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Abstract. We present simpler algorithms for two closely related morphing prob-
lems, both based on the barycentric interpolation paradigm introduced by Floater and
Gotsman, which is in turn based on Floater’s asymmetric extension of Tutte’s classical
spring-embedding theorem.

First, we give a very simple algorithm to construct piecewise-linear morphs between
planar straight-line graphs. Our algorithm entirely avoids the classical edge-collapsing
strategy dating back to Cairns; instead, in each morphing step, we interpolate the pair
of weights associated with a single edge. Specifically, given equivalent straight-line
drawings I'g and I'; of the same 3-connected planar graph G, with the same convex
outer face, we construct a morph from I'y to I'; that consists of O(n) unidirectional
morphing steps, in O(n1+“/2) time, where n is the number of vertices and w is the
matrix multiplication constant.

Second, we describe a natural extension of barycentric interpolation to geodesic
graphs on the flat torus. Barycentric interpolation cannot be applied directly in this
setting, because the linear systems defining intermediate vertex positions are not nec-
essarily solvable. We describe a simple scaling strategy that circumvents this issue.
Computing the appropriate scaling requires O(n®/?) time, after which we can compute
the drawing at any point in the morph in O(n“’/ 2) time. Our algorithm is considerably
simpler than the recent algorithm of Chambers, Erickson, Lin, and Parsa, and pro-
duces more natural morphs. Our techniques also yield a simple proof of a conjecture
of Connelly, Henderson, Ho, and Starbird for geodesic torus triangulations.
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1 Introduction

Computing morphs between geometric objects is a fundamental problem that has been well studied,
with many applications in graphics, animation, modeling, and more. A particularly well-studied
setting is that of morphing between planar straight-line graphs. Formally, a morph between two
equivalent planar straight-line graphs I'y and I'; consists of a continuous family of planar straight-
line graphs I'; starting at I'g and ending at I'y.

We describe an extremely simple morphing algorithm for planar graphs, which simultaneously
obtains properties of two earlier approaches: Floater and Gotsman’s barycentric interpolation
method [30,32,58-60] results in morphs that are natural and visually appealing but are represented
implicitly; variations on Cairns’ edge-collapse method [1,9, 10,42, 61] result in efficient explicit
representations of morphs that are not useful for visualization. Our new algorithm efficiently
computes an explicit piecewise-linear representation of a morph between drawings of the same
3-connected planar graph, that are potentially more useful for visualization than morphs based on
Cairns’ method.

We also extend Floater and Gotsman’s planar morphing algorithm to geodesic graphs on the flat
torus. Recent results of Luo, Wu, and Zhu [48] imply that Floater and Gotsman’s method directly
generalizes to morphs between geodesic triangulations on surfaces of negative curvature, but a
direct generalization to the torus generically fails [56]. Our extension is based on a simple scaling
strategy, and it yields more natural morphs than previous algorithms based on edge collapses [12].
Finally, our arguments yield a straightforward proof of a conjecture of Connelly, Henderson, Ho,
and Starbird [18] on the structure of the deformation space of geodesic triangulations of the torus.

1.1 Related Work
1.1.1 Planar Morphs

The history of morphing arguably begins with Steinitz [57, p. 347], who proved that any 3-
dimensional convex polyhedron can be continuously deformed into any other convex polyhedron
with the same 1-skeleton.

Cairns [9,10] was the first to prove the existence of morphs between arbitrary equivalent planar
straight-line triangulations, using an inductive argument based on the idea of collapsing an edge
from a low-degree vertex to one of its neighbors. Thomassen [61] extended Cairns’ proof to arbitrary
planar straight-line graphs. Cairns and Thomassen’s proofs are constructive, but yield morphs
consisting of an exponential number of steps.

Floater and Gotsman [30] proposed a more direct method to construct morphs between planar
drawings, based on an extension by Floater [28] of Tutte’s classical spring embedding theorem [64].
Let T" be a planar crossing-free straight-line drawing of a planar graph G, such that the boundary
of every face of I' is a strictly convex polygon, meaning the interior angle at every vertex is strictly
less than m. We formally consider each edge of G to be a pair of oppositely directed half-edges or
darts. Then every interior vertex in I' is a strict convex combination of its neighbors; that is, we
can associate a positive weight \,_, with each dart u—v in G, such that the vertex positions p,
in I" satisfy the linear system

Z Ao (Py — Pu) = (0,0) for every interior vertex u; (1)

u—v
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we emphasize that the sum is over the darts leaving u. Floater [28] proved that given arbitrary!
positive weights \,_,, and an arbitrary convex outer face, solving linear system (1) yields a straight-
line drawing of G with convex faces. Tutte’s original spring-embedding theorem [64] is the special
case of this result where every dart has weight 1, but his proof extends verbatim to arbitrary
symmetric weights, where A\, = \,_,, for every edge uv [39, 54, 62].

Floater and Gotsman [30] construct a morph between two convex drawings of the same planar
graph G, with the same outer face, by linearly interpolating between weights A,_, consistent
with the initial and final drawings. Suppose the input graph G has n vertices. Appropriate
initial and final weights can be computed in O(n) time using, for example, Floater’s mean-value
coordinates [29,40] or an averaging scheme also proposed by Floater [27,30]. The resulting morphs
are natural and visually appealing. However, the motions of the vertices are only computed
implicitly; vertex positions at any time can be computed in O(n®/?) time by solving a linear
system via nested dissection [4,45], where w < 2.37286 is the matrix multiplication exponent [3,44].?
Gotsman and Surazhsky generalized Floater and Gotsman’s technique to arbitrary planar straight-
line graphs [32,58-60].

A long series of later works, culminating in a paper by Alamdari, Angelini, Barrera-Cruz, Chan,
Da Lozzo, Di Battista, Frati, Haxell, Lubiw, Patrignani, Roselli, Singla, and Wilkinson [1], describe
an efficient algorithm to construct planar morphs with explicit piecewise-linear vertex trajectories,
all ultimately based on Cairns’ inductive edge-collapsing strategy. Given any two equivalent planar
crossing-free straight-line drawings of the same n-vertex planar graph, the resulting algorithm
constructs a morph cousisting of O(n) unidirectional morphing steps, in which all vertices move
along parallel lines at fixed speeds. Thus, each vertex moves along a piecewise-linear path of
complexity O(n), and the entire morph has complexity O(n?). These results require several delicate
arguments; in particular, to perturb the pseudomorphs defined by edge collapses and their reversals
into true morphs. Recent results of Klemz [43] imply that this algorithm can be implemented to
run in O(n?logn) time on an appropriate real RAM model of computation. The resulting morph
contracts all vertices into an exponentially small neighborhood and then expands them again, so
it is not useful for visualization.

Angelini, Da Lozzo, Frati, Lubiw, Patrignani, and Roselli [5] consider the setting of convexity-
preserving morphs between convex drawings, wherein every face remains strictly convex throughout
the morph. Kleist, Klemz, Lubiw, Schlipf, Staals, and Strash [42] consider morphing to convex-
ify any 3-connected planar drawing; specifically, convezity-increasing morphs wherein any angle
that becomes convex during the morph remains convex throughout the rest of the morph. Both
describe algorithms that produce piecewise-linear morphs consisting of O(n) steps, and that can
be implemented to run in time O(n'*t</2). (Klemz [43] conjectures that both running times can
be improved to O(n?logn).) Combining these algorithms results in an alternative piecewise-linear
morph between 3-connected planar drawings.

1.1.2 Toroidal Morphs

Until recently, very little was known about morphing on tori or other more complex surfaces.
Tutte’s spring-embedding theorem was generalized to simple triangulations of surfaces with non-
positive curvature by Colin de Verdiére [17] and independently by Hass and Scott [35]. Delgado-

IFloater’s presentation assumes that >
essary.

2By solving the underlying linear system symbolically, it is possible to express the motion of each vertex as a
rational function of degree n — 1, but computing vertex coordinates at any particular time from this representation
requires O(n2) time.

wow Mu—v = 1 for every interior vertex v, but this assumption is unnec-
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Friedrichs [22], Lovdsz [46], and Gortler, Gotsman, and Thurston [31] also independently proved
an extension of Tutte’s theorem to graphs on the flat torus whose universal covers are simple and
3-connected. For any toroidal graph and any assignment of positive symmetric weights to the darts,
solving a linear system similar to (1) yields vertex positions of a geodesic drawing with strictly
convex faces [25,31]; see Section 2 for details. Thus, if two isotopic toroidal crossing-free geodesic
drawings I'g and I'; can both be described by symmetric dart weights, linearly interpolating those
weights yields a morph from T’y to Iy [16]; in light of the authors’ toroidal Maxwell-Cremona
correspondence [25], this can be seen as a natural toroidal analogue of Steinitz’s theorem on
morphing convex polyhedra [57].

The restriction to symmetric weights is both nontrivial and significant. In a toroidal crossing-
free geodesic drawing with (strictly) convex faces, every vertex can be described as a convex
combination of its neighbors, but not necessarily with symmetric weights. Moreover, the linear
system expressing vertex positions as convex combinations of its neighbors is rank-deficient, and
therefore is not solvable in general; see Appendix A for an example. Thus, Floater’s asymmetric
extension of Tutte’s theorem does not directly generalize to the flat torus.

For similar reasons, Floater and Gotsman’s planar morphing algorithm also does not generalize.
Suppose we are given two isotopic toroidal crossing-free geodesic drawings I'g and I'y, each with
dart weights that express their vertices as convex combinations of their neighbors. Unfortunately,
in general, interpolating those weights yields linear systems that have no solution; we give a simple
example in Appendix A.

Steiner and Fischer [56] modify the system by fixing a single vertex, restoring full rank. How-
ever, solving the modified system does not necessarily yield a crossing-free drawing, because the
fixed vertex may not lie in the convex hull of its neighbors.?> Moreover, even though the initial and
final weights are consistent with crossing-free drawings, averages of those weights may not be. We
give an example of this bad behavior in Appendix A.

Chambers, Erickson, Lin, and Parsa [12] described the first algorithm to morph between ar-
bitrary essentially 3-connected toroidal crossing-free geodesic drawings. Their algorithm uses a
combination of Cairns’ edge-collapsing strategy and spring embeddings to construct a morph con-
sisting of O(n) unidirectional morphing steps, in O(n'**/2) time. Like planar morphs built from
edge collapses, these toroidal morphs contract vertices into small neighborhoods and thus are not
suitable for visualization.

Recently, Luo, Wu, and Zhu [48] generalized Floater’s theorem to geodesic triangulations of
arbitrary closed Riemannian 2-manifolds with strictly negative curvature, extending the spring-
embedding theorems of Colin de Verdiére [17] and Hass and Scott [35] to asymmetric weights. Their
result immediately implies that if two geodesic triangulations of such a surface are homotopic, then
linearly interpolating the dart weights yields a continuous family of crossing-free geodesic drawings,
or in other words, a morph. Their result applies only to surfaces with negative Euler characteristic;
alas, the torus has Euler characteristic 0.

1.2 New Results

We describe two applications of Floater and Gotsman’s barycentric interpolation strategy, which
yield simpler algorithms for planar and toroidal morphing.

First we describe a very simple algorithm to construct piecewise-linear morphs between planar
crossing-free straight-line drawings. Given two equivalent planar straight-line crossing-free straight-

3Steiner and Fischer incorrectly claim [56, Section 2.2.1] that the resulting drawing has no “foldovers” except at
the fixed vertex and its neighbors; see Appendix A.
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line drawings I'g and I'; with strictly convex faces and the same outer face, we construct a morph
from Ty to Ty that consists of O(n) unidirectional morphing steps, in O(n'T“/?) time. Our
morphing algorithm computes barycentric weights for the darts in I'y and I'; in a preprocessing
phase, and then for each morphing step, interpolates only the pair of weights associated with
a single edge. Our key observation is that changing the weights for a single edge e moves all
vertices in the Floater drawing along lines parallel to e, implying that interpolation corresponds to
a unidirectional morph. (The same observation was made for symmetric edge weights by Chambers
et al. [12].) Our algorithm is significantly simpler than that of Angelini et al. [5] for computing
convexity-preserving morphs. We then extend our algorithm to drawings with non-convex faces,
using a simple alternative approach to that of Kleist et al. [42]. Figure 1 shows a morph computed
by our algorithm; in each frame, the weights of the bold red edge are about to change.

A A DA A
AA A A A

Figure 1: Incrementally morphing between planar graphs.

Next, we describe a natural extension of Floater and Gotsman’s method to geodesic drawings on
the flat torus. Our key observation is that barycentric dart weights can be scaled so that barycentric
interpolation works. Specifically, we call a weight assignment morphable if every column of the
resulting Laplacian linear system sums to zero; averages of morphable weights are morphable.
Given any weight assignment consistent with any convex drawing, we can guarantee morphability
by scaling the weights of all darts leaving each vertex v—or equivalently, scaling each row of the
linear system—Dby a common positive scalar «,. This scaling obviously has no effect on the solution
space of the system. Positivity of the scaling vector « follows from a weighted directed version of
the matrix-tree theorem [8,20,63], or from the Perron-Frobenius theorem [14]. We can compute
the appropriate scaling in O(n‘“/ 2) time, after which we can compute any intermediate drawing in
O(n*/?) time, matching the performance of Floater and Gotsman exactly. The resulting morphs are
natural and visually appealing, and our proofs of correctness are considerably simpler than those
of Chambers et al. [12]. However, unlike Chambers et al., our new morphing algorithm does not
compute explicit vertex trajectories. Figure 2 shows a morph computed by our algorithm between
two randomly shifted 6 x 6 toroidal grids. (The authors’ Python implementation is available on
request.)

It remains an open question whether our results can be combined to compute explicit low-
complexity piecewise-linear toroidal morphs without edge collapses. We offer some preliminary
observations in Appendix B.
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Figure 2: Morphing between randomly shifted toroidal grids.

2 Definitions and Notation

2.1 Plane Graphs

Any planar straight-line drawing I" of an n-vertex graph can be represented by a position matrix
P ¢ R™"¥2 each row p, of which gives the location of some vertex v. Thus, each edge uv is
drawn as the straight-line segment p,p,. We call a planar drawing convez if it is crossing-free,
every bounded face is a strictly convex polygon, and the outer face is the complement of a strictly
convex polygon.

Formally, we regard each edge of any graph as a pair of opposing half-edges or darts, each
directed from its tail to its head. We write rev(d) to denote the reversal of any dart d. For simple
graphs, we write u—v to denote the dart with tail v and head v. A barycentric weight vector for T’
assigns a positive real number \,_,, to every dart u—wv of a graph, so that the vertex positions p,
satisfy Floater’s linear system (1). Conversely, for a fixed graph G with a fixed strictly convex outer
face, the Floater drawing I' of G with respect to a positive weight vector ) is the unique drawing
whose vertex positions p, satisfy system (1). We call a weight vector A symmetric if A\g = Apey(a)
for every dart d.

A morph between two planar drawings I'g and I'y is a continuous family of crossing-free draw-
ings I'y parametrized by time, starting at I'g and ending at I'y. A morph is linear if each vertex
moves along a straight line at constant speed, and piecewise-linear if it is the concatenation of
linear morphs. Any piecewise-linear morph can be described by a finite sequence of straight-line
drawings, or their position matrices. A linear morph is unidirectional if vertices move along parallel
lines.

2.2 Torus Graphs

The flat torus is the quotient space T = R?/Z?, also obtained by identifying opposite sides of the
unit square [0,1]%. A geodesic on the flat torus is the image of a line segment in R? under the
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projection map m: R? — T where 7(z,y) = (z mod 1,y mod 1).*

A (crossing-free) geodesic torus drawing T of a graph G maps its vertices to distinct points
in T and its edges to simple, interior-disjoint geodesics. We explicitly consider geodesic drawings
of graphs with loops and parallel edges. We write d : u—v to declare that d is a dart with tail u
and head v; we emphasize that (unlike in planar setting) there may be more than one such dart;
see Figure 3 for an example.

Every geodesic torus drawing I' of a graph G is the projection of an infinite, doubly-periodic
planar straight-line graph T, called the universal cover of T’ [12]; see Figure 3 for an example.
We call T' essentially simple if its universal cover T is simple, and essentially 3-connected if T is
3-connected [50,51]. Finally, we call " a convexr drawing if every face of I" is strictly convex. Every
convex torus drawing is both essentially simple and essentially 3-connected, since every infinite
planar graph with strictly convex faces is 3-connected [21].

Coordinate representations. Following Chambers et al. [12], we use a coordinate representa-
tion (P, 1) for geodesic torus drawings that records

e a position vector p, € R? for each vertex v, and
e a translation vector T4 € Z? for each dart d, such that Treo(d) = —Td-

These vectors indicate that each dart d : u—v is drawn as the projection of a line segment from p,,
to p, + 74 in the universal cover I'. In particular, if we normalize all vertex positions to the half-
open unit square [0, 1)2, then each translation vector 74 indicates the number of times d crosses the
vertical boundary of the unit square to the right, and the number of times d crosses the horizontal
boundary of the unit square upward. In practice, however, such normalization is not necessary.

/ ,5/

R RAR

Figure 3: A crossing-free geodesic torus drawing, its universal cover, and translation vectors for
the four darts from w to v. The graph also contains loops at v and at v.

Two crossing-free drawings of the same graph on the flat torus are isotopic if one can be
deformed into the other through a continuous family of (not necessarily geodesic) crossing-free

4Identifying opposite sides of any other parallelogram yields a different flat torus; all flat tori are related by
homeomorphisms induced by linear transformations that map geodesics to geodesics, and therefore map morphs to
morphs. Thus, like Chambers et al. [12], our results also automatically apply to crossing-free geodesic drawings on
any flat torus.
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drawings; such a deformation is called an isotopy. Two crossing-free geodesic drawings are isotopic
if and only if their coordinate representations can be normalized so that their translation vectors
agree; this condition can be tested in O(n) time [12, Theorem A.1], [15] where, as usual, n is the
number of vertices. A geodesic isotopy or morph is an isotopy in which all intermediate drawings
are geodesic.

Barycentric weights. In any convex toroidal drawing I', the position p, of each vertex v can
be expressed as a convex combination of its neighbors, as follows. We can assign a weight Ay > 0
to each dart d such that any coordinate representation (P, 7) of T" satisfies the linear system

Z Z Ad(Py — pu + 74) = (0,0) for every vertex u. (2)
v d:u—v

Note that since we explicitly allow self-loops, there may be darts d : u—u that contribute a value
of A\g74 to this sum.
We can express this linear system in matrix notation as L*P = H*, where

SN xa iti=j

Lg\j _ ] K dink and H)} = Z Z AdTd (2)
Z —d otherwise T diiog
d:ii—j

The (unnormalized, asymmetric) Laplacian matrix L* has rank n — 1 [56]. We call any positive
weight vector \ satisfying system (2) barycentric for T'. Barycentric weights for any convex torus
drawing can be computed in O(n) time using, for example, Floater’s mean-value coordinates [29,40].

On the other hand, suppose we fix the graph G and translation vectors 74 consistent with an
essentially 3-connected drawing of G. Then for any positive weight vector A, any solution to linear
system (2) gives the vertex positions p, of a convex drawing I'* of G' [31]. In this case, we say that
the Floater drawing T realizes the weight vector \, and we call the weight vector A realizable for
the graph G. Every realizable weight vector is realized by a two-dimensional family of drawings
that differ by translation.

Every symmetric positive weight vector (where Ay = A,ey(a)) is realizable: for any assignment
of positive weights to the edges of G, there is a corresponding convex torus drawing [17,22,31, 35,
46]. Realizable weights are not necessarily symmetric: there are convex torus drawings with only
asymmetric barycentric weights. Conversely, positive asymmetric weights are not always realizable.

3 Morphing Plane Graphs Edge by Edge

Fix a 3-connected planar graph G. Suppose we want to morph between two crossing-free straight-
line drawings of G with the same convex outer face. We describe a very simple algorithm to morph
between such drawings that combines the benefits of both the Floater and Gotsman approach [30,
32,58-60] and the Cairns approach [1,9,10,42,61]. Specifically, our algorithm constructs a morph
consisting of O(n) unidirectional morphing steps, in O(nl“““/ 2) time; moreover, because our morphs
do not use edge collapses, they are potentially good for visualization.

Some of our planar morphing algorithms rely on a slight generalization of Floater’s embedding
theorem [28] that allows some darts to have weight zero. For any non-negative weight vector A,
let G denote the directed graph induced by darts of G whose weights are positive. Recall that
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a directed graph is strongly 3-connected if there are at least three vertex-disjoint paths from any
vertex to any other vertex, or equivalently by Menger’s theorem, if deleting any two vertices leaves
a strongly connected subgraph.

Theorem 1 Let G be a planar graph with a fized, strictly convex outer face, and let A be an
assignment of non-negative weights to the darts of G. If the directed graph G induced by positive
darts is strongly 3-connected, then linear system (1) has a unique solution, which describes a convex
drawing of G.

Theorem 1 follows immediately from a similar theorem of Haas, Order, Rote, Santos, Servatius,
Servatius, Souvaine, Streinu, and Whiteley [34, Theorem 8], which uses a weaker connectivity
condition.

Let p) denote the position of vertex v in the Floater drawing I'* of G' with respect to weight
vector A. The following key lemma is a planar asymmetric version of Lemma 5.1 of Chambers
et al. [12]. Intuitively, it states that changing the weights of the darts of a single edge e moves
each vertex in the Floater drawing along lines parallel to e.

Lemma 1 Let G be a 3-connected planar graph with a fized, strictly convex outer face. Let A and p
be arbitrary non-negative weight vectors such that the directed graphs Gy and G,, are strongly 3-
connected. Suppose Ng # fid O Npew(d) 7 Hrew(d) for some dart d, but A\ = pg for all darts
d' ¢ {d,rev(d)}. Then for each interior vertex w, the vector p — p)\ is parallel to the drawing of d
in T2,

Proof: Theorem 1 implies that the Floater drawings I'* and I'* are well-defined convex drawings
of G.

Suppose d has tail v and head v, and (by rotating the drawing if necessary) that d is drawn
parallel to the z-axis. For each vertex i, let y?* and yt be the y-coordinates of points p) and P,
respectively. In particular, that y) = y). We need to prove that y) = y# for every vertex w.

Projecting linear system (1) for A onto the y-axis gives us

Z Aissj (y]’\ - yf‘) =0 for each interior vertex 1. (3)

i—J

Swapping entries of A\ with corresponding entries of u in the system (3) changes at most two
constraints, corresponding to the two endpoints u and v of d. Moreover, in each changed constraint,
the single changed coefficient is multiplied by 3} — ¥ = v} — y) = 0, so the yi)"s also solve the
corresponding system for p. Since the system (3) and its counterpart for u each have a unique
solution [34], we conclude that y) = y* for every vertex w. O

3.1 Morphing Convex Drawings

We make use of the following lemma:

Lemma 2 (Chambers et al. [12, Lemma 5.2]) Let pop1, qoq1, and ror1 be arbitrary parallel
segments in the plane. For all real 0 <t < 1, define pr = (1 —t)po + tp1 and g = (1 —t)qo + tq1
and ry = (1 — t)rg + tr1. If the triples po,qo, o and p1,q1,7m1 are oriented counterclockwise, then
for all0 <t <1, the triple ps, qs, 7+ is also oriented counterclockwise.
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Under the assumptions of Lemma 1, consider the intermediary drawings resulting from linearly
interpolating vertex positions from I'* to I'*. Applying Lemma 2 to each angle in the initial and
final drawings implies that the angle maintains its orientation in all the intermediary drawings.
In other words, no crossings can be introduced—all intermediate drawings are crossing-free. Put
more simply, linear interpolation of vertex positions from I'* to I'* yields a unidirectional linear
morph. (Alamdari et al. used a similar observation [1, Corollary 7.2].)

It follows that we can derive a planar morph between equivalent conver drawings through a
sequence of at most 3n—9 unidirectional linear morphing steps, one for each internal edge, using the
algorithm in Figure 4. Initial and final barycentric weight vectors can be found in O(n) time using,
for example, Floater’s mean-value method [29,40]. Each intermediate drawing can be computed
in O(n®/?) time using nested dissection [4,45], for a total running time of O(n'+</?).

MORPHCONVEX (Dgtart, Lend):
A < barycentric weights for Tgtart
1 < barycentric weights for I'epg
k<0
for each internal edge e
k+—k+1
d < a dart of e
Ad = fig
)‘Tev(d) < Hreo(d)
Fk < FA
return Dgpart, ['1, 2, .., Tk (= Tena))

Figure 4: Algorithm for morphing between convex planar drawings.

Because all Floater drawings are convex, the planar morph produced by MORPHCONVEX is
actually a convexity-preserving piecewise-linear planar morph; all faces remain convex throughout
the morph. The existence of convexity-preserving morphs was first proved by Thomassen [61];
Angelini, Da Lozzo, Frati, Lubiw, Patrignani, and Roselli [5] described a piecewise-linear convexity-
preserving morph consisting of O(n) steps. Our algorithm is significantly simpler than that of
Angelini et al. [5].

Theorem 2 Given any two equivalent convex planar drawings with n vertices and the same convex
outer face, we can compute a morph between them consisting of at most 3n —9 unidirectional linear
morphing steps, in O(n*+t</?) time.

3.2 Morphing Non-convex Drawings

We can extend the previous algorithm to non-convex drawings, by morphing through intermediate
convex drawings, using a similar edge-by-edge method. Specifically, we morph any 3-connected
planar crossing-free straight-line drawing I' with a convex outer face into an equivalent convex
drawing, as shown in the CONVEXIFY method as shown in Figure 5.

First, we add edges to I' to decompose its interior faces into convex polygons, for example by
triangulating every face, and compute barycentric weights for the resulting convex drawing K.
Let H denote the underlying graph of K. Then, one by one, for each added edge e, we reduce
the weights of e to zero and compute a new Floater drawing of H. Because the input graph G is
3-connected, the directed graph induced by the positive darts of H is always strongly 3-connected;
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CONVEXIFY(I):

K <+ convex decomposition of I'

A < barycentric weights for K MORPH(I'start, Pena):
k0 Stefore <= CONVEXIFY (I'ggart)

for each edge e in K \ T’ Ihefore ¢ last drawing in Shefore

Eek+1 Satter $ CONVEXIFY (Tepnq)

d + a dart of e Fafter <« last drawing in Safter

Ag <0 Seconvex < MORPHCONVEX (Tbefores Lafter)
Are'u(ul) +0

return Sbefore; SCOHV6X7 reverse(safter)

I';, « K* without new edges
return ', 'y, s, ..., Tk

Figure 5: Algorithm for morphing between general planar straight-line drawings.

thus, in each iteration, Theorem 1 implies that the resulting Floater drawing K> is a convex
drawing of H.> Again, each Floater drawing K* can be computed in O(n*/2) time. Dropping
the added edges yields a sequence of convex drawings I'y,I's, ..., Tk, all equivalent to I' and with
the same outer face. Lemmas 1 and 2 imply that for each index j, linearly interpolating vertex
positions from I';_; to I'; yields a unidirectional linear morph; concatenating these unidirectional
linear morphing steps yields a morph from I' to the final convex drawing I'y.

Because the input graph G is 3-connected, every vertex has degree at least 3, so G has at
least 1.5n edges. On the other hand, Euler’s formula implies that our initial and final convex
decompositions have at most 3n — 6 edges, and therefore at most 3n — 9 internal edges. Thus, each
of our convex decompositions requires at most 1.5n — 6 additional edges. Let x be the maximum
number of additional edges needed in either convex decomposition. In this case G' can have at most
3n —9 — x internal edges, and so our morph consists of at most t+ (3n—9—xz)+z=3n—9+2x <
4.5n — 15 unidirectional linear morphing steps. In summary:

Theorem 3 Given any two equivalent 3-connected planar crossing-free straight-line drawings with
n vertices and the same convex outer face, we can compute a morph between them consisting of at
most 4.5n — 15 unidirectional linear morphing steps, in O(n1+w/2) time.

3.3 Convexity-Increasing Morphs

Our algorithm CONVEXIFY is arguably simpler than that of Kleist et al. [42], but unlike Kleist
et al., our algorithm is not necessarily convezity-increasing; it is possible for angles of interior faces
to change from convex to reflex during the morph. A slightly more complex variant of our algorithm
produces convexity-increasing morphs. At each iteration of the new algorithm, we explicitly set
the weights of all diagonal darts inside any convex angle to zero and recompute the weights of all
other darts from scratch; setting those diagonal dart weights to zero ensures that convex angles
remain convex in future iterations.

We start by computing an arbitrary convex decomposition K of the input drawing I', for
example by triangulating every face. We call the new edges in K \ T diagonals.

We call a diagonal redundant if the union of the faces on either side is strictly convex, or
equivalently, if its removal from the convex subdivision results in a convex subdivision; we can test

5Tn fact, setting the weight on both darts of e to zero has exactly the same effect on linear system (1) as deleting
edge e from the graph, which means we can apply Floater’s theorem directly.
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the redundancy of any diagonal in constant time. We can easily ensure that our initial convex
decomposition K has no redundant diagonals [33,37,41], but as we morph K (and thus I'), new
diagonals will become redundant. Deleting a redundant edge leaves a coarser convex decomposition,
but may also make some other redundant edges non-redundant. We call a diagonal dart u—wv
irrelevant if u lies inside a convex corner of some face of I'; we emphasize that the reversal of an
irrelevant dart may not be irrelevant. A dart is relevant if it is not irrelevant.

Let H denote the underlying graph of the convex decomposition K. Our morphing algorithm
changes the weights of some darts in H to zero, but only darts of diagonals; every dart of the
input graph G has positive weight throughout the entire algorithm. As a result, the directed
graph H, induced by positive-weight darts is always strongly 3-connected, which allows us to
apply Theorem 1.

Let Ky = K be the initial convex decomposition of I', and let I'j = I'. For each positive
integer k, the kth iteration of our algorithm proceeds as follows.

e Identify all irrelevant darts in the convex decomposition Kj_1 computed in the previous
iteration.

e Compute a barycentric weight vector ug_1 for K1 by setting the weights of all irrelevant
darts to zero, and computing weights for the relevant darts leaving each vertex using Floater’s
mean-value method [29,40].

e Choose an arbitrary diagonal ey in Kj_1, change the weights of both of its darts to zero, and
compute a new Floater drawing K}, with respect to the resulting weight vector A\;. Theorem 1
implies that every face of K}, is strictly convex.

e Delete the (now redundant) diagonal ey, and optionally any other redundant diagonals, from
K.

e Finally, let 'y be the restriction of K to the original graph G.

Because the weight vectors pup—; and )\; differ on exactly one edge, Lemmas 1 and 2 imply that
linearly interpolating vertex positions from I'y_; to I'y yields a unidirectional linear morph. We
emphasize that the weight vectors A\ and pj are not necessarily equal, even though both are
consistent with the drawing K. The running time of each iteration is dominated by the time to
compute the Floater drawing K. Because every iteration decreases the number of diagonals, the
number of iterations is O(n), so the overall running time of our algorithm is still O(n!++/2).

It remains to argue that the resulting morph is convexity-increasing. Consider an arbitrary
convex corner uvw of an arbitrary face of I'y_y. All diagonal darts in Kj_; that leave v inside
the wedge bounded by v—u and v—w are irrelevant, and thus are given weight 0. In the new
drawing K}, vertex v is a weighted average of its out-neighbors in the directed graph induced by
positive-weight darts. Because darts v—u and v—w have positive weights, it follows that corner
uvw is convex in I'y. Finally, Lemmas 1 and 2 imply that this corner remains convex as we
interpolate vertices from I'y_1 to I'y.

Theorem 4 Given any 3-connected planar straight-line drawing with n vertices and a convex outer
face, we can compute a convexity-increasing morph to an equivalent convex planar drawing with the
same outer face, consisting of at most 1.5n — 6 unidirectional linear morphing steps, in O(n*+</2)
time.
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3.4 Remarks on the Model of Computation

The algorithm of Alamdari et al. [1] requires a slightly nonstandard real RAM model of computa-
tion that supports exact square and exact cube roots. In contrast, Floater’s mean-value weights
can be expressed in terms of areas and Euclidean lengths [40], which require only square roots to
evaluate exactly. If initial and final barycentric weights are given, both Floater and Gotsman’s mor-
phing algorithm [30] and our incremental algorithm use only basic arithmetic operations: addition,
subtraction, multiplication, and division.

Even without exact roots, any integer-RAM or floating-point implementation of our morphing
algorithm must contend with precision issues. A careful implementation of Alon and Yuster’s
nested dissection algorithm [4] solves Floater’s linear system (1) exactly in O(n'*t</2 polylogn) bit
operations, assuming all dart weights A,_, are O(logn)-bit integers [4,6]. Thus, at least when
all weights are given as part of the input, an exact implementation of our morphing algorithm
runs in O(n?+*/2 polylogn) on a standard integer RAM. Coordinates of Tutte/Floater drawings
can require (n) bits of precision to avoid collapsing or crossing edges [23,24]; a canonical bad
example is shown in Figure 6. Thus, the near-linear cost of exact arithmetic is unavoidable in the
worst case.

Shen, Jiang, Zorin, and Panozzo [55] observe that floating-point implementations of Tutte’s
algorithm suffer from robustness issues in practice. Shen et al. describe an iterative procedure
to repair floating-point-Tutte drawings; however, it is unclear whether a similar procedure can be
used to avoid precision issues in our algorithm while maintaining continuity of the resulting morph.
It is also unclear whether precision issues in our algorithm can be avoided, or at least minimized,
by carefully choosing the order in which edge weights are changed and/or by morphing through a
carefully chosen intermediate drawing.

@

Figure 6: A family of weighted Floater drawings consisting of nested squares, with 2, 5, and 10
layers, respectively.

4 Morphable Weight Vectors on the Flat Torus

As observed by Steiner and Fischer [56], Floater and Gotsman’s morphing algorithm does not
directly generalize to the toroidal setting, since not all positive weight vectors A are realizable. In
particular, given arbitrary barycentric weights A(0) and A(1) of two isotopic convex torus drawings,
intermediate weights A(t) := (1 — t)A\(0) + ¢tA(1) are not necessarily realizable; see Appendix A for
an example. Thus, interpolating barycentric weights does not necessarily give us a morph.

To bypass this issue, we identify a subspace of weight vectors, which we call morphable, such that
every convex torus drawing has a morphable barycentric weight vector, every morphable weight
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vector is realizable, and convex combinations of morphable weights are morphable. Specifically, a
positive weight vector X is morphable if each column of the matrices L» and H» sums to 0.° The
following lemma is immediate:

Lemma 3 Convexr combinations of morphable weight vectors are morphable.
Lemma 4 FEvery morphable weight vector is realizable.

Proof: If ) is a morphable weight vector, then the nth row of the linear system L P = H* is
implied by the other n — 1 rows, so we can remove it. The resulting abbreviated linear system still
has rank n — 1, so it has a (unique) solution. O

Lemma 5 FEvery symmetric weight vector is morphable.

Proof: For every weight vector A, each row of the Laplacian matrix L* sums to zero. If the weight
vector \ is symmetric, then the matrix L* is also symmetric, so its columns also sum to zero. On
the other hand, if A is symmetric, then the the linear system L*P = H” is solvable [31], which
implies that the columns of H* also sum to zero. (|

Lemma 6 Given a barycentric weight vector \ for a convez torus drawing I', a morphable barycen-
tric weight vector for T' can be computed in O(n“/z) time.

Proof: The matrix L* has rank n — 1, so there is a one-dimensional space of (row) vectors
a = (aq,...,0p) such that aL* = (0,...,0). We can compute a non-zero vector a in O(n*/2)
time using nested dissection [2,4,45].

We will show that we can choose all «; to be positive; since the space of solutions « is one-
dimensional, any such a we compute must have entries of all the same sign and thus we can assume
positivity by multiplying by —1 if necessary. Our proof that all «; can be chosen to be positive will
be by a directed version of the matrix tree theorem [8,20,63]; see also Cohen et al. [14, Lemma 1]
for an alternate proof using the Perron-Frobenius theorem. Let G* be the weighted directed
graph whose weighted arcs correspond to the weighted darts of the underlying graph G of I'. An
inward directed spanning tree is an acyclic spanning subgraph of G* where every vertex except
one (called the root) has out-degree 1. The weight of an inward directed spanning tree is the
product of the weights of its arcs. For each i, let «; be the sum of the weights of all inward
directed spanning trees rooted at vertex ¢; we have «; > 0 because all dart weights are positive.
The directed matrix tree theorem implies that oL = 0, as required; for an elementary proof, see
De Leenheer [20, Theorem 3].

Define a new weight vector p by setting p1q := @qi(q)Aa for each dart d. For each index i, we
immediately have L!'P = a,L)P = o;H} = HY, where P is the position matrix for T, so p is in
fact a barycentric weight vector for I'. Finally, we observe that (1,...,1)L* = aL* = (0,...,0)
and (1,...,1)H* = aH* = aL*P = (0,...,0)P = (0,0), which imply that x is morphable. O

Theorem 5 Given coordinate representations of two isotopic essentially 3-connected toroidal crossing-
free geodesic drawings I'y and T'y, we can efficiently compute a morph from I'g to I'1. Specifically,
after O(n‘*’/ 2) preprocessing time, we can compute any intermediate drawing during the morph in
O(n/?) time.

6Directed graph Laplacians whose columns sum to zero are also called Eulerian; Cohen et al. [14] refer to the
scaling process described by Lemma 6 as Eulerian scaling.
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Proof: Suppose I'y and I'; are convex drawings. First, if necessary, we normalize the given
coordinate representations so that their translation vectors agree, in O(n) time [12, Theorem A.1].
Then we find barycentric weight vectors A(0) and A(1) for Ty and I'y, respectively, in O(n) time, for
example using Floater’s mean-value coordinates [29,40]. Following Lemma 6, we derive morphable
weights (0) and p(1) from A(0) and A(1), respectively, in O(n®/2) time. Finally, given any real
number 0 < t < 1, we set pu(t) := (1 —)u(0) +tu(1) and solve the linear system L*®) P(t) = [ru(t)
for the position matrix P(*) of an intermediate drawing I'*(Y); Lemmas 3 and 4 imply that this
system is solvable. The function ¢ — I'*(*) is a convexity-preserving morph between I'y and T'.

If the faces of I'yg or I'; are not convex, we morph through an intermediate convex drawing,
similarly to Chambers et al. [12, Theorem 8.1]. Let ', be the Floater drawing of G obtained by
setting every dart weight to 1. Compute any triangulation Ty of I'g, and then triangulate the
convex faces I', using the same diagonals, to obtain a triangulation T, isotopic to Ty. Assign
weight 0 to the darts of the diagonals in T, \ T'x to obtain a barycentric weight vector p., for Ty,
which is symmetric and therefore morphable, by Lemma 5. Derive morphable weights pg for Ty
using mean-value coordinates [29,40] and Lemma 6. Then we can morph from T to T, by weight
interpolation, using the weight vector u(t) := (1 — 2¢)ug + 2tp, for any 0 < ¢ < 1/2. Ignoring the
diagonal edges gives us a morph from I’y to I',. A symmetric procedure yields a morph from T,
to Fl. O

4.1 Deformation Space of Geodesic Torus Drawings

Our techniques also imply a stronger theorem about the space of all crossing-free geodesic drawings
in a particular isotopy class on the flat torus. Before we describe the result, we need to recall
some basic definitions from topology. For further topology background, we refer the reader to
Hatcher [36] or Munkres [52].

Let X and Y be arbitrary topological spaces. A homotopy between two continuous functions
f: X =Y and g: X — Y is a continuous function h: [0,1] x X — Y such that h(0,-) = f and
h(1,-) = g. Informally, any homotopy defines a continuous family of functions h(t,-) that morphs
f into g; an isotopy between graph drawings is a special type of homotopy. Spaces X and Y are
homotopy-equivalent if there are continuous functions f: X — Y and ¢g: Y — X such that the
compositions g o f and f o g are respectively homotopic to the identity functions on X and Y.
Space X is contractible if it is homotopy-equivalent to a single point.

Let T' be a straight-line triangulation of a convex polygon P with k interior vertices. Let
X(T") denote the space of all planar straight-line triangulations of P that are equivalent to I
Any triangulation equivalent to I' can be described by the locations of its interior vertices, so we
can regard X (T) as a subspace of R?*. Cairns’ morphing theorem [9, 10] implies that the space
X(T) is connected. Bloch, Connelly, and Henderson [7] proved that the space X(T') is actually
contractible. Simpler proofs of this theorem were recently given by Cerf [11] and Luo [47]. In
particular, Luo observed that the Bloch—Connelly-Henderson theorem follows immediately from
Floater’s barycentric embedding result; his argument applies more generally to strictly convex
drawings of 3-connected planar graphs.

Steinitz’s classical proof of his polyhedral morphing theorem [57] implies a similar structural
theorem for polyhedral representations of 3-connected planar graphs; see Richter-Gebert [54, Sec-
tion 13.3].

Connelly, Henderson, Ho, and Starbird [18] conjectured that every isotopy class of geodesic
triangulations on any surface S with constant curvature is homotopy-equivalent to the group
Isomg(S) of isometries of S that are homotopic to the identity. In particular, Isomgy(S?) is the
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rotation group SO(3) and Isomg(T) is the translation group S* x S'; for every other orientable
surface S without boundary, Isomg(S) is trivial [53]. Very recently, Luo, Wu, and Zhu proved this
conjecture for all surfaces of genus at least 2 [48] and for the flat torus [49]; both proofs rely on
nontrivial extensions of Floater’s theorem.

Here we offer a simpler proof for the flat-toroidal setting; in fact, we prove a more general result
about convex drawings instead of just triangulations.

Theorem 6 For any convex drawing I' on the flat torus T, the space of all convex drawings on T
that are isotopic to I' is homotopy equivalent to T.

Proof: Fix a convex drawing I'" of a graph G with n vertices and m edges; without loss of
generality, assume some vertex v is positioned at (0,0). Let X = X(T') denote the space of all
convex drawings of G isotopic to I', and let Xy = X(T") be the subspace of drawings in X where
vertex v is positioned at (0,0). Every drawing in X is a translation of a unique drawing in X, so
X = X x §' x S'. Thus, to prove the theorem, it suffices to prove that X is contractible.

Call a weight vector A € R3™ for I' normalized if Y, Aq = 1, where the sum is over all darts
of I'. Let R = R(T') denote the set of of all realizable weight vectors for T, and let M = M(T)
denote the set of all normalized morphable weight vectors for T'.

Lemma 3 implies that M is convex and therefore contractible. (Specifically, M is the interior
of a (2m — n — 2)-dimensional convex polytope in R?™.)

Call two realizable weight vectors A\, \ € R equivalent if there is a scaling vector o € R’} such
that A, = augayAa for every dart d. Because the Laplacian matrix L has rank n — 1, Lemma 6
implies that every realizable weight A € R is equivalent to a unique normalized morphable weight
u € M. It follows that R is homeomorphic to M x R’ and therefore contractible.

Now we follow the proof of Theorem 1.4 in Luo et al. [48]. Because every morphable weight is
realizable, solving linear system (2) gives us a continuous map ®: R — X. Floater’s mean-value
weights [29,40] give us a continuous map ¥: Xy — R such that ® o ¥ is the identity map on Xj.
Because R is contractible, the function ¥ o @ is homotopic to the identity map on R. We conclude
that Xg is homotopy equivalent to R and therefore contractible. |

5 Open Questions

It is natural to ask whether our “best-of-both-worlds” planar morph can be extended to drawings on
the flat torus. In Appendix B, we prove a toroidal analog of Lemma 1 for realizable weight vectors;
unfortunately, the main roadblock is that not all weight vectors are realizable. In particular, given
a realizable weight vector (morphable or not), it is not clear when changing the weights for a single
edge results in another realizable weight vector.

Several previous planar morphing algorithms [1,5,19,42] rely on a certain convexifying procedure
[13,38,42,43] and are (potentially) faster than our algorithm via the implementation recently
described by Klemz [43]. It is an open question whether this convexification procedure can be
extended to geodesic toroidal drawings.

One can also ask if the result can be extended to surfaces of higher genus. The recent results
of Luo et al. [48] imply that Floater and Gotsman’s planar morphing algorithm [30] extends to
geodesic triangulations on higher-genus surfaces of negative curvature; however, the existence of
(any reasonable analog of ) piecewise-linear morphs on such surfaces remains unknown.
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A Some Bad Examples

Here we provide several concrete examples showing that barycentric methods for drawing and
morphing planar graphs do not immediately generalize to drawings on the flat torus.

First, we give an infinite family of non-realizable positive weight vectors. Let G be any toroidal
graph, and consider the weight vector A\ that assigns weight 2 to a single dart d and weight 1 to
every dart other than d. (There is nothing special about the values 1 and 2 here: one can replace
1 and 2 with any two distinct integers and obtain a similar result.)

Lemma 7 ) is not a realizable weight vector for G.

Proof: Let u = tail(d) and v = head(d). For the sake of argument, suppose the linear system
LAP = H* has a solution; let T be the resulting drawing. This system remains solvable if we
remove row u and arbitrarily fix p,, [56]. All dart weights in this truncated linear system are equal
to 1, which implies that the drawing I'* is identical to the Floater drawing I'' for the all-1s weight
vector. Comparing the two linear systems, we conclude that p, — p, + 74 = (0, 0); that is, the edge
of d has length zero in T* = I''. But this is impossible; every edge in a Tutte drawing has non-zero
length [31, Lemma B.5]. O

Next, we give an example of two realizable weight vectors for the same torus graph whose
averages are not realizable. Consider the toroidal drawings of K7 shown in Figure 7, which differ
only in the position of vertex 2. We computed mean-value weights A and p for these drawings,
normalized so that the weights of all edges leaving each vertex sum to 1 [29,40]. Routine calculations
(which we implemented in Python) now imply that the average weight (A + 1)/2 is not realizable.

Finally, we consider Steiner and Fischer’s approach [56] of fixing a single vertex, which restores
the Laplacian linear system to full rank. The top row of Figure 8 shows two isotopic drawings of
a 12 x 12 toroidal grid, one with a single row of vertices shifted 1/2 to the left, the other with a
single column of vertices shifted 1/2 downward. Let A and A* respectively denote the normalized
mean-value weights for these drawings [29,40]. The bottom left image in Figure 8 shows the
Steiner-Fischer drawing for the weight A = (2A\*" 4+ \%)/3, with the red edges indicating the fixed
vertex. This drawing is clearly not crossing-free; it also follows that the weight vector A is not
realizable.

The bottom right of Figure 8 shows the corresponding Floater drawing for the realizable weight
vector u = (2u +pt)/3, where = and ut are morphable weights derived by rescaling A~ and A,
as described in Lemma 6.
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Figure 7: Isotopic drawings of K7 whose normalized mean-value weights are not morphable.

Steiner and Fischer claim [56, Section 2.2.1] that their drawings have no “foldovers” except
possibly at the fixed vertex and its neighbors. Here a “foldover” occurs at a vertex of a drawing
if the faces incident to that vertex overlap in the drawing (where formally, faces are determined
by the reference drawing used to define the translation vectors). Close examination of the bottom
left image of Figure 8 shows that this claim is incorrect: there are “foldovers” at several vertices
that are neither the fixed vertex nor its neighbors.

B Trying to Morph Toroidal Drawings Edge by Edge

Colin de Verdiere [17] showed that all symmetric positive weights are realizable on the flat torus
(see also [22,31,35,46]); Chambers et al. [12] exploit this observation in their morphing algorithm.

The following lemma generalizes Lemma 1 to the toroidal setting; it also generalizes Lemma 5.1
of Chambers et al. [12] to work for asymmetric weights; however, it is unclear in the asymmetric
case when changing the weights for a single edge in a realizable weight vector results in another
realizable weight vector.

Lemma 8 Let A and p be arbitrary realizable weight vectors such that g # pa 01 Arey(d) 7 Hreo(d)

for some dart d, and Ny = pa for all darts d' ¢ {d, rev(d)}. For every vertez w, the vector p: —pl
is parallel to the drawing of d in T,

Proof: Suppose d has tail u and head v. By the definition of crossing vectors, dart d appears in
I'* as the projection of a dart in the universal cover from p) to p) + 74. Fix a non-zero vector
o € R? orthogonal to the vector p)) — p) + 74 and thus orthogonal to darts {d, rev(d)} in T*. For
each vertex i, let 2 = p} - o and 2z’ = p!' - 7, and for each dart d’, let x4 = 74 - 0. Our choice of

o implies that x4 = 2 — z). We need to prove that zf‘ = 2! for every vertex i.

Let X* = H* .0 and X* = H" 0. The real vector Z* = (z}"), is a solution to the linear system
L*Z = X*; in fact, Z* is the unique solution such that z = 0. Similarly, Z# = (z}'), is the unique
solution to an analogous equation L*Z = X* with 2z = 0. We will prove that L¥Z* = X", so
that in fact Z* = Z~.
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Figure 8: A bad example of fixed-vertex weight interpolation; see the text for explanation.

Let § = pg — Ag and € = fyey(d) — Arev(d)- The matrices L* and L* differ in only four locations:

0 if (4,7) = (u,u)
=6 if (i,5) = (u,v)
L“j — L;\j =4 - if (4,5) = (v,u)
e if(i,5) = (v,v)

0 otherwise

More concisely, we have L* = L* + (de, — ce,) (e, — €,)T. Similar calculations imply H* =
H + 74(0e, — ce,) and therefore X* = X* + y,(de, — ce,). It follows that
L' ZA = L7 + (Je, — ce,)

(eq —ev)T zA
=X+ (dey, —cey) (z{) - zi‘)
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=X+ (dey, —eey) Xd
:){M7

completing the proof. O

We obtain the following partial result towards understanding when changing weights for a single
edge in a realizable weight vector results in another realizable weight vector, via the analyses of
Lemmas 6 and 8.

Lemma 9 Let \ be a realizable weight vector, and let a be a positive row vector such that aL* =
(0,...,0) and aH* = (0,0). Let uu be another positive weight vector such that \g # g or Areo(d) 7
Preo(@) for some dart d, and Ay = pg for all darts d' ¢ {d,rev(d)}. Set § := pg — Ag and
€ 1= Urew(d) — Arew(d)- L 0Qaii(d) = EQhead(a), then u is realizable.

Proof: Suppose d has tail v and head v. The analysis of Lemma 8 gives us

L' = I + (be, —ce,) (e, —e,)T
H* = H» + 1q4(0e, — cey)

Because aL* = (0,...,0) and aH* = (0,0), we immediately have aL* = (6cv, — e, ) (e, — €,)T
and aH* = z4(0a,, — cay).

If Sy, = €y, then aL* = (0,...,0) and aX* = (0,0). It follows that a suitable scaling of 4 is
morphable, and therefore realizable, which implies that u itself is also realizable. O

In particular, when A is symmetric, then we can choose « to be the all-1s vector, which implies
that any weight p satisfying the conditions of Lemma 9 is also symmetric.
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