r0. For b1, we will only establish the invariants I1, I4, I5 and I6.

We traverse from R along b until we encounter an edge r0 that crosses b and denote its crossing
by x0. If x0 = x and, hence, r0 = g, we can redraw the part of g that leads from R to x along b
such that the crossing at x is removed. Moreover, since the redrawn part is crossing-free, the set of
crossings decreases and fan-planarity is maintained. Hence, if x0 = x, the statement of the lemma
holds.

So assume that x0 ̸= x. It follows that, r0 ̸= g since g cannot cross b multiple times. Moreover,
r0 ̸= b since edges are realized as simple curves. Since r0 intersects b, it is incident to B.

Now, we traverse r0 from B towards x0 until we encounter a crossing x1 with an edge b1.
If x1 = x0 and, hence, b1 = b, we redraw g along (R, x0)/b and (x0, B)/r0. The redrawn version
of g is crossing-free. Hence, we have eliminated at least one crossing (namely x) while maintaining
fan-planarity and, thus, the statement of the lemma holds if x1 = x0.

So assume that x1 ̸= x0. It follows that b1 is distinct from b since b has no multiple crossings
with r0. Moreover, b1 ̸= r0 since edges are simple curves. Finally, we show that b1 ̸= g. In fact,
we prove the following stronger claim:

Proposition 4 The arc (B, x0)/r0 cannot cross g.

Proof: Assume otherwise and consider the closed curve γ formed by the parts of g and b that
lead from R to x. Both G and B are on the same side of γ since there are no multiple crossings.
Since r0 intersects g, it follows that r0 is incident to the special vertex G of g. Let (B, x0)/r0 be
denoted by rB0 and (G, x0)/r0 be denoted by rG0 . Since B must lie on the same side of b with
respect to the two crossings x and x0, the arc rG0 must be the arc on the side of γ that does not
contain B, refer to Figure 9 for an illustration. However, for rG0 to be incident to G, rG0 must
cross γ, thereby crossing b or g a second time (recall that rB0 intersects g by assumption), arriving
at a contradiction. 2
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G
R

B

b

g

rG0

x0

x
γ

rB0

g
x1

Figure 9: If b1 = g, rG0 must lie on the side of γ that does not contain B, and cannot cross γ a
second time.

In particular, Proposition 4 implies b1 ̸= g, as claimed. Thus, we have determined two edges r0
and b1 such that b, g, r0, b1 are pairwise distinct. It remains to show that the desired invariants
hold. We have already established that r0 is incident to B (since it intersects b) and, thus, I1 is
satisfied for r0.

Since b1 and b cross r0, it follows that b1 shares an endpoint with b, which is the special vertex
of r0. Accordingly, we consider two cases. First, assume that the special vertex of r0 is G, which
is illustrated in Figure 10. Consider the closed curve α0 described by g, the arc (B, x0)/r0 and the
arc (R, x0)/b. By Proposition 4 and the fact that there are no multiple crossings, the curve α0 is
indeed simple. Orient b and b1 towards G. Since the resulting orientation of the crossings x0 and x1

has to be consistent, it follows that the part of b1 that connects x1 with G has to intersect α0. More
specifically, since there are no multiple crossings, it needs to intersect g in some point z. We now
redraw g along the part of b that connects R with x0 and the part of r0 that connects x0 with B.
The redrawn version of g only has crossings on (B, x0)/g. In particular, it crosses b1 at x1, but the
orientation of this crossing is consistent with the orientation of z in the original drawing of g. The
same argument applies for all other intersections on g, which are all on (x0, x1)/g. Consequently,
we introduce no additional crossings, eliminate the crossing x, and maintain fan-planarity. Hence,
the statement of the lemma holds if the special vertex of r0 is G.

It remains to consider the case where the special vertex of r0 is R and, hence, b1 is incident
to R. It follows that invariant I1 is satisfied for b1 and invariant I2 is satisfied for r0.

Invariant I3 for r0 is satisfied by construction (and for b1 there is nothing to show). Invariant I4
is also satisfied for r0 and b1 by construction.

The edge r0 cannot cross b or b1 a second time. If it crosses g, then it is incident to G, the
special vertex of g, see Figure 10. In any case, this implies invariant I5 for Γ0.

We observe that b1 cannot cross b or g since this would imply that b1 is incident to B or G (the
special vertex of b and g, respectively) and hence b1 is parallel to g or b, respectively. Moreover,
b1 cannot cross r0 a second time. Hence, the part of b1 that leads from R to x1 is crossing-free in
the drawing Γ1. Together with invariant I5 for Γ0, the invariant I5 holds for Γ1 and invariant I6
holds, which concludes the base case.

Inductive Step:

Now, assume the first j + 1 edges, r0, b1, . . . , qj , have been determined and j < k. We assume all
invariants hold for r0, . . . qj−1. Additionally, we assume that I1, I4, I5 and I6 hold for qj .
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b1x1
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δ
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Figure 10: r0 can be incident to G. b1 is drawn as if G is the special vertex of r0.

We will now determine the edge qj+1. We need to prove the invariants I2 and I3 for qj and the
invariants I1, I4, I5 and I6 (and I2 and I3 if j + 1 = k) for qj+1.

We distinguish two cases depending on whether qj is red or black. Both cases feel and are
structured similarly, but there are several subtle differences, which is why we decided to treat
them separately.

Case 1: qj = rj

For an illustration refer to Figure 11. If the edge rj has no crossings on (B, xj)/rj , then we could
redraw g along this part of rj and (xj , R]/bj−1. The redrawn version of g would then be uncrossed
by invariant I3 for bj−1 and the lemma is proved.

Otherwise rj has at least one crossing on (B, xj)/rj . We determine edge bj+1 as follows:
traverse along rj from B towards xj until we encounter the first edge that crosses rj . We denote
this edge by bj+1 and its crossing with rj by xj+1. Invariant I5 implies that bj+1 is distinct from
the edges of Γj . Let the arc of bj+1 that exits the region fj at xj+1 and enters region fj−1 \ fj be
denoted by bij+1.

Invariant I3 for rj is satisfied by construction. To prove the remaining invariants, we establish
several propositions. First we prove a proposition for invariant I2 for rj and invariant I1 for bj+1.

Proposition 5 The arc bij+1 cannot leave the region fj−1 \ fj anymore after entering it at xj+1.

Proof: To exit the region fj−1 \ fj , arc bij+1 must cross rj , bj−1 or rj−2. Arc bij+1 cannot cross rj
again, and also cannot cross rj−2 since the arc of rj−2 in this region is uncrossed by invariant I3.
Hence, bij+1 must cross bj−1 to exit the region fj−1 \ fj .

Since edge bj+1 now crosses rj and then bj−1, the two edges rj and bj−1 must have a vertex
in common. Since bj−1 ̸= g, the edge bj−1 is not incident to B. Similarly, rj is not incident to
R since rj ̸= g. Thus, the common vertex of rj and bj−1 cannot be B or R, and must be Z, the
other vertex of bj−1 (and rj). However, Z lies on a different side of bj+1 at crossing xj+1, when
compared to the crossing with bj−1, which is a contradiction to fan-planarity. Hence bij+1 cannot
leave the region fj−1 \ fj . 2

The following corollary to proposition 5 establishes invariants I1 for bj+1 and I2 for rj , because
R is the only vertex incident to both bj−1 and bj+1.
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Figure 11: Determining bj+1.

Corollary 5 Edge bj+1 is incident to R, but not G.

Proof: By Proposition 5 the endpoint at the end of arc bij+1 lies in fj−1\fj . Thus, by invariant I6,
this endpoint is not shared with bj−1. However, since rj crosses both the edges bj−1 and bj+1, bj−1

and bj+1 must share an endpoint. This common endpoint must be R since the other endpoint of
bj+1 is not incident to bj−1. Thus, bj+1 is incident to R.

By invariant I6, the vertex G is not located in fj−1 \ fj and G ̸= R, hence bj+1 is not incident
to G. 2

Next, we prove invariant I4.

Proposition 6 The edge bj+1 does not cross edge r0.

R

B

b

g

r0

b1

r2

bj+1

rj

bj−1

x1 x2

xj+1

xj−1

x0

· ·
·

xjrj−2

y

bj−3

xj−2

xG

xg

Figure 12: Illustrates the case that bj+1 crosses r0 directly after xj+1.

Proof: Towards a contradiction, assume that bj+1 crosses the edge r0. The arc bij+1 cannot cross
r0 since r0 does not pass through fj−1 \fj by invariant I6. Therefore r0 has to cross (R, xj+1)/bj+1
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at a crossing y. We know bj+1 is not incident to G nor B, so it doesn’t cross g nor bj−1. Therefore
this arc lies entirely in fj , since none of the arcs bj−1, rj and g can be crossed by it. r0 leaves
f1 ⊃ fj when crossing b1 at x1. r0 has to cross α1 again in order to re-enter f1. To cross α1 again,
r0 has to cross g, since it cannot cross itself nor b1 again. However, if r0 crosses g at a crossing
xg, the other end point of r0 must be G. The edge r0 thus will enter f1 again after crossing g at
xg, crosses bj+1 at y and then ends at G. Consider the arc of bj+1 that starts at y and ends at R.
After crossing r0 at y, this arc enters the triangle x, xg, G bounded by b, g and r0, see Figure 12
for an illustration. However, it is impossible for this arc to exit the triangle since none of the edges
bounding the triangle can be crossed (again) by bj+1 as shown above, and thus the arc of bj+1

cannot be incident to R, a contradiction. 2

Lastly, to prove invariants I5 and I6, we have to prove the following proposition.

Proposition 7 The arc (R, xj+1)/bj+1 is uncrossed in the drawing Γj+1.

Proof: Towards a contradiction assume that (R, xj+1)/bj+1 is crossed in Γj+1. Let y be the
crossing on (R, xj+1)/bj+1 that is closest to xj+1. We claim that y does not lie on αj . First, the
crossing y cannot lie on rj as this would imply that bj+1 crosses rj twice. Second, the crossing y
cannot lie on bj−1 since this would imply that bj+1 is incident to B and, hence, bj+1 = g, which
contradicts the fact that bj+1 is distinct from the edges in Γj . Finally, the crossing y can also not
lie on g and since the special vertex of g is G, and this would imply that bj+1 is incident to G and
hence, bj+1 = b, which is again a contradiction. Hence, y does not lie on αj , as claimed.

It follows that y is located in the interior of fj . By invariant I5, it follows that y lies on b or
r0. The former is excluded by the fact that bj+1 is not incident to B and the latter is excluded by
Proposition 6. 2

So the arc (R, xj+1)/bj+1 is uncrossed in the drawing Γj+1. Further, the arc (B, xj)/rj was
uncrossed in Γj as noted in Remark 1. Since bj+1 is the only new edge introduced for Γj+1, the arcs
(xj , xj+1)/rj as well as (xj+1, B)/rj are uncrossed in Γj+1. The latter can be used in conjunction
with the above proposition to conclude that invariant I5 is maintained: to see this, recall that by
Corollary 5, bj+1 is not incident to G and, hence, it cannot cross g since the special vertex of g is
G. Therefore, no additional edges cross g while extending the subdrawing from Γj to Γj+1.

Invariant I5 can be combined with the fact that the arc of bj−1 from R to xj is uncrossed by
invariant I3 to conclude that the triangular region fj \ fj+1 is indeed empty and invariant I6 is
established. This concludes the proof of the lemma in the case when qj = rj .

Case 2: qj = bj

For an illustration see Figure 13. If (R, xj)/bj has no crossings, then we can redraw g along it
and (xj , B)/rj−1. The redrawn version of g is then be uncrossed by invariant I3 and the lemma is
proved. So assume that (R, xj)/bj is crossed.

We determine the edge rj+1 as follows: traverse along bj from R towards xj until we encounter
the first edge that crosses bj . We denote this edge by rj+1 and its crossing with bj by xj+1.
Invariant I5 implies that rj+1 is distinct from the edges of Γj . Let the arc of rj+1 which exits the
region fj at xj+1 and enters region fj−1 \ fj be denoted by rij+1.

Invariant I3 is true for bj by construction. To prove invariant I2 for bj and invariant I1 for rj+1,
we use the following proposition.

Proposition 8 The arc rij+1 cannot leave the region fj−1 \ fj anymore after entering it at xj+1.
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Proof: To exit the region fj−1 \ fj , arc rij+1 must cross bj , rj−1 or bj−2. Arc rij+1 cannot cross bj
again, and also cannot cross bj−2 since the arc of bj−2 in this region is uncrossed by invariant I3.
Hence, rij+1 must cross rj−1 to exit the region fj−1 \ fj .

Since edge rj+1 now crosses bj and then rj−1, the two edges bj and rj−1 must have a vertex
in common. Since rj−1 ̸= g, the edge rj−1 is not incident to R. Similarly, bj is not incident to
B since bj ̸= g. Thus, the common vertex of bj and rj−1 cannot be B or R, and must be Z, the
other vertex of rj−1 (and bj). However, Z lies on a different side of rj+1 at crossing xj+1, when
compared to the crossing with rj−1, which is a contradiction to fan-planarity. Hence rij+1 cannot
leave the region fj−1 \ fj . 2

The following corollary of Proposition 8 implies invariants I1 for rj+1 and I2 for bj , since B is the
only vertex that rj−1 and rj+1 have in common.

Corollary 6 Edge rj+1 is incident to B, but not G.

Proof: By Proposition 8 the endpoint at the end of arc rij+1 lies in fj−1\fj . Thus, by invariant I6,
this endpoint is not shared with rj−1. However, since bj crosses both the edges rj−1 and rj+1,
they must share an endpoint. This common endpoint must be B since the other endpoint of rj+1

is not incident to rj−1. Thus, rj+1 is incident to B.
By invariant I6, the vertex G is not located in fj−1 \ fj and G ̸= B, hence rj+1 is not incident

to G. 2
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Figure 13: Determining edge rj+1.

To prove the remaining invariants, we require the following proposition.

Proposition 9 If j + 1 = k, then all invariants hold. Otherwise, the arc (xj+1, B)/rj+1 is un-
crossed in the drawing Γj+1.

Proof: Assume that (xj+1, B)/rj+1 is crossed in Γj+1. Let y be the crossing on (xj+1, B)/rj+1

that is closest to xj+1.
If y lies on the edge b, then invariant I4 is satisfied with j + 1 = k. Invariants I3, I5 and I6

are void in this case. Invariant I1 has already been proved. Finally, invariant I2 is true for rj+1,
because it crosses bj and b, both of which are incident to R, so R has to be its special vertex.
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Assume y lies on the closed curve αj . Recall that the curve αj is formed by the edge g, the arc
[R, xj ]/bj and the arc [xj , B]/rj−1. The crossing y must lie on g since rj+1 cannot cross the arc of
bj again and the arc of rj−1 is uncrossed due to invariant I3. Recall that the special vertex of g is
G. This implies that rj+1 must be incident to G since the edge g is crossed by rj+1 if y lies on g.
Thus, the other endpoint of rj+1, which is the endpoint of arc rij+1, must be G. For arc rij+1 to

end in G, it must cross the curve αj . The arc rij+1 cannot cross the arc of rj−1 along αj since the
arc of rj−1 along αj is uncrossed by invariant I3, and it cannot cross the arc of bj nor g again.

Hence, the crossing y is not on the curve αj , which implies that y lies in the interior of fj .
However, the interior of fj contains only an arc of b and possibly an arc of r0 due to invariant I5.

Edge rj+1 cannot be incident to R, since otherwise rj+1 would be an edge that is parallel to g.
Therefore rj+1 cannot cross r0 whose special vertex is R.
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Figure 14: Illustration of the case that (B, xj+1)/rj+1 is crossed.

This proves the proposition that (B, xj+1)/rj+1 is uncrossed in the drawing Γj+1, unless j+1 =
k. 2

Assume rj+1 ̸= qk. Then (B, xj+1)/rj+1 is uncrossed in the drawing Γj+1. Further, the arc
(xj , R)/bj was uncrossed in Γj by invariant I6. Since rj+1 is the only new edge introduced for Γj+1,
the arcs (xj , xj+1)/bj as well as (xj+1, R)/bj are uncrossed. The latter can be used in conjunction
with the above proposition to conclude that invariant I5 is maintained: to see this, recall that rj+1

cannot be incident to G by Corollary 6. Consequently, rj+1 cannot cross g since the special vertex
of g is G. Therefore, no additional edges cross g when extending the drawing from Γj to Γj+1.

Invariant I5 can be combined with the fact that the arc (B, xj)/rj−1 is uncrossed by invariant I3
to conclude that the triangular region fj \ fj+1 is empty and invariant I6 is established.

Since (B, xj+1)/rj+1 is uncrossed, it does not intersect b. On the other hand, by Proposition 8,
the arc of rij+1, which enters fj−1 \ fj at xj+1, cannot leave this region, and fj−1 \ fj does not
contain any part of b by invariant I6. This finally proves invariant I4, and concludes the proof of
the lemma in the case where qj = bj .

Algorithmic considerations. The inductive proof directly corresponds to a procedure for deter-
mining the sequence of edges (along which g is possibly redrawn) in an iterative fashion. When
appending a red edge rj+1 to the sequence, we need to check whether it is the final edge of the
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sequence (i.e., whether j + 1 = k). To this end, we need to check whether the arc (xj+1, B)/rj+1

crosses b, which can be done in time that is linear in the number of crossings on rj+1. Since the
edges of our sequence are pairwise distinct, the total cost for performing all these checks is linearly
bounded by the number of crossings in Γ. Disregarding the time to perform these checks, the
time to append an edge to the sequence is constant. Since the length of the sequence is linearly
bounded by the number of crossings in Γ, it can be determined in the claimed runtime. Finally,
the redrawing operation (if applicable) is also easy to carry out in the claimed runtime. 2

Now that we concluded the proof of Lemma 3, we have all the tools to prove Lemma 4.

Lemma 4 Let Γ be a non-simple fan-planar drawing in which no two edges cross more than once
and such that no edge is incident to its special vertex. If there is an edge b = (G,R) in Γ that
crosses an edge g at x and g is incident to R, then we can redraw an edge such that

• the crossing x is removed,

• the crossings in the resulting drawing form a proper subset of the crossings in the original
drawing, and

• fan-planarity is maintained and the special vertices do not change.

Given a pointer to x, the redrawing can be determined in time that is linear in the number of
crossings in Γ.

Proof: Let b = (G,R) and g = (B,R) be two adjacent edges which cross at x. Due to the
precondition, their common endpoint is not the special vertex of either of the edges. Thus, the
special vertices of b and g must be B and G, respectively. We apply Lemma 3 on x. If g can
be redrawn using Lemma 3, this concludes the proof of Lemma 4. Assume that g cannot be
redrawn. Then we can determine a sequence of edges r0, b1, r2, . . . , rk with the properties described
in Lemma 3. We now describe how the edge b can be redrawn to eliminate the crossing x while
maintaining fan-planarity and decreasing the overall number of crossings.

Let the other endpoint of edge rk be W . By invariant I4, rk has a crossing with edge b. First
assume this crossing occurs on (xk,W )/rk, i.e., after rk enters the triangular region fk−2 \ fk−1 at
xk. Since b does not enter this region, rk has to leave it. It cannot cross bk−1 again, nor can it cross
rk−2, because it is not incident to its special vertex R (note that W ̸= R since otherwise rk would
be parallel to g). Finally, it cannot cross bk−3, because this is the part of bk−3 that is uncrossed
by invariant I3. Hence, the crossing of rk and b cannot lie on (xk,W )/rk and must instead lie on
(B, xk)/rk. In this case, we claim that edge b can be redrawn. Redraw edge b to follow g from
R until x, and then follow its previous drawing from x until G while avoiding crossing g at x, as
illustrated in Figure 15. We now prove that this redrawing does not introduce any new crossings
on b.

Proposition 10 Redrawing b does not introduce any new crossings on b.

Proof: Assume a new crossing with an edge p is introduced on b by the redrawing operation.
Since the redrawn part of b is parallel to a part of g, the edge p crosses g as well. Consequently,
edge p is incident to G, the special vertex of g.

Consider the closed curve δ formed by the arcs [xk, B]/rk, [B, xk−1]/rk−2, and [xk−1, xk]/bk−1.
The edge b crosses rk exactly once, does not cross rk−2 due to invariant I4, and also does not cross
bk−1 since the special vertex of bk−1 is B due to invariant I2 and b is not incident to B. This
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Figure 15: Redrawing of edge b.

implies that b crosses δ exactly once and thus R and G have to lie on distinct sides of δ. This is
illustrated in Figure 15. Edge g does not cross any of the edges on the boundary of δ since b is
the only edge crossed by g by Remark 1 except possibly for r0, and even if rk−2 = r0 the part of
rk−2 on δ is still uncrossed by invariant I3, and therefore g is contained in the same side of δ as
its endpoint R.

The edge p crosses g and is incident to G, and thus must cross the curve δ since g and G lie
on distinct sides of δ. Edge p cannot be incident to R since then p would be parallel to b. Since
R is the special vertex of rk and rk−2 and p is not incident to R, p cannot cross the edges rk and
rk−2. Hence, p must cross edge bk−1 to cross the curve δ. Then the other endpoint of p must
be B, the special vertex of bk−1. However, the part of p connecting G with bk−1 is on the same
side as [B, xk−1]/rk−2. Consequently, the part of p connecting B to bk−1 and [B, xk−1]/rk−2 lie
on distinct sides of bk−1, which contradicts fan-planarity. Overall, we have shown that p cannot
cross δ and, by extension, it cannot cross g; a contradiction. 2

The only redrawn edge is b and no new crossing is introduced on b, which ensures that fan-
planarity is maintained. Additionally, we eliminate the crossing x, which decreases the total
number of crossings in the drawing.

Algorithmic considerations. Lemma 3 can be applied in the claimed runtime. If it does not
redraw the edge g, then the redrawing operation on b is now easily carried out in the claimed
runtime. 2

We already described in the beginning of Section 3 how Lemmata 1–4 can be combined to
obtain the desired redrawing. We now formally summarize the proof and discuss the corresponding
algorithm.

Proof: [of Theorem 1] We begin with a purely combinatorial proof and then discuss the algorithmic
aspects.

Let Γ be a non-simple fan-planar drawing. By Corollary 4 we can find a fan-planar redrawing
Γ′ of Γ such that
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• no two edges cross more than once in Γ′,

• if two adjacent edges cross in Γ′, then their common endpoint is not the special vertex of
either of the two edges;, and

• Γ′ does not have more crossings than Γ.

If Γ′ still contains adjacent crossings, we can apply Lemma 4 to obtain a fan-planar redrawing
of Γ′ with fewer crossings. Since the number of crossings is finite, we can iterate this procedure to
eventually obtain a simple fan-planar drawing.

Algorithmic considerations. As described in the beginning of Section 3, we begin by preprocess-
ing the given drawing in O(n+m+ k) time to determine the special vertex of each edge. We have
established that the desired redrawing can be found by exhaustively applying Lemmata 1, 2, and 4
(recall that Corollary 4 is established by exhaustively applying Lemmata 1 and 2). Algorithmically,
we do so in three phases, where Phases 1, 2, and 3 are concerned with applying Lemmata 1, 2,
and 4, respectively.

In the beginning of Phase 1, we pick an arbitrary edge b and check whether it is incident to
its special vertex. If so, we repeatedly apply Lemma 1 until b is crossing-free; see Figure 16. We
then assign an arbitrary non-incident vertex as the new special vertex of b. This procedure is now
repeated for the remaining edges. Disregarding the time to execute Lemma 1, the time to handle
one edge is O(1), so O(m) time in total. Each application of Lemma 1 takes time that is linear in
the number of removed crossings. Hence, the total time for all applications of Lemma 1 is bounded
by O(k), and the total runtime for Phase 1 is O(n+m+ k). Applying Lemma 1 does not change
special vertices. Hence, during Phase 1, no edge becomes incident to its special vertex. Moreover,
in Phases 2 and 3, we will not change special vertices at all (in particular, applying Lemma 2
or 4 does not change special vertices). Hence, after handling an edge in Phase 1, it will remain
non-incident to its special vertex for the remainder of the algorithm. In particular, this implies
that at the end of the last phase of our algorithm, Lemma 1 can indeed not be applied to any edge.

In the beginning of Phase 2, we pick an arbitrary edge b. We repeatedly apply Lemma 2 until
there is no edge that crosses b multiple times. Note that the precondition of Lemma 2 is satisfied
since Lemma 1 is not applicable. We repeat the process with the remaining edges. Each application
of Lemma 2 removes at least one crossing in O(k) time. Hence, the total time spent for applying
Lemma 2 is bounded by O(k2). Disregarding the time to execute Lemma 2, the time to handle
one edge is O(k) (to check whether it has multiple crossings with some edge), so O(mk) in total.
Therefore, the total time for Phase 2 is O(n+ k2 +mk). In Phases 2 and 3, no new crossings are
introduced. In particular, applying Lemma 2 or 4 does not introduce any new crossings. Hence,
after handling an edge in Phase 2, it will remain without multiple crossings for the remainder of the
algorithm. In particular, this implies that at the end of the last phase of our algorithm, Lemma 2
can indeed not be applied to any edge.

In the beginning of Phase 3, we pick an arbitrary crossing x and check if its two edges are
adjacent. If so, we apply Lemma 4 to remove x (and possibly other crossings). Note that the
preconditions of Lemma 4 are satisfied since Lemma 1 and 2 are not applicable (cf. Corollary 4).
We repeat this procedure for the remaining crossings. Disregarding the time to apply Lemma 4,
the time to handle a crossing is O(1). Each application of Lemma 4 removes at least one crossing
in O(k) time. Hence, the total time spent for applying Lemma 4 and the total time for Phase 3 is
bounded by O(n+m+ k2). Applying Lemma 4 does not introduce any new crossings. Therefore,
at the end of Phase 3, each of the remaining crossings involves independent edges. Consequently,
at the end of Phase 3, Lemma 4 can indeed not be applied.
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Altogether, we have shown that Lemmata 1, 2, and 4 can be applied exhaustively in O(n +
k2 +mk) time, which proves the claim. 2

B
R

b

(a)

B
R

b

(b)

B
R

b

(c)

B
R

b

(d)

Figure 16: Illustration of applying Lemma 1 to remove all adjacent crossings along an edge.

4 Discussion

Recall that the original definition of fan-planarity dates back to 2014 [19]. As already mentioned
(in a footnote) in Section 1, the authors of [19] very recently uploaded a new version [20] of their
preprint, in which they provide the following new definition of fan-planarity, which is quite different
from the original version (which is used in our paper): they state that a simple drawing is fan-
planar if and only if it does not contain the forbidden crossing configurations SF1, SF2, and SF3;
see Figure 17. Configurations SF1 and SF2 were already used to characterize simple fan-planar
drawings according to the original definition (see Section 1). The new additional configuration
SF3 is to be understood as a drawing in the plane rather than on the sphere, i.e., it is sensitive
to the choice of the outer face. Consequently, the fan-planarity of a simple drawing according to
the new definition now also depends on the choice of the outer face. In particular, configuration
SF3 becomes a (simple) fan-planar drawing (according to the new definition), when exchanging
the role of the outer and inner face.

(a) SF1 (b) SF2 (c) SF3 (d) (e)

Figure 17: (a,b,c) Forbidden configurations in simple fan-planar drawings according to the updated
definition in [20]. (d,e) Non-simple drawings reminiscent of SF3.

The original definition of fan-planarity applied to both simple and non-simple drawings. In
contrast, it appears less straight-forward to generalize the new definition to non-simple drawings:
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the original definition was phrased in terms of consistent crossing orientations. While this property
is still implied for simple drawings without configurations SF1, SF2, and SF3, it is not clear whether
it should be part of the definition of non-simple fan-planar drawings. Moreover, as soon as edges
are allowed to cross multiple times, one quickly ends up with examples that are reminiscent of SF3
even if the crossing orientations are consistent, see Figures 17(d) and (e). Consequently, it is not
clear how our results fit into the context of the new definition.

In terms of the original definition, it might be an interesting question when a non-simple fan-
planar drawing can be redrawn into a simple fan-planar drawing without changing the rotation
system. Pammer [23] proved that the rotation system of the drawing of K4 illustrated in Figure 18
cannot be realized as a simple drawing. This immediately implies that this rotation system cannot
be realized as a simple fan-planar drawing of K4. Hence, we observe that it is not always possible
to redraw a non-simple fan-planar drawing into a simple fan-planar drawing with the same rotation
system.

a b

cd

Figure 18: A non-simple fan-planar drawing of K4

In Figures 3(b) and (c), we illustrated that a single step of the traditional methods for removing
configurations S1 and S2 is not guaranteed to preserve fan-planarity. In fact, it can give rise to
an arbitrarily high number of conflicts to fan-planarity (and a same number of new conflicts to
simplicity). Consequently, it is not possible to prove Theorem 1 by arguing inductively when
applying these procedures iteratively in a naive fashion. Nevertheless, it could still be true that
the exhaustive application of the traditional simplification procedures always results in a simple
fan-planar drawing, thereby giving rise to an alternative proof of Theorem 1. It would be interesting
to confirm or disprove this statement.
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