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Abstract. We present a thorough experimental evaluation of several crossing min-
imization heuristics that are based on the construction and iterative improvement of
a planarization, i.e., a planar representation of a graph with crossings replaced by
dummy vertices. The evaluated heuristics include variations and combinations of the
well-known planarization method, the recently implemented star reinsertion method,
and a new approach proposed herein: the mixed insertion method. Our experiments
reveal the importance of several implementation details such as the detection of non-
simple crossings (i.e., crossings between adjacent edges, multiple crossings between the
same two edges, or crossings of an edge with itself). The most notable finding, however,
is that the insertion of stars in a fixed embedding setting is not only significantly faster
than the insertion of edges in a variable embedding setting, but also leads to solutions
of higher quality.

1 Introduction

Given a graph G, the crossing number problem asks for the minimum number of edge crossings in
any drawing of G, denoted by cr(G). This problem is NP-complete [19], even when G is restricted
to cubic graphs [23] or graphs that become planar after removing a single edge [7]. While the
currently known integer linear programming approaches to the problem [6, 15, 16] solve sparse
instances within a reasonable time frame [12], dense instances require the use of heuristics.

One such heuristic is the well-known planarization method [1,21], which constructs a planariza-
tion, i.e., a planar representation of G with crossings replaced by dummy vertices of degree 4.
The heuristic first computes a spanning planar subgraph of G and then iteratively inserts the
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remaining edges. Several variants of the planarization method have been thoroughly evaluated,
including different edge insertion algorithms and postprocessing strategies; see [10] for the latest
study. In a recent paper [17], Clancy et al. present an alternative heuristic—the star reinsertion
method—, which differs in two key aspects from the planarization method: It (i) starts with a full
planarization (instead of a planar subgraph) that is iteratively improved by reinserting elements,
and (ii) the reinserted elements are stars (vertices with their incident edges) rather than individual
edges. These star insertions are performed using a straight-forward but never tried algorithm from
literature [13]. Clancy et al. were faced with the problem that the implementations of the afore-
mentioned heuristics were written in different languages, leading to incomparable running times.
In their evaluation, they thus focus on variants of the star reinsertion method; their comparison
with the planarization method only gives averages over (a quite limited number of) full instance
sets and relies on old data from previous experiments.

Herein, we present a comprehensive experimental evaluation of a wide array of crossing min-
imization heuristics based on edge and star insertion encompassing all known strong candidates.
This includes not only variants of the planarization and star reinsertion methods but also combined
approaches. In addition, we present and evaluate a new heuristic that builds up a planarization
from a planar subgraph using both star and edge insertions. All of these algorithms are implemented
as part of the same framework, enabling us to accurately compare their running times. Further-
more, we suggest ways of simplifying the implementation of the heuristics, increasing their speed in
practice, and improving their results—e.g., by properly handling crossings between adjacent edges
and multiple crossings between the same two edges.

The goals of this evaluation are to indicate which algorithms are most effective in which scenar-
ios and to discern those approaches that are generally worth implementing and developing further
in future research. This requires a comparison of the solution quality and running time of the
algorithms when all of them are implemented and run under the same conditions. It is explicitly
not our goal to find the overall fastest implementation of any crossing minimization heuristic. E.g.,
the implementation in [17] is C code dealing with immutable graphs and incompatible with the
implementation in [10], which is part of a framework for dynamically changeable graphs. Hence, we
report on a faithful reimplementation of the former (with the same solution qualities and running
time guarantees) within the latter framework.

This paper is structured as follows: First, Section 2 introduces the basic graph terminology
and notation. Section 3 describes the evaluated algorithms in detail, starting with the basic algo-
rithms used to solve insertion problems and continuing with the crossing minimization heuristics
themselves. Further, we define non-simple crossings and note on their significance in Section 4.
The setup and the results of our experimental evaluation are described in Section 5, with Section 6
summarizing our findings.

2 Preliminaries

In the following, we consider a connected undirected graph G (that is usually simple, i.e., does
not contain parallel edges or self-loops) with n vertices and m edges, denoted by V (G) and E(G)
respectively. Let ∆ be the maximum degree of any vertex in V (G) and N(v) := {w | (v, w) ∈ E}
the neighborhood of a vertex v. Then, v along with a subset of its incident edges F ⊆ {(v, w) ∈ E}
is collectively called a star, denoted by (v, F ).

We define a drawing of a graph G to be a mapping of its vertices to points in the Euclidean
plane as well as a mapping of its edges to curves whose endpoints are the points of their incident
vertices. An edge curve may not intersect with any other vertex point. Furthermore, two edge
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(a) Graph and its dual with insertion spider

v

(b) Graph with inserted star (v, F )

Figure 1. Insertion of a star (v, F ) into a graph G (drawn in black); the edges in F shall connect v
with the three green vertices. On the left, we can see (a part of) G prior to the insertion of (v, F )—
its dual G∗ is drawn in cyan and red with square vertices. The red dual vertices correspond to faces
of an insertion spider. This insertion spider consists of three insertion paths, one for each edge
in F . The darker red vertex marks the common face that all insertion paths share. On the right,
we can see the graph after the insertion of (v, F ) in accordance with the red insertion spider. Note
that the insertion is optimal in a fixed embedding setting since at least five crossings will be created
when (v, F ) is inserted into the given embedding. In a variable embedding setting, however, it is
possible to move the rightmost green vertex one face to the left and then insert (v, F ) into G with
just four resulting crossings.

curves can only have a finite number of points in common, and no three edge curves intersect in a
common non-endpoint. We call common non-vertex points between two edge curves crossings. If
it does not introduce ambiguity, we may use the term edge when referring to a curve in a drawing.
A drawing is simple if and only if each pair of edges intersects at most once (either in a crossing or
a common endpoint) and no edge intersects itself. Given a drawing of a graph G, a planarization
is a planar graph H obtained from this drawing where crossings are replaced by degree-4 vertices.

A (combinatorial) embedding of a planar graph G corresponds to a cyclic order of the edges
around each vertex in V (G) such that a drawing respecting this ordering can be realized without
any edge crossings. This induces a set of cycles that bound the faces of the embedding. Based on
an embedding of the primal graph G, we can define the dual graph G∗, whose vertices correspond
to the faces of G, and vice versa. For each primal edge e ∈ E(G), there exists a dual edge
e∗ ∈ E(G∗) between the dual vertices corresponding to the e-incident primal faces (see Figure 1a,
which displays a graph and its dual). Note that G∗ may be a multi-graph with self-loops even if
G is simple.

For the purpose of this paper, it is of particular concern how to insert an edge (v1, v2) into
a planarization. First, it is necessary to find a corresponding insertion path, i.e., a sequence
of faces f1, . . . , fk such that v1 is incident to f1, v2 incident to fk, and fi adjacent to fi+1 for
i ∈ {1, . . . , k − 1}. An edge between v1 and v2 can then be inserted into a planarization by
subdividing a common edge for each face pair (fi, fi+1) and routing the new edge as a sequence of
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edges from v1 along the subdivision vertices to v2. By extension, an insertion spider of a star (v, F )
is a set of insertion paths, one for each edge in F . These insertion paths necessarily share a common
face into which v can be inserted. Figure 1 visualizes an insertion spider and the corresponding
star insertion.

3 Algorithms

The subject of our experimental evaluation is a wide array of crossing minimization heuristics.
Each heuristic makes use of at least one edge or star insertion algorithm as a subroutine. Hence,
these different insertion algorithms are discussed first in the following section. The subsequent
section then explains the overall crossing minimization heuristics in detail.

3.1 Solving Insertion Problems

Insertion problems, and their efficient solutions, form the cornerstone of all known strong crossing
minimization heuristics. We first consider the insertion of edges and stars in a setting where the
given embedding is fixed. Afterwards, we discuss the variable embedding setting, in which an
optimal embedding has to be found by the algorithm.

Definition 1 (EIF, SIF) Given a planar graph G, an embedding Π of G, and an edge (or star)
not yet in G, insert this edge (star) into Π such that the number of crossings in Π is minimized. We
refer to these problems as the edge (star) insertion problem with fixed embedding EIF (SIF, resp.).

Given a primal vertex v, let v̂ be the vertex that is created by contracting the dual vertices that
correspond to v-incident faces. Then, the EIF for any given edge (v1, v2) can be solved optimally
in O(n) time by computing the shortest path from v̂1 to v̂2 in the dual graph G∗ via breadth-first
search (BFS) [1]. By extension, the SIF for a star (v, F ) can be solved in O(|F | · n) time as
follows [13]: For each edge (v, w) ∈ F , solve the single-source shortest path problem in G∗ with ŵ
as the source (via BFS). For each face f , the sum over all of the resulting distance values at this f
then represents the number of crossings that would be created if v was to be inserted into f . Hence,
the face with the minimum distance sum is the optimal face to insert v into, and the computed
shortest paths to this face collectively form an insertion spider. To avoid crossings between these
shortest paths (due to them not being necessarily unique), we can construct an insertion spider
using a final BFS starting at the optimal face. Figure 1 shows the optimal insertion of a star in a
fixed embedding setting (and the corresponding insertion spider).

Definition 2 (EIV, MEIV, SIV) Given a planar graph G and an edge (a set of k edges, or a
star) not yet in G, find an embedding Π among all possible embeddings of G such that optimally
inserting the edge (set of k edges, star) into this Π results in the minimum number of crossings.
We refer to these problems as the edge (multiple edge, star) insertion problem with variable em-
bedding EIV (MEIV, SIV, resp.).

The EIV can be solved in O(n) time using an algorithm by Gutwenger et al. [22], which finds
a suitable embedding (with the help of SPR-trees) and then executes the EIF-algorithm described
above. Now consider the MEIV: Solving it for general k is NP-hard [28], however there exists
an O(kn + k2)-time approximation algorithm with an additive guarantee of ∆k log k +

(
k
2

)
[14]

that performs well in practice [10]. Put briefly, the EIV-algorithm is run for each of the k edges
independently, and a single final embedding is identified by combining the individual (potentially
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conflicting) solutions via voting. Then, the EIF-algorithm can be executed once for each edge.
Note that the SIV can be solved optimally in polynomial time by using dynamic programming
techniques [13]. However, for graphs that are not series-parallel, the resulting running times are
exorbitant and there is no known implementation of this algorithm. In fact, our results herein
suggest that in the context of crossing minimization heuristics, the solution power of the SIV-
algorithm is fortunately not necessary in practice.

Each problem discussed above has a weighted version which can be solved in the same manner
if each ce-weighted edge e is replaced by ce parallel 1-weighted edges beforehand [9,26]. In practice
it is worthwhile to compute the shortest paths during the EIF/SIV-algorithm on the weighted
instance directly. However, this does not allow for the same theoretical upper bounds of the
running times since the weights may be arbitrarily large.

3.2 Crossing Minimization Heuristics

In this section, we review the crossing minimization heuristics that are to be evaluated in Section 5.
Each of the heuristics uses one of three main algorithms that iteratively build up a planarization,
starting with a planar subgraph. Some of these have exchangeable subroutines which are described
below. Furthermore, we evaluate the algorithms not only on their own but also in combination
with the star reinsertion method, a postprocessing strategy proposed by Clancy et al. [17]. In
particular, our selection includes all of the strongest algorithms from the most recent experimental
crossing minimization heuristic studies [10,17], as well as a new algorithm class we propose herein.

Each algorithm and subroutine is given its own abbreviation that will be used in the evaluation
in Section 5. To refer to specific algorithm variants (with designated subroutines) or multiple
algorithms executed in series, the abbreviations are concatenated as described in Figure 2. Figure 2
can also be used as a flow chart to understand the different algorithms and subroutines that each
crossing minimization heuristic is composed of.

The planarization method (plm) is the longest studied and best-known approach considered,
achieving strong results in previous evaluations [1, 10, 21]. First, we compute a spanning planar
subgraph G′ = (V,E′) ⊆ G, usually by employing a maximum planar subgraph heuristic and
extending the result such that it becomes (inclusion-wise) maximal. Then, the remaining edges
F := E\E′ are either inserted one after another—by solving the respective EIF (fix ) or EIV (var)—
or simultaneously using the MEIV-approximation algorithm (multi).1 Gutwenger and Mutzel [21]
describe a postprocessing strategy for plm based on edge insertion: Each edge is deleted from the
planarization and reinserted one after another (all). To incrementally improve the planarization,
all can also be executed once after each individual edge insertion (inc) [10]. When neither all nor
inc is employed, we use the specifier none instead.

The chordless cycle method (ccm) realizes the idea of extending a vertex-induced planar
subgraph to a full planarization via star insertion [13]. It is the best-performing scheme for the
star insertion algorithm as examined by Clancy et al. [17]: Search for a chordless cycle in G, e.g., via
breadth-first search. LetG′ denote the subgraph ofG that is already embedded and initialize it with
this chordless cycle. Iteratively (until the whole graph is embedded) select a vertex v ̸∈ V (G′) such
that there exists at least one edge (v, w) that connects v with the already embedded subgraph G′;
insert v into G′ by solving the SIF for the star (v, {(v, w) ∈ E | w ∈ V (G′)}).

1We use fix, var, and multi as abbreviations instead of EIF, EIV and MEIV in order to stay consistent both
with the implementation code and with previous papers on the planarization method [10,21].
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Planarization Method
(plm)

Chordless Cycle Method
(ccm)

Mixed Insertion Method
(mim)

var

multi

fix

all

inc

none

highG

random

lowG

highF

lowF

both

Star Reinsertion Method
(srm)

[optional]

Main Algorithm Choice of Subroutine Star-Postprocessing

Edge Insertion Algorithm Edge-Postprocessing

Vertex Reinsertion Strategy

Figure 2. Visualization of the evaluated crossing minimization heuristics and their variants.
Starting with a base algorithm—plm, ccm, or mim—, one has to specify which subroutine variants
it should use. For plm, this includes the edge insertion algorithm and the edge-postprocessing
strategy; for mim, the vertex reinsertion strategy. At the end, one can choose to employ srm for
further postprocessing. The shorthand naming scheme for the evaluated crossing minimization
heuristics also follows this flowchart: We simply concatenate the abbreviations of the main algo-
rithm, subroutines, and (if used) the star-insertion-based postprocessing, e.g. mim-both-srm. We
may omit prefixes if they are clear from the context, e.g., we may write fix-all instead of plm-fix-all.
The 2012 experimental study [10] considered all variants plm-{fix,var,multi}-{none,all,inc}. The
2019 study [17] considered ccm-srm together with simple alternatives to ccm that are not listed
here as they did not perform as well as ccm-srm.

The mixed insertion method (mim) is a novel approach that we propose as an alternative
to the planarization schemes above. It proceeds in a fashion that is similar to plm but relies on
star insertion instead of edge insertion in as many cases as possible. Accordingly, let G′ denote
the subgraph of G that is already embedded and initialize it with a spanning planar subgraph
(V,E′) ⊆ G. Then, (attempt to) insert the remaining edges F := E \ E′ by reinserting at least
one endpoint of each edge e ∈ F via star insertion. Since removing and then reinserting a cut
vertex of the planar subgraph G′ would temporarily disconnect it, the cut vertices of the planar
subgraph are computed (cf. [24]) and each edge e ∈ F is processed as follows: If both endpoints
of e are cut vertices of G′, insert the edge via edge insertion (we choose to do so in a variable
embedding setting as such edge insertions happen rarely). If only one endpoint of the edge is a cut
vertex, reinsert the other one. If neither endpoint of the edge is a cut vertex, the endpoint to be
reinserted can be chosen freely—globally, this corresponds to finding a vertex cover on the graph
induced by F that has to include all vertices neighboring a cut vertex in G′. Finding a minimum
vertex cover is NP-hard [25]; therefore we compare several heuristics: For each edge e, choose one
of the endpoints randomly (random), choose the one with the higher or lower degree in G (highG,
lowG), choose the one with the higher or lower degree in the graph induced by all edges in F not
incident to a cut vertex in G′ (highF , lowF ), or choose both endpoints (both). Each of the chosen
vertices is then deleted from the planar subgraph and reinserted together with all of its edges in
the original graph by solving the corresponding SIF.
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The star reinsertion method (srm) is a star-insertion-based postprocessing strategy pro-
posed by Clancy et al. [17]. It starts with an already existing planarization, which may be con-
structed using any of the methods outlined above (or even more trivial ones, such as extracting a
planarization from a circular layout of the vertices, which, however, is known to perform worse [17]).
The given planarization is then processed as follows: Iteratively choose a vertex v, delete v from
G, and reinsert it again by solving the SIF for the star (v, v × N(v)). Continue the loop until
there is no further vertex whose reinsertion improves the solution (in which case the latter is said
to be locally optimal). Clancy et al. propose different methods for choosing v; here, we consider
the scheme they report to be the best compromise between solution quality and running time: In
each iteration, try to reinsert every vertex once and continue with the next iteration as soon as a
vertex is found whose reinsertion improves the number of crossings in the planarization.

The original algorithm only updates a planarization once an actual improvement is found
and resets it to its original state otherwise. We propose to never reset it. This approach is
permissible as the SIF is solved optimally and the number of crossings hence never increases after
the reinsertion of a star. Not resetting the planarization saves time in practice as it allows for a
simpler implementation without any need to copy the dual graph, and at the same time is expected
(in the statistical sense) to yield solutions of the very same quality.

4 A Note on Non-simple Crossings

It is well-known that any crossing-optimal drawing can be assumed to be simple, i.e., it may not
contain crossings between adjacent edges (α-crossings), multiple crossings between a pair of edges
(β-crossings), or crossings of an edge with itself (γ-crossings). We call any such undesired crossings
non-simple. Surprisingly, earlier implementations of the planarization method did not consider the
emergence and removal of any non-simple crossings [10], while the implementation of the star
reinsertion method by Clancy et al. only considers β- but neither α- nor γ-crossings [17]. However,
we show in Figure 3 that incrementally solving the same kind of insertion problem may result
in a planarization with α- or β-crossings, even when starting with a planar subgraph. These α-
and β-crossings can be removed by reassigning edges in the planarization to different edges in the
original graph and then deleting the respective dummy vertices. As Figure 4 makes evident, such a
removal can turn other crossings into non-simple ones as well—hence, the touched edges will have
to be checked for new non-simple crossings afterwards. However, the removal procedure will end
eventually as the planarization contains finitely many crossings and at least one of them is removed
in each non-final iteration. Note that during the iterations, γ-crossings may also be produced, as
is shown in Figure 5. Each of these can in turn be removed by deleting the respective cycle (as
well as all crossings on this cycle) starting and ending at the γ-crossing. Removing non-simple
crossings leads to significantly better results overall, see Section 5.4.

5 Experiments

In the following, we present our experiments and their results. First, we describe the experimental
setup—i.e., the code and the environment it is compiled and executed in—as well as the instances—
i.e., which graph sets we are using and how these graphs are preprocessed. The subsequent sections
then compare the running times and results of different groups of algorithms. Section 5.1 begins
by discussing fast heuristics that have the drawback of producing a large number of crossings:
mim, ccm, and fix-none. All the different variants of plm, the planarization method, are then
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1 2

3

(a) Creation of an α-crossing

1

2

3 4

(b) Creation of a β-crossing

Figure 3. A non-simple crossing on the red dashed edge as the result of incrementally solving the
same kind of insertion problem. When starting with the black planar subgraph, this may happen
by solving the SIV using the described algorithm for the colored vertices in the order of their label
numbers. Alternatively, if all solid edges constitute the initial planar subgraph, solving the EIV
for the dashed edges in the order of their label numbers can have the same result. The examples
apply both in the fixed and the variable embedding setting. Dummy vertices for crossings are
represented by small diamonds; the diamonds are black if the crossings are non-simple.

(a) Removal of an α-crossing (b) Removal of a β-crossing

Figure 4. Non-simple crossings (of type α and β respectively) between the red and green edges.
After their removal (new edge paths drawn as dashed), the red edge is involved in a new non-simple
crossing of the same type and the green edge in a new non-simple crossing of the opposite type.
Thus, the removal procedure may have to be iterated.
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Figure 5. Creation of a γ-crossing on the red edge as a result of removing the β-crossing between
the red and the green edge (edge paths after the removal are drawn as dashed). In order to create
a γ-crossing in this way, the red and the green edge are required to cross each other three times,
which may occur when proceeding as follows: Start with the planar subgraph consisting of black
and green edges, insert the gray edges in any order, and lastly insert the red edge. Alternatively,
start with the planar subgraph that consists of all black and green edges not incident to a gray or
red vertex, insert the gray vertices with their respective incident edges in any order, and finally
insert the red vertex with its incident edges. The example applies both in the fixed and the variable
embedding setting.

examined and compared in Section 5.2. Once these base algorithms and their variants have been
discussed, Section 5.3 takes a look at the improvements achieved by srm, i.e., the star-insertion-
based postprocessing. Finally, Sections 5.4 and 5.5 investigate the effectiveness of removing non-
simple crossings and running multiple permutations of the same algorithm respectively. At the
end of each section, we summarize the main observations made in that section.

Setup. All algorithms are implemented in C++. The implementations are publicly available
as part of the Open Graph Drawing Framework (OGDF [11], www.ogdf.net), release “2022.02
Dogwood”. The code is compiled with GCC 8.3.0 using optimization level -O3. Each computation
is performed on a single physical processor of a Xeon Gold 6134 CPU (3.2 GHz) running Debian
GNU/Linux 10 “Buster” with Linux kernel version 4.19.0-6-amd64. We do not enforce a time limit
but a memory limit of 4 GB, which only affects memory-intensive algorithms on instances with
an extremely large number of crossings. Computations reaching this memory limit already last
several hours without any prospect of terminating within a reasonable time frame. Whenever the
memory limit takes effect, we mention this in the evaluation.

All instances and results are available for download at https://tcs.uos.de/research/cr.
This webpage also includes instructions on where to download the code and how to run all of the
heuristics examined herein. Furthermore, one can find a document with additional plots for all
algorithms and instance sets there.

www.ogdf.net
https://tcs.uos.de/research/cr
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Instances. Table 1 lists the instance sets used for our evaluation, and Figures 6 and 7 give an
overview of their size distribution, including the number of edges that are deleted to create the
planar subgraph. The plots also display the number of these deleted edges that are incident to
one or two cut vertices of the planar subgraph as these are of particular relevance for the mixed
insertion method (see Section 3.2). In the plots, n is rounded up to the nearest multiple of five or—
in the case of Figure 6e—ten. The densities in Figure 7c are rounded up to the nearest increment
of 0.03, starting at 0.5.

To enable a proper comparison of the tested algorithms (and potentially in the future, their
competitors), we consider multiple well-known benchmark sets as well as constructed, random,
and real-world instances with varying characteristics. These are preprocessed by computing the
non-planar core (NPC) [9] for each non-planar biconnected component. We consider only those
instances that have at least 25 vertices after the NPC reduction unless the instance is part of the
Complete, Complete-Bip., or KnownCR instance sets. Moreover, we precompute a planar subgraph
and chordless cycle for each instance such that different runs of plm, mim, and ccm can be started
with the same initialization. The planar subgraph is computed by using Chalermsook and Schmid’s
diamond algorithm [8] and extending the result to a maximal planar subgraph. On average, this
computation took only 0.77% of the time needed to execute the fastest evaluated heuristic fix-

Table 1. Considered instance sets. “#” denotes the number of graphs and |V (G)| the (range of
the) numbers of vertices—both values refer to the instance sets after preprocessing. Further, let
□ denote the Cartesian product of two graphs, Ci the cycle with i edges, Pj the path with j edges,
and Gk the 21 non-isomorphic connected graphs on 5 vertices indexed by k.

Name # |V (G)| Description

Rome 3668 25–58 Well-known benchmark set [3] of originally 11,528 pla-
nar and non-planar graphs with 10–100 vertices, sparse

North 106 25–64 Well-known benchmark set collected by S. North at
AT&T Bell Labs via the e-mail graph drawing service
“Draw DAG” [2]

Webcompute 75 25–112 Instances sent to our online tool [16] for the exact com-
putation of crossing numbers, crossings.uos.de

Expanders 240 30–100 20 random regular graphs [27] (expander graphs with
high probability) with node degree δ for each parame-
terization (|V (G)|, δ) ∈ {30, 50, 100} × {4, 6, 10, 20}

Circuit-Based 45 26–3045 Hypergraphs from real world electrical networks, trans-
formed into traditional graphs by replacing each hyper-
edge h by a new hypervertex connected to all vertices
contained in h

ISCAS-85 [5] 9 180–3045
ISCAS-89 [4] 24 60–584
ITC-99 [18] 12 26–980
KnownCR 1946 9–250 Benchmark set with cr known through proofs [20]:
C □ C 251 9–250 → Ci □ Cj with 3 ≤ i ≤ 7, j ≥ i such that i · j ≤ 250
G □ P 893 15–245 → Subset of Gi □ Pj with 1 ≤ i ≤ 21, 3 ≤ j ≤ 49
G □ C 624 15–250 → Subset of Gi □ Cj with 1 ≤ i ≤ 21, 3 ≤ j ≤ 50
P ( , ) 178 10–250 → Generalized Petersen graphs P (2k + 1, 2) with 2 ≤

k ≤ 62 and P (m, 3) with 9 ≤ m ≤ 125
Complete 46 5–50 Complete graphs Kn for 5 ≤ n ≤ 50
Complete-Bip. 666 10–80 Complete bipartite graphs Kn1,n2

for 5 ≤ n1, n2 ≤ 40

crossings.uos.de
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Figure 6. Statistics on circuit-based and complete (bipartite) instances.
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Figure 7. Statistics on the other instances.
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none—a comparatively negligible amount of time that is not further considered in the evaluation.
The precomputed chordless cycle almost always consists of 3–6 vertices, containing 7–11 vertices

for only 15 instances overall. How many edges are deleted to create the planar subgraph, on the
other hand, varies greatly depending on the size and density of the graph. Of particular interest
is the number of deleted edges that are incident to one or two cut vertices of the planar subgraph:
During mim, the former ones have a fixed endpoint that must be reinserted via star insertion
(disallowing a choice of the reinserted endpoint) while the latter ones must be inserted via edge
insertion. Clearly, more dense instances such as the complete (bipartite) ones and the expanders
require more edges to be deleted to form a planar subgraph. At the same time, due to their high
connectivity, these instances also have fewer deleted edges that are connected to cut vertices in the
planar subgraph. In particular, the complete (bipartite) instances do not have a single such edge.
However, even on the sparser instances, mim inserts almost all edges via star insertion and one
can usually choose the endpoint to be reinserted (see the mim-variants described in Section 3.2).

5.1 Fast Heuristics: Mixed Insertion Method, Chordless Cycle Method
and Fixed Embedding Edge Insertion

To begin with, we compare those heuristics that are very fast but yield a comparably high number
of crossings. This includes the mim-variants, ccm, and fix-none (all without srm-postprocessing).
We first aim to find the most promising mim-variant, and then compare this variant with ccm and
fix-none in terms of quality and running time. Figures 8 and 9 display some representative results
on the Rome graphs and the expanders, contrasting these heuristics with BEST, which denotes
the best solution found by 50 random permutations of any heuristic tested herein (cf. Section 5.5).

Among the mim-variants, there are only little differences in computation speed and resulting
number of crossings. However, reinserting both endpoints whenever a choice between two endpoints
can be made clearly provides the best results across all instances while only taking an insignificant
amount of additional time. The variant leads to the highest amount of reinserted stars and hence
also to more chances for an improvement of the number of crossings. In fact, for Rome and North
instances, the second best (but also second slowest) variant is the one that reinserts a random
endpoint, leading to the conclusion that the variants other than both should generally not be
considered if one aims for a high solution quality. If a low running time is preferred, however, one
might use highF as it needs the lowest amount of star insertions and is thus the fastest variant (but
provides results of mixed quality). Here, reinserting the endpoints with a higher degree pays off:
The lowF variant is in comparison to highF not only slower, but always produces subpar results
(e.g., on KnownCR instances, it consistently has the worst performance among all mim-variants).

Compared with fix-none and ccm, mim (from now on always referring to the both-variant)
provides better results on almost all instances. The fastest of the algorithms, on the other hand,
is fix-none. The last of the three, ccm, should only be considered when examining particularly
dense instances: On the sparse instance set Rome (KnownCR), it is 1.8 (5.4) times slower and
yields 1.68 (4.08) times more crossings relative to BEST in comparison with fix-none (which in
turn yields worse results than mim). The solution and speed disparity between the algorithms
becomes smaller on instances with a higher density—see, e.g., Figure 9. On complete (bipartite)
instances, ccm even surpasses mim both in terms of solution quality and speed.

Key takeaways. The mim-variant with the best results quality-wise is both; and its running time
is not much worse than that of the fastest mim-variant highF . It produces fewer crossings than
ccm and fix-none. In contrast, fix-none is the fastest of all heuristics tested herein, having the
lowest running time on 55.29% of all instances.
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Figure 8. Comparison of the mim-variants, ccm, and fix-none on the Rome graphs.
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Figure 9. Comparison of the mim-variants, ccm, and fix-none on the expanders.
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5.2 Planarization Method

The different edge insertion algorithms and edge-postprocessing strategies for the planarization
method allow to greatly improve the final planarizations at the cost of additional running time.
Hence, this section investigates which plm-variants produce the fewest crossings, which are the
fastest, and which form a good compromise between both of these objectives. We first evaluate
the edge insertion algorithms and postprocessing strategies and then discusses how to reach a good
compromise between speed and solution quality. A detailed experimental comparison of these plm-
variants was already carried out in 2012 [10]. We are able to replicate the results of that study and
corroborate its claims with our findings on the additional instances considered in this paper. For
example, Figure 10 showcases the results and running times on the ISCAS-89 instances, on which
plm has not been evaluated before.

Regarding edge insertion algorithms, the value of crossings relative to BEST for var is on
average 4.78 percentage points lower than for multi (but var is also 20.2 times slower). In turn,
multi performs better than fix. This hierarchy is especially evident (across all instance sets) when
no edge-postprocessing is employed, but on the Rome instances it also persists for all and for inc.
The differences in quality between solutions produced with and without edge-postprocessing are
much larger than for different edge insertion algorithms: none provides much worse results than
all and inc across all instance sets. However, the latter two (and inc in particular) have very high
running times and require a lot of memory: Computations on several circuit-based instances as
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Figure 10. Comparison of the plm-variants on the ISCAS-89 instances. The instances s820 and
s832 could not be solved with fix-inc due to the enforced memory limit.
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well as many expanders with |V (G)| ∈ {50, 100}, δ = 20 exceeded the enforced memory limit. For
this reason, we did not even attempt to solve the complete (bipartite) instances with inc.

Overall, fix-all is the fastest plm-variant that still benefits from the quality improvements of
postprocessing. However, the best compromise between solution quality and speed is provided by
the multi -variants: Their speed oftentimes matches the speed of the corresponding fix -variants.
This might be explained by the fact that intermediate planarizations produced by multi contain
fewer crossings and that there is thus less computational overhead. As our implementation of multi
performs incremental postprocessing in a fixed embedding setting, multi-inc also has a speed advan-
tage over var-all and even multi-all (which uses postprocessing in a variable embedding setting) on
a limited number of sparse instances. Nonetheless, the best results are usually achieved by var-inc.

Key takeaways. The postprocessing strategies all and inc require a lot of time and memory but
significantly improve the planarizations produced by the planarization method. The slowest but
quality-wise best edge insertion algorithm is var whereas fix is the fastest but quality-wise worst
one. The multi -variants serve as a great compromise between them. Overall, the variants fix-none,
fix-all, multi-all, multi-inc, var-all, and var-inc (in this order) seem to form sensible choices for
different weighings of the two competing measures running time and solution quality.

5.3 Improvements via the Star Reinsertion Method

Having discussed all base algorithms, we now focus on srm, i.e., the star-insertion-based postpro-
cessing. We first give a general assessment of srm’s running time and solution quality. Then we
compare specific plm-variants using srm and conduct an evaluation of ccm-srm and mim-srm.

We tested srm as a postprocessing method for the eight most promising and interesting algo-
rithms that construct an initial planarization, i.e., the fastest base algorithms, the ones with the
best solution quality, and those that form a good compromise. More specifically, we consider the
three fast algorithms mim, ccm, and fix-none, as well as the more involved fix-all, multi-all, multi-
inc, var-all, and var-inc. In the case of the latter five, a form of postprocessing is already used,
and the additional application of srm only leads to a small increase in running time, comparatively
speaking. In the case of the former three, the additional postprocessing via srm significantly in-
creases the running times (fix-none-srm becomes even slower than fix-all-srm), but the algorithms
are still surprisingly fast: On sparse instances, the running times are comparable to multi-inc
(without srm); on dense instances, the algorithms are even faster than fix-all. This is especially
interesting as all srm-enhanced algorithms typically outperform even the best previously known
heuristic variant var-inc (see Figures 11 and 12). In spite of its simplicity, star insertion in a fixed
embedding setting is able to greatly improve intermediate planarizations by inserting multiple
edges at once. It provides better results and is faster than edge insertion in a variable embedding
setting even if the latter uses incremental postprocessing.

When observing the solution quality of the srm-algorithms, the same hierarchy as for the
algorithms without srm emerges: fix-none-srm performs worse than the other plm-based srm-
variants, with var-inc-srm providing the best results overall. However, var-inc-srm is rarely worth
the additional running time since the three significantly faster mim-srm, ccm-srm and fix-none-srm
perform similarly well or even surpass it on many instances such as several circuit-based ones and
the expanders. In comparison to mim-srm for example, var-inc-srm’s solution quality difference
to BEST is only 1.7% smaller but its median running time is eight times higher (when averaged
over all instances).

Ranking the faster srm-algorithms by solution quality, however, is difficult as their performance
varies greatly on different instances. On Rome, KnownCR, and ISCAS-85 instances as well as small
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Figure 11. Comparison of the srm-variants on the KnownCR instances. The legend of Figure 12
applies. Instances are described on the horizontal axis as tuples of instance type and size n, where
n is rounded up to the nearest multiple of fifty. Note that the results of ccm-srm heavily depend on
the structure of the instance; they also vary a lot across other instance sets (with results of medium
quality on average). The plot for fix-none (without srm) is not depicted in the upper image as its
average number of crossings on the KnownCR instances is 218.23% of what BEST achieves.
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Figure 12. Comparison of the srm-variants on the Rome instances. The grayed out plots represent
the heuristic variants without srm-postprocessing. Instance sizes are rounded up to the nearest
multiple of five. The plot for fix-none (without srm) is not depicted on the left as its average
number of crossings on the Rome instances is 202.93% of what BEST achieves. Similarly, we
refrain from reprinting ccm and mim (both without srm) here–see Figure 8 instead.

expanders, mim-srm and fix-none-srm produce better results than ccm-srm. On medium-sized
expanders and Webcompute instances, it is the other way around. In general, the planarization
created by the base algorithm seems to play an important role in determining the quality of
the result. This is also indicated by ccm-srm on the Petersen graphs: ccm without postprocessing
performs particularly bad on these instances, and seemingly because of that, ccm-srm also produces
subpar results—they are even worse than those of var-inc without srm, which never happens for
any other srm-algorithm. Nonetheless, ccm-srm performs exceptionally well on C □ C due to
the high quality improvements by srm, emphasizing that the structure of the instances is very
relevant to the algorithm’s performance (see Figure 11). The running times of the three faster
srm-algorithms show a clearer picture as they seem to coincide more closely with the quality of the
planarization delivered by the base algorithm: While fix-none-srm is generally faster than ccm-srm
on sparse instances, the opposite is true on denser ones. On complete (bipartite) instances, ccm-
srm becomes even faster than mim-srm. However, with a median running time of 10ms across all
instances, mim-srm is the otherwise fastest among these algorithms (closely followed by fix-all-srm,
15ms), and thus we recommend to use it.
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Key takeaways. Star-insertion-based postprocessing improves the results of all heuristics. In
particular, mim-srm, ccm-srm and fix-none-srm all need less time and produce better results than
the best previously known heuristic var-inc. Moreover, these algorithms provide solutions that
come close to those of var-inc-srm—the heuristic with the overall best results—, but they are up
to eight times as fast.

5.4 Removal of Non-simple Crossings

To gain insight into the effectiveness of the removal of non-simple crossings, we counted how many
of them are detected during each algorithm run. We first present our findings for plm, then for ccm
and mim, and finally for the postprocessing routine srm. Regardless of the employed heuristic, non-
simple crossings occur primarily on dense instances, in particular complete (bipartite) instances.

When inspecting the final planarizations produced by plm, it becomes evident that in most
cases, the edge-postprocessing strategies all and inc already remove all non-simple crossings. In
fact, on KnownCR instances, not a single such crossing can be found in the final solutions for these
algorithm variants. When no edge-postprocessing is used, however, we found and removed such
crossings for 11.7–13.2% of all instances (depending on the edge insertion algorithm), with fix-none
producing more of them than multi-none and var-none. A maximum of 3410 non-simple crossings
were created during the run of fix-none on K39,39.

For mim and ccm, we examine the sum of non-simple crossings found and removed after the
reinsertion of each star. In comparison to plm without postprocessing, these numbers are consid-
erably lower, presumably because inserting multiple edges via star insertion reduces the likelihood
of producing such crossings. In particular, when inserting a star as described in Section 3.1, it
is not possible to introduce a non-simple crossing between its edges. For mim, there are 5.89–
9.73% affected instances overall (depending on the variant, 9.51% for mim-both), with a maximum
of 1916 non-simple crossings for K40,40. While ccm results in similarly high numbers (6.18% of
all instances), the corresponding distribution of non-simple crossings among the instance sets is
striking: The algorithm does not produce any such crossings on complete (bipartite) instances but
showcases a high occurrence rate on circuit-based instances, expanders, and especially KnownCR.
The numbers coincide with the performance of ccm on the respective instances.

With respect to the srm-postprocessing, we only count the non-simple crossings that are
removed during the star reinsertion process, with those of the initial planarization being al-
ready removed. It can be observed that the totals depend heavily on the quality of the initial
planarization—presumably because the creation of a non-simple crossing requires a specific con-
figuration of already existing crossings (cf. Figure 3). Among srm-algorithms whose initial pla-
narization is constructed using all or inc, fix-all-srm is the only one with more than 100 instances
being affected by non-simple crossings during the star reinsertion phase (121 instances, 1.38%).
For the remaining srm-algorithms, these numbers are considerably higher: fix-none-srm results
in the highest amount of affected instances (1094, 12.36%), closely followed by ccm-srm (1024,
11.66%), with mim-srm producing roughly half as many (536, 6.1%). It is particularly interesting
that γ-crossings only occur when running ccm-srm on KnownCR instances: There are 30 affected
instances, almost all from the C □ C and G □ C sets, that only become affected after running the
algorithm several times with random permutations of the inserted stars (see Section 5.5).

Key takeaways. The removal of non-simple crossings can significantly improve the final results of
heuristics that do not employ any kind of postprocessing. It can also slightly improve intermediate
planarizations during srm, potentially speeding up the procedure. However, with more involved
postprocessing, non-simple crossings are less likely to occur, and their removal is hence less effective.



90 M. Chimani, M. Ilsen, and T. Wiedera Star-Struck by Fixed Embeddings

5.5 Improvements via Permutations

We will consider one last question: Whether multiple runs of the same algorithm with different
random permutations of the inserted elements can significantly improve the results. For plm, we
permute the order in which the deleted edges are inserted, and for mim, ccm and srm, we permute
the order of (re)inserted stars. Our experiments compare the effect of 50 random permutations with
respect to the Rome, North, Webcompute and KnownCR instance sets. For the larger instances
and more time-consuming algorithms, this number of permutations is the limit of what we are able
to compute. We focus on the (relative) improvement for each instance, calculated as 1−best50/avg50
where best50 is the lowest number of crossings and avg50 the average number of crossings across
50 permutations. Table 2 lists the average relative improvement for each of the heuristics and
instance sets. In the following, we first consider the effect of permutations on heuristics without
srm, then on heuristics with srm, and lastly we rank the best-performing algorithms with and
without multiple permutations.

Permutations can significantly improve the results of mim, ccm, and plm without postpro-
cessing while still requiring little time. However, when more time is available, plm with post-
processing is clearly preferable. Multiple permutations of all and inc can be of use if one tries
to marginally improve already good solutions. In fact, one can achieve a higher relative im-
provement when edge-postprocessing is employed: With the exception of very sparse graphs, it is
higher for inc than for all.

Among the srm-algorithms, the relative improvement via permutations is consistently low with
little variance; for a comparison with the respective plm-variants see Figure 13. The one outlier is

Table 2. Average relative improvement 1 − best50/avg50 (in percent) where best50 is the lowest
number of crossings and avg50 the average number of crossings across 50 permutations. Intuitively,
this shows the gain in solution quality by 50 permutations compared to a single one.

Algorithm Rome North KnownCR Webcompute
fix-none 10.60 9.57 4.91 7.60
fix-all 17.20 11.98 7.28 12.39
fix-inc 18.65 12.46 9.99 15.23
multi-none 13.66 11.95 6.14 10.50
multi-all 18.10 12.83 7.87 13.23
multi-inc 19.08 12.98 10.00 14.28
var-none 12.62 11.14 4.95 9.84
var-all 18.44 12.83 8.64 14.08
var-inc 16.57 11.46 8.48 12.43
mim 14.73 12.83 9.41 14.05
ccm 34.13 27.28 27.77 33.16
fix-none-srm 13.49 8.80 5.32 8.90
fix-all-srm 13.23 9.25 5.02 8.13
multi-all-srm 12.84 8.31 5.29 7.52
multi-inc-srm 12.93 8.93 6.72 6.90
var-all-srm 13.08 8.94 5.31 7.69
var-inc-srm 12.12 8.45 6.50 6.45
mim-srm 13.59 8.77 5.63 7.81
ccm-srm 16.88 11.03 15.19 10.38
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Figure 13. Comparison of relative improvements for 50 permutations over their average on the
Rome and North instances. The legend of Figure 12 applies.
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Figure 14. Permutation-based comparison of high-solution-quality heuristics on the Rome and
North instances. Solid (and dashed) lines denote the average number of crossings among 50 permu-
tations; dotted (and dash-dotted) lines denote the lowest number of crossings after 50 permutations.
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ccm-srm, which achieves the greatest relative improvements for 50 permutations. Its average value
on Rome graphs, for example, is 16.88% while other algorithms never leave the range of 5–14%.
This coincides with the fact that the solutions produced by ccm (without srm) can already be
greatly improved by multiple permutations: Only 10 permutations already do so by around 20%,
50 permutations by around 30%. Note, however, that we initialize all permutations of ccm-srm
with a fixed small chordless cycle instead of a fixed maximal planar subgraph. This allows for
greater variance in the solutions of ccm-srm and makes it difficult to compare the results to other
srm-algorithms.

The general trend of high-solution-quality algorithms, taking multiple permutations into ac-
count, is shown in Figure 14: A single permutation of mim-srm or ccm-srm will yield better
solutions than a plm-variant with incremental postprocessing (but no srm). Two layers of post-
processing, i.e., -all-srm or -inc-srm, improve the results even more. Solutions resulting from 50
permutations are in a tier of their own, with srm-heuristics achieving higher quality than those
without. Overall, 50 permutations of mim-srm or ccm-srm provide some of the best results while
taking a lot less time than other algorithms in their category. Consider, e.g., the Rome instances in
a 50-permutations setting; var-inc-srm can reduce the average solution quality difference to BEST
by only 1.2% more than mim-srm, but its median running time is ten times as high.

Key takeaways. For mim, ccm, and plm without postprocessing, it is more fruitful to em-
ploy postprocessing rather than multiple permutations. While permutations improve results of
all heuristics (see Table 2 for the percentages), increasing their amount has diminishing returns.
When comparing heuristics with 50 permutations, var-inc-srm delivers the overall best results,
however, mim-srm as well as ccm-srm provide similar results with much lower running times.

6 Conclusion

Our in-depth experimental evaluation not only corroborates the results of previous papers [10,17]
but also provides new insights into the performance of star insertion in crossing minimization
heuristics. We presented the novel heuristic mim, which proceeds similarly to the planarization
method but inserts most edges by reinserting one of their endpoints as a star. Whenever neither
endpoint is a cut vertex of the initial planar subgraph, the endpoint can be chosen freely, and our
experiments indicate that reinserting both endpoints one after another provides the best results.
In general, mim performs better than the basic heuristics from [10, 17] that have a similarly low
running time (i.e., ccm and fix-none).

A central observation is that postprocessing via star insertion (srm) can greatly improve the
planarizations resulting from fast heuristics: mim-srm, ccm-srm, and fix-none-srm are all faster
than the previously best-performing heuristic var-inc and provide better results. By inserting
multiple adjacent edges at once, star (re-)insertion changes the planarization and its underlying
graph decomposition in a way that is sufficient to properly explore the search space and find good
solutions. Fixed embedding star insertion is thus preferable over the much slower insertion of edges
(or even stars) in a variable embedding setting.

We note that many heuristics—in particular those without edge-wise postprocessing—are prone
to create non-simple crossings. Such crossings can be detected and it is worthwhile to remove
them in order to speed up the procedure and improve the results. Lastly, multiple permutations
are beneficial for heuristics that already employ postprocessing. In particular, their application to
mim-srm and ccm-srm provides very high solution quality at moderate running times.
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