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Abstract. An arrangement of circles in which circles intersect only in angles of
π/2 is called an arrangement of orthogonal circles. We show that in the case that no
two circles are nested, the intersection graph of such an arrangement is planar. The
same result holds for arrangement of circles that intersect in an angle of at most π/2.

For the case where circles can be nested we prove that the maximal number of
edges in an intersection graph of an arrangement of orthogonal circles lies in between
4n−O (

√
n) and

(
4 + 5

11

)
n, for n being the number of circles. Based on the lower bound

we can also improve the lower bound for the number of triangles in arrangements of
orthogonal circles to (3 + 5

9 )n−O (
√
n).

1 Introduction

A collection of n circles in the plane, is called an arrangement of orthogonal circles if any two
intersecting circles intersect orthogonally. Here, we call an intersection orthogonal, if the tangents
at the intersection point form an angle of π/2. By definition circles cannot touch in an arrangement
of orthogonal circles and all circles have positive radius.

A natural object that arises from an arrangement of orthogonal circles is its intersection graph.
A graph G is a (geometric) intersection graph if its vertices can be realized by a set of geometric
objects, such that two objects intersect if and only if their corresponding vertices form an edge in
G. Thus, for an arrangement of orthogonal circles A we define its intersection graph G(A) as the
graph, whose vertices correspond to the circles in A and two vertices are adjacent, if and only if
the associated circles intersect in A. The graph G(A) is called an orthogonal circle intersection
graph.

Arrangements of orthogonal circles and their intersection graphs were recently introduced by
Chaplick et al. [4]. Here it was shown that the intersection graph of n orthogonal circles contains
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at most 7n edges. Furthermore, it is NP-hard to test whether a graph is an orthogonal unit
circle intersection graph. Chaplick et al. also provide bounds for the maximal number of digonal,
triangular and quadrilateral cells in arrangements of orthogonal circles.

Previous results and related work. General (nonorthogonal) arrangements of circles or disks
have been studied extensively before. Giving a complete overview over the results in this field is
out of scope for this article. We will hence only mention a few selected results. For the special case
where all circles have the same radius the intersection graphs are known as unit disk graphs. For
general arrangements of circles or balls the recognition problems for the corresponding intersection
graphs are usually hard (for example for unit disk graphs [3]). We refer the reader to the survey of
Hlinený and Kratochv́ıl [10] for more information. Other work focused on bounding the number
of small faces in arrangements of circles [1] or about the circleability of topologically described
arrangements [9, 12].

Note that we can have general circle arrangements in which all circles pairwise intersect. Thus,
the density of the intersection graph can be Θ(n2), although many graphs are not intersection
graphs of circle arrangements [15] (for example every graph containing K3,3 as a subgraph [10]).
Hence, asking for the maximum density for intersection graphs in this setting is not an interesting
question.

If the circles are allowed to only intersect pairwise in one point, then the intersection graph is
called a contact graph and the corresponding arrangement is a circle packing. Due to the famous
Andreev–Koebe–Thurston circle packing theorem [2, 14] the disk contact graphs coincide with
the planar graphs. One direction of the circle packing theorem is obvious, a planar straight-line
drawing of the contact graph can be derived by placing the vertices at the disk centers. A related
result is due to Alon et al. [1]. A lune is a digonal cell in an arrangement of circles. If we restrict
the intersection graph of the (general) circle arrangement to intersections that are formed by lunes
(we call this the lune-graph) then also in this setting we can obtain a planar straight-line drawing
by placing the vertices at the circle centers.

Every arrangement of orthogonal circles with the same radius can be turned into a unit circle
packing by shrinking the circle size by a factor of

√
2/2, but there are unit disk contact graphs

that are not intersection graphs of an arrangement of orthogonal circles [4].
A well established quality criteria for drawing graphs is to avoid crossings. However, crossings

with large angles are considered less problematic [11]. For this reason graphs that can be drawn
with right-angle crossings are considered an interesting class from a graph drawing perspective.
This kind of drawing is known as RAC-drawing. It was shown that graphs that have straight-line
RAC-drawings have at most 4n − 10 edges, for n ≥ 4 being the number of vertices [6]. Recently,
this approach was carried over to graphs that admit drawings with circular arcs that can intersect
at right angles only, called arc-RAC graphs. Chaplick et al. showed that arc-RAC graphs can have
at most 14n− 12 edges and there are such graphs with 4.5n−O(

√
n) edges [5].

Orthogonal circle arrangements can also be seen as circular arc drawings (of 4-regular multi-
graphs) with perfect angular resolution. Such drawings are known as Lombardi drawings and have
been studied deeply [7, 8, 13].

Results. We prove bounds for the maximal number of edges in an intersection graph of an
arrangement of n orthogonal circles. We show an upper bound of

(
4 + 5

11

)
n and present a lower

bound of 4n−O (
√
n). As a crucial intermediate result we show that in the case of arrangements

without nested circles, the intersection graph is planar. In particular, (in a similar vein to disk
contact graphs and lune graphs) we obtain a planar straight-line drawing by placing the vertices at
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the centers of the corresponding circles. As an immediate consequence we get that for arrangements
of nonnested orthogonal circles the intersection graph has at most 3n− 6 edges. We can refine the
analysis to improve this bound to 3n− 8. This bound is tight, since we can show a matching lower
bound. Our lower bound constructions can be slightly modified to also improve the lower bounds for
the maximal number of triangular cells in arrangements of orthogonal circles to (3+5/9)n−O (

√
n).

However, there is still a gap to the upper bound of 4n triangular cells [5].

Some of our results for nonnested arrangements hold also in a more general setting. If we
require that the angles of intersections between intersecting circles are at most π/2 (in the sense
that two touching circles would have an intersection angle of 0), we can also show that the resulting
intersection graph has at most 3n− 6 edges.

Organization. We first prove in Section 2 that the circle intersection graphs are planar in the
nonnested case if the intersection angle between any pair of circles is acute. This case includes
orthogonal nonnested circle arrangments. In order to prove our results we rely on basic properties of
so-called Apollonian circles, which we prove along the way to keep the presentation self-contained,
but these observations were known before [16, Chapter 2]. In Section 3 we extend our ideas to
nested orthogonal circle arrangements and prove the upper bound. In Section 4 we discuss lower
bound constructions.

2 Bounds for acute nonnested arrangements

Although our main object of our interest are orthogonal circle arrangements, the results in this
section hold in large parts in a more general setting. If two circles intersect properly, their tangents
at either intersection point subdivide the plane into four polyhedral cones. If the angle of the cone
that contains the intersection of the associated disks is acute, we call the intersection of the circles
an acute intersection. See Figure 1 for a reference. Moreover, we call call a circle arrangement acute
if all intersecting circles have acute intersections. Note that every orthogonal circle arrangement
is also an acute circle arrangement.

α

α

Figure 1: Two circles with an acute intersection witnessed by the acute angle α.
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Observation 1 Let A and B be two circles with centers CA and CB and radii rA and rB, respec-
tively. Then A and B intersect at an acute angle if and only if |CACB |2 ≥ r2A + r2B. Moreover, A
and B intersect orthogonally, if and only if |CACB |2 = r2A + r2B.

For an arrangement of circles we call the straight-line drawing of its intersection graph that is
obtained by placing the vertices on the corresponding circle centers the embedded intersection graph.
Figure 2 depicts such an arrangement and its embedded intersection graph. In this section we prove
that the embedded intersection graph is noncrossing for nonnested acute circle arrangements. Here
an arrangement is nonnested if no circle contains another circle properly.

Figure 2: A nonnested circle arrangement and its embedded intersection graph.

We start with properties of arrangements of two or three nonnested orthogonal circles.

Lemma 1 In an acute nonnested circle arrangement the center of a circle A is not contained in
the closed disk determined by a circle other than A.

Proof: Let A and B be two nonnested circles with centers CA and CB and radii rA and rB ,
respectively. Assume that CA lies inside B. Obviously, A and B intersect in some angle α, since
otherwise the circles are nested. It holds that |CACB |2 = r2A+r2B−2rArB cos(π−α). Further, since
CA is in B, we have |CACB | ≤ rB and thus |CACB |2 ≤ r2B . We get that r2A+r2B−2rArB cos(π−α) ≤
r2B . Since 0 ≤ α ≤ π

2 it follows that 0 ≥ cos(π−α) ≥ −1 and thus r2A + r2B ≤ r2B . Since rA, rB > 0
this is a contradiction. □

Lemma 2 In an acute nonnested circle arrangement for every pair of circles A and B and every
point p on A it holds that B intersects CAp in at most one point.

Proof: Let A and B are two circles with centers CA and CB and radii rA and rB , respectively.
Assume for a contradiction that p is a point on A such that B intersects CAp twice. We call these
intersection points q and s and denote the midpoint between q and s with t with 0 < |CAq| <
|CAt| < |CAs| ≤ rA.

By Lemma 1 the center CB of the circle B has to be outside of the circle A. So for the circle
B to have any point in the inside of the circle A, the circle B has to intersect the circle A in a
point u (see Figure 3). Since the circles A and B intersect in an angle α ≤ π/2, we have an angle



JGAA, 27(2) 49–70 (2023) 53

Figure 3: Schematic drawing of the construction in the proof of Lemma 2. One of the circles is
drawn as an ellipse to get a better illustration.

π−α at u between CAu and CBu. And since sq is a chord of the circle B, sqCB spans an isosceles
triangle with height CBt. Thus, we have a right angle at t between CAp and CBt. It follows that

|CACB |2 = r2A + r2B − 2rArB cos(π − α),

|CACB |2 = |CAt|2 + |CBt|2 and r2B =

(
|qs|
2

)2

+ |CBt|2.

We obtain

|CACB |2 = r2A + r2B − 2rArBcos(π − α)

⇔ |CAt|2 + |CBt|2 = r2A +−2rArB cos(π − α) +

(
|qs|
2

)2

+ |CBt|2

⇔ |CAt|2 = r2A +

(
|qs|
2

)2

− 2rArB cos(π − α).

Since 0 ≤ α ≤ π
2 it follows that 0 ≥ cos(π − α) ≥ −1. And thus, rA ≤ |CAt| < |CAs|. We see

that s lies outside of the circle A and not on CAp, this is a contradiction. So there is no circle B
that intersects the line segment CAp twice. □

Lemma 3 In an acute nonnested circle arrangement for every intersecting pair of circles A and
B there is no third circle D that shares a point with the line segment between the centers CA and
CB.

Proof: Let A, B and D be three circles with centers CA, CB and CD and radii rA, rB and rD,
respectively. The circles A and B intersect. Assume for a contradiction that the circle D shares
a point with the line segment CACB . There are three cases: (i) D properly intersects the line
segment CACB once, (ii) D intersects the line segment CACB twice, or (iii) D touches the line
segment CACB .

If the circle D intersects the line segment between CA and CB only once, either CA or CB

would be inside D; a contradiction to Lemma 1. Thus, D has to intersect the line segment CACB

twice or touch it. We denote these intersection points q and s and the midpoint between q and s
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by t with 0 < |CAq| ≤ |CAt| ≤ |CAs| < |CACB |. Note that the case where D only touches the line
segment |CACB | is covered by |CAq| = |CAt| = |CAs|. Due to Lemma 2 q and s cannot lie in the
same circle, so one lies in A and the other in B. Thus, D intersects both A and B. By Lemma 1
the center CD of D has to be outside of the circles A and B. So for the circle D to have a point
in the inside of the circles A and B, the circle D has to intersect the circles A (in some point uA)
and B (in some point uB). The situation is depicted in Figure 4.

Figure 4: Schematic drawing of the construction in the proof of Lemma 3.

Since sq is a chord of the circle D, sqCD spans an isosceles triangle with height CDt. Thus,
we have a right angle at t between CACB and CDt. According to the law of cosines we obtain for
0 ≤ α′, α′′ ≤ π/2:

|CACD|2 = r2A + r2D − 2rArD cos(π − α′), |CACD|2 = |CAt|2 + |CDt|2,
|CBCD|2 = r2B + r2D − 2rBrD cos(π − α′′), |CBCD|2 = |CBt|2 + |CDt|2,

r2D =

(
|qs|
2

)2

+ |CDt|2

Combining these equations yields

|CAt|2 = |CAt|2 + |CDt|2 − |CDt|2

= |CACD|2 − |CDt|2 = r2A + r2D − 2rArD cos(π − α′)− |CDt|2

= r2A +

(
|qs|
2

)2

− 2rArD cos(π − α′).

Since 0 ≤ α′ ≤ π
2 it follows that 0 ≥ cos(π − α′) ≥ −1 and therefore |CAt| ≥ rA. By a symmetric

argument we see also that |CBt| ≥ rB . We get |CAt|+ |CBt| ≥ rA + rB , which is a contradiction.
□

We can now combine our observations to prove the following result.

Theorem 1 The embedded intersection graph of an acute nonnested circle arrangement is non-
crossing.

Proof: Assume for contradiction that the embedded intersection graph has two edges CACB and
CCCD that cross in the point h. This means we have two pairs of intersecting circles A,B and
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C,D, with corresponding centers CA, CB , CC , CD. Note that CACB is contained in the union of
the convex hulls of A and B. Hence, h has to lie in at least one of the circles A or B. By the same
reasoning h also has to lie in at least one of the circles C or D. Without loss of generality we can
assume that h lies in C. By Lemma 1 the circle C cannot enclose CACB completely, thus it has
to intersect the line segment CACB . This, however, contradicts Lemma 3. □

An immediate consequence of Theorem 1 and Euler’s formula is the following corollary.

Corollary 1 The embedded intersection graph of n acute nonnested circles has at most 3n − 6
edges.

For special arrangements we can improve the bound mentioned in Corollary 1 slightly. We
begin we orthogonal circle arrangements. In the following we show that in this case the boundary
face of the embedded intersection graph is at least a pentagon if we have five or more circles.

We start with a helpful observation.

Lemma 4 In an arrangement of three pairwise orthogonal circles every point in the triangle formed
by the circle centers is covered by at least one circle.

Proof: LetA,B,C be three pairwise orthogonal circles with centers CA, CB , CC and radii rA, rB , rC
respectively.

Assume for contradiction a point p inside the triangle CACBCC such that p is not covered by
any of the three circles. So its distance to any circle center is larger than the radius of that circle.
Now consider the triangle CACBp, as depicted in Figure 5. We have |CAp| > rA and |CBp| > rB
and |CACB |2 = r2A + r2B since A and B intersect orthogonally. Combining these equations yields

|CAp|2 + |CBp|2 = r2A + r2B > |CACB |2.

It follows that the angle between CAp and CBp in p is acute. By the same argument the angles at
p between CAp and CCp, and CBp and CCp are also acute. The sum of three acute angles is less
than 2π, thus we have a contradiction. □

Figure 5: The point p is inside the triangle CACBCC but outside the circles A, B and C.

The following lemma was proven by Chaplick et al. [4].

Lemma 5 ([4]) No orthogonal circle intersection graph contains a K4 or an induced C4.
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Lemma 6 The outer face of the embedded intersection graph of an arrangement of n ≥ 5 nonnested
orthogonal circles is adjacent to at least 5 vertices.

Proof:
The embedded intersection graph is planar and has an outer face, whose boundary might be

disconnected. In order to have less than 5 vertices on the boundary face at least one vertex v is
not part of that face. All faces incident to v define a region, whose boundary B is either a cycle of
length three or four. We can show that both cases lead to a contradiction.

Assume that B has three vertices. It follows that there are three pairwise orthogonal circles,
whose centers coincide with the vertices of B, as seen in Figure 6a. According to Lemma 4 three
pairwise orthogonal circles cover the whole triangle between their centers. Thus, according to
Lemma 1 there cannot be another circle center (in particular, v) inside that triangle. We get a
contradiction.

Assume that B has four vertices. By Lemma 5 these vertices cannot induce a C4 or a K4, so
the induced graph is a K4 minus one edge as shown in Figure 6b. By Lemma 4 there can be no
further circle center inside each of those triangles (see discussion in the previous paragraph). We
get again a contradiction.

(a) (b)

Figure 6: (a) and (b) show intersection graphs of orthogonal circles where the outer face is
adjacent to three or four vertices, respectively.

As we get a contradiction in both cases it follows that the outer face of the intersection graph
of an arrangement of at least n ≥ 5 circles is adjacent to at least 5 vertices. □

Applying Euler’s formula and the fact that one face is at least of size 5 yields the following
result.

Corollary 2 The embedded intersection graph of an arrangement of n nonnested orthogonal circles
is a plane embedding and has at most 3n− 8 edges for n ≥ 5.

In Section 4 we show that the bound of 3n − 8 in Corollary 2 is tight for orthogonal circle
arrangements. Note that the slightly stronger statement of Corollary 2 does not hold in the acute
setting, since the K4 has a contact representation by touching disks as a consequence of the circle
packing theorem. By slightly increasing the radii of that contact representation we obtain a circle
arrangement, where all circles intersect at an angle of less than ϵ, for every ϵ > 0. However, we can
also improve the result of Corollary 1 slightly for nonorthogonal arrangements if the intersection
angles between the circles is not too small. (Here, we measure the intersection angle as in the
definition for the acute intersection.) To do so we need the following slightly stronger version of
Lemma 4.
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Lemma 7 In an arrangement of three pairwise intersecting circles with a not necessarily common
intersection angle π > α ≥ π

3 every point in the triangle formed by the circle centers is covered by
at least one circle.

Proof: Let A,B,C be three pairwise intersecting circles with centers CA, CB , CC as in the lemma.
Assume for contradiction a point p inside the triangle CACBCC that is not covered by one of the
three circles, as seen in Figure 5.

Let π > α ≥ π
3 be the angle at which the circles A and B intersect. Let d be the intersection

point of A and B that lies on the same side of CACB as CC . And let β bet the angle at d between
CAd and CBd. It holds that β = π − α and thus 0 < β ≤ 2π

3 . We now consider the point p which
is not covered by A or B. For every point p outside the circles A,B it holds that the angle γ
between CAp and CBp is smaller than the angle between CAd and CBd, as seen in Figure 7. Thus
γ < β ≤ 2π

3 .

Figure 7: The point p is not covered by the circles A or B.

By the same argument the angles at p between CAp and CCp, and CBp and CCp are less than
2π
3 . Thus the sum of the three angles at p is less than 2π, a contradiction. □

As promised we now improve the upper bound for circle arrangements with intersection angle
of π

2 > α ≥ π
3 .

Lemma 8 The embedded intersection graph of n ≥ 4 nonnested circles where every two intersect-
ing circles intersect at an angle of π

2 > α ≥ π
3 has at most 3n− 7 edges.

Proof: Assume there exists a nonnested arrangement of n ≥ 4 circles that intersect at an angle of
π
2 > α ≥ π

3 such that the outer face is a triangle. It follows that there are three pairwise intersecting
circles, whose center lie on the vertices adjacent to the outer face. According to Lemma 7 three
pairwise intersecting circles that intersect at an angle of at least π

3 cover the whole triangle between
their centers, thus according to Lemma 1 there cannot be another circle center within that triangle,
a contradiction to n ≥ 4.

Thus, the outer face of the intersection graph of an arrangement of at least n ≥ 4 circles is
adjacent to at least 4 vertices. Applying Euler’s formula yield the upper bound of at most 3n− 7
edges in an arrangement of n ≥ 4 nonnested circles where every two intersecting circles intersect
at an angle of α ≥ π

3 . □
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3 Bounds for nested orthogonal arrangements

In this section we prove an upper bound of
(
4 + 5

11

)
n edges for intersection graphs of arrangements

of n orthogonal circles that allow nested circles. We first discuss the general approach and introduce
necessary terminology before continuing with details and proofs.

For every circle C in an arrangement A we define its depth t(C) as the maximum cardinality
of a set of pairwise nested circles in A that are properly contained in C. A circle with depth 0,
i.e., it contains no circles properly, is referred to as shallow otherwise as deep.

As a first step we show that in every arrangement we can find a circle with depth at most 1 that
is orthogonal to at most seven deep circles (Lemma 13). We select one circle with this property
and name it the red circle. We then look at the circles properly contained in the red circle. We
call these circles black circles; see Figure 8. The key observation is that we can delete the set of
black circles from the arrangement and by doing so we only lose few edges from the intersection
graph, i.e. at most (4 + 5/11) · nB for nB black circles. To obtain this bound we distinguish
between intersections between the black circles and intersections between any two black circle and
a circle that intersects a black and the red circle (such circles are called green circles). To make
our analysis work we have to partition the black circles further. If a black circle center lies on the
boundary of the embedded intersection graph induced by the arrangement of black circles we call
the corresponding circle boundary black circle, otherwise inner black circle.

Figure 8: Illustration of the red, black and green circles. This arrangement has only one inner
black circle.

We color edges in the intersection graph according to the color of the corresponding circles as
follows: An intersection between a black and a green circle yields a green edge and an intersection
between two black circles yields a black edge. If there are nB black circles and b of those are
boundary black circles, then we have at most 3nB − b− 3 black edges as a consequence of Euler’s
formula and Theorem 1. We will prove that each black circle can be orthogonal to at most two
green circles (Lemma 9). In particular, the inner black circles can only be intersected by green
circles with depth at least 1 (Lemma 15). We can chose the red circle so that there are at most
seven deep green circles. The intersection graph of these seven green circles has at most eight edges
(Observation 2 and Lemma 17). We exploit this fact to show that only eight inner black circles
can be orthogonal to two green circles (Lemma 18). As a final observation we show that if there
are at most 11 black circles in the red circle, there are at most 3 inner black circles that intersect
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B

A

CB CC

CC

Figure 9: Situation in the proof of Lemma 10 when C contains A ∩ B. CB (CC) is the center of
B(C).

two of the green circles. We can then combine our findings to prove that we can always find a set
of nB black circles that intersects at most (4 + 5/11) nB circles.

We are now continuing with the proofs and details. We begin by stating a few properties of
arrangements of orthogonal circles.

Lemma 9 Let A and B be two nested circles. There are at most two circles that intersect both A
and B orthogonally.

Proof: Assume that there are two nested circles A and B (B lies inside A) that both intersect at
least three circles D, E and F orthogonally. Consider the intersection graph of A, B, D, E and
F . If the circles D, E and F are pairwise orthogonal to each other the vertices corresponding of
A, D, E and F form a K4, a contradiction due to Lemma 5. However, if two of the circles D, E
and F are not orthogonal to each other their corresponding vertices together with B and A induce
a C4, which yields a contradiction due to Lemma 5.

Thus, at most two circles that intersect both A and B orthogonally. □

Lemma 10 If a circle C intersects the circles A and B orthogonally, then one of the following
two conditions holds: (i) A and B do not intersect, or (ii) A and B are orthogonal and C contains
precisely one of the two intersection points of A and B.

Proof: We prove that if (i) does not hold, then (ii) holds. So assume A and B intersect. We
apply a Möbius transformation that maps A to a straight line. Note that such a transformation
is conformal and thus maintains the angles; see Figure 9. The centers of B and C will then have
to lie on A. Clearly, if C contains both points of A ∩ B then it also has to contain B, but since
B intersects C, we have a contradiction. Also, if C does not contain any point of A ∩ B, then it
has to be either contained in B or is to the left or right of B along A, but since B intersects C,
we have again a contradiction. □

Lemma 11 In an arrangement of orthogonal circles let A and B be two circles that intersect. All
circles that are orthogonal to A and B that contain the same intersection point of A and B are
nested.

Proof: Assume that there are two nonnested circles C and D that both contain the same inter-
section point u of A and B. Since C and D contain u but are not nested, they must intersect each
other. Both also intersect A and B. This means the intersection graph of the four circles is a K4.
This contradicts Lemma 5. □

The following lemma is again taken from Chaplick et al. [4, Lemma 5]. The “Moreover”-part
is not explicitly written down, but it is apparent from the construction given in its proof.
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Lemma 12 ([4]) Every arrangement of orthogonal circles has a circle that is orthogonal to at
most seven other circles. Moreover, this circle is a shallow circle.

We can deduce a similar lemma for deep circles.

Lemma 13 Every arrangement of orthogonal circles with nested circles has a circle C with depth
t(C) = 1 that is orthogonal to at most seven other circles with depth at least 1.

Proof: Let A be an arrangement of orthogonal circles. By deleting all shallow circles we obtain the
arrangement A′. According to Lemma 12 we can find a shallow circle C in A′ that is orthogonal
to at most seven other circles. Since C is shallow in A′ it has depth t(C) = 1 in the arrangement
A. □

In the following we select any circle that meets the requirements of Lemma 13 and refer to it as
the red circle. We remind the reader that we call the circles contained in the red circle the black
circles.

Lemma 14 Let SB be the set of black circles inside a red circle C with |SB ≥ 2|. The set SB

corresponds to a vertex set VB in the intersection graph incident to no more than 4nB + i2 − 3
edges, for nB = |SB | and i2 being the number of inner black circles in SB, that each are orthogonal
to two circles not in SB.

Proof:
Let C be the red circle. We count the edges incident to VB . Edges with two endpoints in VB are

black edges, edges with one endpoint in VB are green edges. We denote the number of boundary
black circles by b. According to Theorem 1 the embedded intersection graph of the arrangement
restricted to the SB is planar. Moreover, this planar graph has b vertices on its outer face. Thus,
by Euler’s formula we have at most than 3nB − b− 3 black edges.

We now count the green edges. Every circle D /∈ SB that intersects a circle in SB has to
intersect C as well. According to Lemma 9, each of the nB black circles is orthogonal to at most
two green circles. By our assumption nB − b − i2 black inner circles intersect at most one green
circle. Thus, we have at most 2nB−(nB−b− i2) = nB+b+ i2 green edges. Adding the 3nB−b−3
black edges yields the upper bound of 4nB + i2 − 3 as stated in the lemma. □

Lemma 15 Every green circle intersecting an inner black circle is a deep circle.

Proof: Let D be the red circle and SB be the set of black circles. Assume for a contradiction
that there is a shallow green circle E with center CE that intersects an inner black circle F ∈ SB

with center CF . Note that E being a green circle also has to intersect D. Hence E and D are not
nested and thus by Lemma 1 CE is outside of D; see Figure 10.

Let A be the arrangement consisting of the circles in SB and E. All circles in SB and the
circle E have depth 0 so the arrangement A is nonnested. According to Theorem 1 the embedded
intersection graph G(A) is noncrossing.

Let B be the arrangement consisting only of the circles in SB . Note, that B is also noncrossing.
Since CE is outside D it lies in the outer face of G(B). On the other hand F is an inner circle,

so its corresponding vertex is not on the boundary of G(B). The straight-line edge between CE

and CF must intersect an edge on the boundary of the outer face of G(B). This yields a crossing
and thus a contradiction. □

By Lemma 12 a red circle C intersects at most 7 deep circles. We now take a look at the
possible intersections of the seven deep circles. We start with the following observation.
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Figure 10: Illustration of the situation in the proof of Lemma 15.

Observation 2 Let IC be the set of deep circles that intersect a red circle. The intersection graph
of IC has

• no induced C4, according to Lemma 5 and

• no induced C3, since every circle in IC is orthogonal to the red circle and according to
Lemma 5 there is no K4 in the intersection graph of the arrangement consisting of IC and
C.

By a case distinction we can limit the graphs that fulfil the constraints listed in Observation 2
as follows.

Lemma 16 Let G be a graph with at most seven vertices and no induced C3 or C4. Then one of
the following holds:

(i) G has a vertex of degree at most 1.

(ii) G is a C7, C6 or a C5.

(iii) G is two C5s glued together at a path with two edges.

Proof: If G has at most four vertices, (i) obviously holds. If G has more than four vertices, we
further analyse G as follows.

If (i) does not hold, then G contains a cycle. If the shortest cycle in G has length 7, (ii) holds.
If the shortest cycle has length 6, we have two cases: If G has only 6 vertices, then (ii) holds.

Or if G has 7 vertices, consider the vertex v not on that cycle of length six. If v has at least two
neighbors, these neighbors must lie on the C6 and thus yield a shortcut. This is not possible since
the C6 is the shortest cycle in G. Hence the vertex v is incident to at most one edge and (i) holds.

If the shortest cycle has length 5, we have three cases. First, if G has only 5 vertices, then (ii)
holds. Second, if G has 6 vertices, then the sixth vertex is incident to at most one edge by the
same argument used in the case of 7 vertices and a C6 and (i) holds. Thirdly, if G has 7 vertices
and if (i) and (ii) do not hold, consider the two vertices v, w not on the C5. Since (i) does not
hold v, w have degree at least two. If either one of them has two neighbors on the C5, it yields a
shortcut and we would have a shorter circle. This contradicts the assumption that the C5 is the
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shortest cycle in G, so both have just one neighbor on the cycle. Since u and v have degree of at
least 2 they are connected by an edge. Let v′ and w′ be the neighbors of v and w on the five-cycle,
respectively. The length of the shortest path from v′ to w′ on the C5 is either one or two. If it
is one, then the path v′, v, w,w′, v′ would be a C4, a contradiction. So the length of the shortest
path is two and G is two C5 glued together at the path from v′ to w′. Thus, (iii) holds. □

Lemma 17 Every graph G with at most seven vertices without an induced C3 or C4 has at most
8 edges.

Proof: We delete vertices with degree 1 until no such vertex remains. Let G′ be the remaining
graph. Since G′ fulfils the condition (ii) or (iii) of Lemma 16 it can be made acyclic by deleting at
most two edges. Hence, also G can be made acyclic by deleting at most two edges. It follows that
that G has at most (n− 1) + 2 edges, if it has n vertices. Thus, n ≤ 7 implies that G has at most
8 vertices. □

We can now bound the number of intersection points of the circles in IC .

Lemma 18 Let C be the red circle and let IC be the set of deep circles intersecting C. The
arrangement of circles in IC has at most sixteen intersection points of which eight are inside of C.

Proof: According to Lemma 17 the intersection graph of IC has at most eight edges. Hence,
there are eight pairs of intersection points in the arrangement consisting of the circles in IC . Due
to Lemma 10 for every pair exactly one intersection point is inside of C. Thus, at most eight
intersection points of circles in IC are inside the circle C. □

Lemma 19 In the intersection graph of every arrangement of orthogonal circles we can find a
nonempty subset VB that is incident to at most 4nB + 5 edges, where nB = |VB |.

Proof: Let A be an arrangement of orthogonal circles. According to Lemma 13 we can a find a
red circle C with depth t(C) = 1 that is orthogonal to at most seven deep circles. We denote the
black circles by SB and set nB = |SB |. Further let VB denote the vertex set corresponding to SB .

We now prove that there are at most 8 inner black circles in SB that are orthogonal to two
circles not in SB . According to Lemma 15 the inner black circles can only be intersected by deep
green circles. If a black circle intersects two green circles, then the green circles have to intersect,
otherwise the intersection graph of the black, the two green and the red circle would induce a C4.
According to Lemma 10 a black circle that intersects two green circles contains their intersection
point. Lemma 11 states that all circles containing the same intersection point must be nested.
Since the black circles are not nested, only one black circle contains a given intersection point. By
Lemma 18 the seven deep green circles have at most eight intersection points inside C. Thus, at
most eight inner black circles are orthogonal to two deep green circles. We now apply Lemma 14
with i2 ≤ 8 to obtain that VB is incident to at most 4nB −3+ i2 = 4nB +5 edges. Note that when
nB = 1 (the case not covered by Lemma 14) then by Lemma 9 VB is incident to at most 2 edges,
which is less than 4nB + 5 = 9. □

Our goal is to apply the previous lemma for bounding the density of the intersection graph. If
we can repeatedly take out vertex sets of size k such that the k vertices are incident to at most ck
edges (for a constant c), then the density of the graph is no more than cn, for n being the number
of vertices. Unfortunately, because of the additive constant Lemma 19 is too weak if the subsets
are small. Hence, we analyse small sets separately to get a better bound. In the remainder of
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this part we analyse arrangements with a small number of inner black circles to prove the upper
bound of

(
4 + 5

11

)
·n edges in the intersection graph of an arrangement of n circles. We start with

a slightly stronger statement of Lemma 19.

Corollary 3 In the intersection graph of every arrangement of orthogonal circles we can find a
nonempty subset VB that is incident to at most 4nB + 5 edges where nB = |VB |. Moreover, if at
most three vertices corresponding to inner black circles of VB are incident to two green edges each,
then VB is incident to at most 4nB edges.

Proof: We can follow the proof of Lemma 14 and use the fact that for the “Moreover”-part we
have i2 ≤ 3. □

Before proving the desired bound in Lemma 23 we provide some necessary lemmas.

Lemma 20 Let C be the red circle in an orthogonal circle arrangement and let SC be the set of
the black circles properly nested in C. If an inner black circle of SC is intersected by two green
circles, then SC contains at least 8 boundary black circles.

Proof: Let D be an inner black circle that is intersected by the two green circles E and F . Since
both E and F intersect D and C, they must intersect each other. Otherwise the corresponding
vertices of E,D,F and C would induce a C4, which would violate Lemma 5. Thus, E and F
intersect and according to Lemma 10 D contains one of the intersection points. If D is an inner
circle, then its corresponding vertex vD in the (embedded) intersection graph GC of SC is not
adjacent to the outer face. So vD lies on the interior of a cycle of vertices corresponding to
boundary black circles. Let A = (a1, ..., ax) be such a cycle that is inclusion-minimal.

Every green circle intersectingD must also intersect at least two circles corresponding to vertices
in A. So the vertices vE and vF corresponding to the green circles E and F must each have at least
two neighbors in A. According to Lemma 11 and since the black circles are not nested, there can
only be one black circle intersecting both E and F . This circle is the circle D. Thus, the vertices
vE and vF cannot have a common neighbor.

Let ai, aj be the neighbors of E and ak, al be the neighbors F . If two of the neighbors are
adjacent, say ai and ak then ai, vE , ak, vF induce a C4, which would contradict Lemma 5. Thus,
A muss contain at least 8 vertices. □

As an immediate consequence from the previous lemma we get.

Lemma 21 Let C be the red circle in an orthogonal circle arrangement and let SC be the set of
the circles properly nested in C. If |SC | ≤ 11, then SC contains at most three inner black circles
that each are intersected by two green circles.

Proof: Assume for contradiction that |SC | ≤ 11 and SC contains four inner circles that are
intersected by two green circles each. It follows that SC contains at most seven boundary black
circles. This is a contradiction to Lemma 20. □

Lemma 22 In the intersection graph of an arrangement of orthogonal circles we can find a
nonempty subset VC that is incident to at most 4n + 5 edges, where n = |VC |. Moreover, if
n ≤ 11, then the subset is incident to at most 4n edges.

Proof: According to Corollary 3 there is a non empty subset VC in the intersection graph of every
orthogonal circle arrangement that is incident to at most 4n+ 5 edges, where n = |VC |. However,
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according to Lemma 21, if n < 11 then there are at most 3 inner black circles that are orthogonal
to two green circles. In this case, due to Corollary 3, VC is incident to at most 4n edges.

□

Lemma 23 In the intersection graph of an arrangement of orthogonal circles we can find a subset
VC of n vertices that has at most

(
4 + 5

11

)
n edges.

Proof: According to Lemma 22 there is a nonempty subset VC in the intersection graph of every
orthogonal circle arrangement that is incident to at most 4n+5 edges, where n = |VC |. Moreover,
if n ≤ 11, then the subset is incident to at most 4n edges.

If n ≤ 11, then VC is incident to at most 4n <
(
4 + 5

11

)
n edges.

If n > 11, then VC is incident to at most 4n+ 5 =
(
4 + 5

n

)
n ≤

(
4 + 5

11

)
n edges. □

Theorem 2 The intersection graph of an arrangement of n orthogonal circles has at most
(
4 + 5

11

)
n

edges.

Proof:
Assume there exist arrangements with n orthogonal circles, whose intersection graphs have

more than
(
4 + 5

11

)
n edges. Consider a smallest such arrangement A in terms of numbers of

circles and its intersection graph G(A) = (V,E). By Lemma 23 there exists a subset S ⊂ V of
n′ vertices that is incident to at most

(
4 + 5

11

)
n′ edges. We take out S and all incident edges.

The new graph has (n− n′) vertices and more than
(
4 + 5

11

)
(n− n′) edges. This contradicts the

assumption that A is minimal. □

We conclude this section with a short discussion whether our results might carry over to (nested)
acute circle arrangements. In contrast to the nonnested case, our results cannot be easily general-
ized for the nested setting with acute intersections. One of the main reason for this is that both
the K4 and the C4 have a representation by touching circles (since they are planar). Hence the
application of Lemma 5 is ruled out and the proof strategy that leads to Theorem 2 cannot be
reused. Moreover, if we consider arbitrary small but nonzero intersection angles between circles,
then we can take any triangulation, embed its incidences as a circle packing and enlarge the radii
just slightly. By this, we generate an acute circle arrangement of n circles with up to 3n − 6
pairs of circles that properly intersect in an arbitrary small angle. This shows that the bound of
Theorem 2 cannot be achieved in the acute case, even if we disallow touching circles. It would be
interesting to know in greater detail how the (lower bound for) the intersection angles effects the
maximum edge density in the corresponding intersection graph. We leave this as a direction for
future research.

4 Lower bounds

In this section we discuss lower bound constructions. Our ideas are based on the arrangement
Bx,a, parametrized by two integers a ≥ 5 and x ≥ 1, which is constructed as follows. We start
with arranging a circles with the same radius in such a way that their centers lie on a circle and
two neighboring circles intersect. We call these circles the satellite circles. We add another circle
(called hub circle) to this arrangement such that it intersects every satellite circle orthogonally. We
name this arrangement a wheel of circles. An arrangement Bx,a is then constructed by “nesting” x
wheels of circles with a satellite circles each inside each other such that each satellite circle of one
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Figure 11: The arrangement B3,15. Hub circles are drawn with thick, satellite circles with thin
lines. Corresponding satellite and hub circles have the same color.

wheel intersects two satellite circles of the next wheel and two satellite circles of the previous wheel.
We postpone the technical details of this construction (including the proof that the arrangement
is orthogonal) to the end of this section.

Lemma 24 The intersection graph of Bx,a has x · (a+ 1) vertices and exactly 4xa− 2a edges.

Proof: The arrangement consists of x wheel of circles, each having a satellite circles and one hub
circles. Thus, the intersection graph has x · (a+ 1) vertices. Every vertex corresponding to a hub
circle has clearly degree a. Further, every vertex corresponding to a satellite circle has degree 7,
except those corresponding to a satellite circle on the inner or outermost wheel of circles, which have
degree 5. So the sum of the vertex degrees is

∑
v∈V (Gx,a)

deg(v) = ax+7a(x−2)+5a ·2 = 8xa−4a.
This number equals twice the number of edges, and therefore the intersection graph has 4xa− 2a
edges. □

Lemma 25 For every n there is an arrangement of orthogonal circles, whose intersection graph
has n vertices and at least 4n−O (

√
n) edges.

Proof: We set x = ⌊
√
n⌋ and a = ⌈

√
n⌉ − 2. Note that for any positive real number t we have

⌊t⌋(⌈t⌉ − 1) < t2 < (⌊t⌋+ 1)⌈t⌉. Hence, for our choice of parameters the arrangement Bx,a has by
Lemma 24

x · (a+ 1) = ⌊
√
n⌋
(
⌈
√
n⌉ − 1

)
< n

vertices. We introduce additional independent circles so that Bx,a has exactly n vertices. Also by
Lemma 24 we get that this arrangement has at least

4xa− 2a = 4(⌊
√
n⌋)(⌈

√
n⌉ − 2)− 2⌈

√
n⌉+ 4

= 4(⌊
√
n⌋+ 1− 1)⌈

√
n⌉ − 8⌊

√
n⌋ − 2⌈

√
n⌉+ 4

= 4(⌊
√
n⌋+ 1)⌈

√
n⌉ −O(

√
n)

> 4n−O(
√
n)
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many edges and the statement of the lemma follows. Note that for very small n our construction
is degenerate, which is however covered by the big-O error term. □

We now give a lower bound for nonnested orthogonal circles.

Lemma 26 For every n ≥ 6 for which n mod 5 = 1 the arrangement B((n−1)/5),5 with only the
innermost hub circle is nonnested and its n-vertex intersection graph has exactly 3n− 8 edges.

Proof: Let G be the intersection graph of B((n−1)/5),5 in which we have deleted all but the
innermost hub circle and let m its number of edges. The arrangement is nonnested by construction.
Every vertex in G has degree 6, except the vertices that correspond to the inner most satellite
circles, the only hub circle and the vertices adjacent to the outer face of G. The 6 vertices
corresponding to inner most satellite circles and the one hub circle have degree 5. The 5 vertices
on the outer face of G have degree 4. This gives us 2m =

∑
v∈V (G) deg(v) = 6n−6−5 ·2 = 6n−16.

Thus, the intersection graph has n vertices and 3n− 8 edges. □

a = 5

Figure 12: Detail of the arrangement used to prove the lower bound in the nonnested case in
Lemma 26.

Chaplick et al. [4] investigated the maximal number of triangular cells in an orthogonal circle
arrangement. They proved an upper bound of 4n and gave a lower bound of 2n triangular cells,
which they later improved to 3n− 3. This bound can be improved by taking the arrangement Bx,a

and place a small (orthogonal) circle around every intersection point. This implies the following
lemma.

Lemma 27 For infinitely many values of k there is an arrangement of n = 36k orthogonal circles
with at least

(
3 + 5

9

)
n−O (

√
n) triangular cells.

Proof: We construct the arrangement A by taking the arrangement Bx,a described above and
drawing a small circle over every intersection point, such that the small circle only intersects the
two circles corresponding to the intersection point. That this is always possible can be seen by
applying a Möbius transformation that maps the two intersecting circles to straight lines, that
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intersect at right angles. Note that such a transformation is conformal and thus maintains the
angles. We can now draw a circle around their intersection point that does not intersect any other
circles. Reversing the inversion gives us the small circle. Each of those new circles induces four
triangular cells.

According to Lemma 24 the intersection graph of Bx,a has 4xa − 2a edges. Thus, Bx,a has
8xa− 4a intersection points. The arrangement A has therefore 36k = x · (a+1)+ 8xa− 4a circles
and at least 4 · (8xa− 4a) triangular cells.

We set x = 4
(
⌈
√
k⌉ − 1

)
and a = ⌊

√
k⌋. Note that for any positive real number t we have

⌊t⌋(⌈t⌉ − 1) < t2 < (⌊t⌋ + 1)⌈t⌉. Hence, for our choice of parameters the arrangement A has at
most

9xa− 4a+ x = 9 · 4
(
⌈
√
k⌉ − 1

)
· ⌊
√
k⌋ − 4 · ⌊

√
k⌋+ 4

(
⌈
√
k⌉ − 1

)
= 36

(
⌈
√
k⌉ − 1

)
⌊
√
k⌋ − 4

(
⌊
√
k⌋ − ⌈

√
k⌉+ 1

)
≤ 36

(
⌈
√
k⌉ − 1

)
⌊
√
k⌋ < 36k

circles. We fill A up such that it has exactly 36k circles. So this arrangement has at least

32xa− 16a = 32 · 4
(
⌈
√
k⌉ − 1

)
· ⌊
√
k⌋ − 16⌊

√
k⌋

= 128
(
⌈
√
k⌉ − 1

)
⌊
√
k⌋ − 16⌊

√
k⌋

= 128⌈
√
k⌉
(
⌊
√
k⌋+ 1− 1

)
− 128⌊

√
k⌋ − 16⌊

√
k⌋

= 128⌈
√
k⌉
(
⌊
√
k⌋+ 1

)
− 128⌈

√
k⌉ − 128⌊

√
k⌋ − 16⌊

√
k⌋

> 128k −O(
√
k)

many triangular cells. We remind the reader that the arrangement A has n = 36k circles thus the
arrangement has at least

128
( n

36

)
−O

(√
n

36

)
=

32

9
n−O(

√
n)

triangular cells. □

One can derive a lower bound example for acute nonnested circle arrangements out of the former
construction by shrinking the circles in such a way that they still intersect. This will reduce the
intersection angles. Thus, we obtain an acute circle arrangement with n circles whose intersection
graph has exactly 3n− 8 edges.

In the remainder of this section we review the formal construction of the arrangement Bx,a

including a proof of its orthogonality.
We define the following constants and points in the plane for later reference.

• α =

√
cos ( 2π

a )−cos ( 4π
a )+

√
2 cos (π

a )√
2 cos ( 2π

a )

• di =
αi−1

√
2·sin(π

a )
• si = αi−1
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• Ci,j =

{(
di,

2π·j
a

)
, if i is even(

di,
2π·j
a + π

a

)
, else

• hi = si ·
√

1

2·sin(π
a )

2 − 1

The construction is guided by a set of x concentric circles Oi centered at the origin of radii
di for 1 ≤ i ≤ x; we refer to these circles as orbits. These circles will not be part of the final
arrangement. On each of the orbit circles Oi we place the centers of a circles Si,j for 1 ≤ j ≤ a
with radius si such that the centers are equidistant; we refer to these as satellite circles. The center
of a circle Si,j for 1 ≤ i ≤ x, 1 ≤ j ≤ a is Ci,j As last step we add x concentric circles Hi with
center on the origin and radii hi for 1 ≤ i ≤ x; we refer to these circles as hub circles. As before
we call a hub circle together with the satellite circles it intersects a wheel of circles. The satellite
circles and the hub circles form the arrangement Bx,a.

We prove now that this arrangement is an orthogonal circle arrangement.

Lemma 28 The arrangement Bx,a is an orthogonal circle arrangement.

Proof: We prove the lemma by checking the following conditions.

1. In every wheel of circles the satellite circles intersect each other orthogonally.
Let us first concentrate on the innermost wheel of circles. Consider the equilateral a-gon
formed by the centers of the satellite circles C1,1, ..., C1,a. An edge length of the a-gon is
(here between C1,j and C1,j+1)

D =

√
2 · d21 − 2 · d21 · cos

(
2π · (j + 1)

a
− 2π · j

a

)

=

√√√√2 ·

(
1√

2 · sin
(
π
a

))2(
1− cos

(
2π

a

))

=

√√√√1− cos
(
2π
a

)
sin
(
π
a

)2
=

√
2.

Since s1 = 1, the radii of the satellite circles is 1. Thus every two neighboring circles intersect
orthogonally. Note that all other wheel of circles are just scaled up copies of the innermost
wheel of circles. Hence, also here the intersections are orthogonally.

2. In a wheel of circles the hub circle intersects every satellite circle orthogonally.
Due to rotational symmetry it suffices to prove the statement for one satellite circle. We
consider now the intersection point of a satellite circle with a hub circle. The radius of the
hub circle is hi and the radius of the satellite circles is si. It holds that

h2
i + s2i =

(
si ·
√

1

2 · sin
(
π
a

)2 − 1

)2

+ s2i =

(
αi−1

√
2 · sin

(
π
a

))2

= d2i .

Since di is the distance between between the center of the satellite circle and the center of
the hub circle (origin) we get by Observation 1 that both circles intersect orthogonally.
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3. The satellite circles of two adjacent wheels of circles intersect orthogonally. Due
to symmetry it suffices to check the condition between the circles with center C1,1 and C2,1.
It holds that

∥C1,1, C2,1∥22 = d2
2 − 2 cos

(π
a

)
d1 · d2 + d1

2 =
α2 − 2 cos

(
π
a

)
α+ 1

2sin
(
π
a

)2 .

If we can show that ∥C1,1, C2,1∥22 = s1
2+s2

2 = 1+α2, then by Observation 1 the orthogonality
is proven. With computer algebra software we have checked that indeed

α2 + 1 =
α2 − 2 cos

(
π
a

)
α+ 1

2sin
(
π
a

)2 .

4. No hub circle intersects any circle that is not part of its wheel of circles. Let H
be a hub circle and let W1 and W2 be two neighboring circles from the same wheel of circles.
Further let C be a circle from an adjacent wheel of circles that intersect W1 and W2. We
invert all four circles in a circle with center on one of the intersection points of W1 and W2.
This turns W1 and W2 into straight lines that intersect orthogonally and the circles H and
C into circles that intersect these straight lines orthogonally . The inversions of H and C
are nested and thus do not intersect. Thus, also H and C do not intersect.

Since these four conditions hold, all intersection points in the arrangement belong to circles that
intersect orthogonally. □
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