
Journal of Graph Algorithms and Applications
http://jgaa.info/ vol. 27, no. 1, pp. 35–44 (2023)
DOI: 10.7155/jgaa.00612

Efficient Point-to-Point Resistance
Distance Queries in Large Graphs

Craig Gotsman 1 Kai Hormann 2

1New Jersey Institute of Technology
2Università della Svizzera italiana

Submitted: October 2022 Reviewed: December 2022 Revised: January 2023

Accepted: February 2023 Final: February 2023 Published: February 2023

Article type: Regular paper Communicated by: Giuseppe Liotta

Abstract. We describe a method to efficiently compute point-to-point resistance
distances in a graph, which are notoriously difficult to compute from the raw graph
data. Our method is based on a relatively compact hierarchical data structure which
“compresses” the resistance distance data present in a graph, constructed by a nested
bisection of the graph using compact edge-cuts. Built and stored in a preprocessing
step (which is amenable to massive parallel processing), efficient traversal of a small
portion of this data structure supports efficient and exact answers to resistance distance
queries. The size of the resulting data structure for a graph of n vertices is O(nk log n),
where k is the size of a balanced edge-cut of the graph. Exact queries then require
O(k log n) worst-case time and O(k) average-case time. Approximate values may be
obtained significantly faster by applying standard dimension reduction techniques to
the “coordinates” stored in the structure.

1 Introduction

Resistance distance between two vertices i and j in a graph G(V,E) containing n vertices is a global
measure of distance between vertices in a graph, taking into account the lengths of all possible
paths between them. Its name stems from the fact that the graph may be thought of as a resistor
network with the edges representing unit-value resistors, and the resistance distance r(i, j) is then
the effective resistance between the two junctions i and j in this network. Resistance distance
is a useful measure with many applications in chemistry and graph analytics, dating back to the
seminal paper by Klein and Randić [8]. For more details, the interested reader is referred to the
recent survey by Evans and Francis [5].

Resistance distance may be expressed in terms of the classical “flow” in networks [1, Sec. 10.2].
This is an assignment of non-negative real numbers fe (the flow) to all edges e of a network, along

E-mail addresses: gotsman@njit.edu (Craig Gotsman) kai.hormann@usi.ch (Kai Hormann)

This work is licensed under the terms of the CC-BY license.

http://dx.doi.org/10.7155/jgaa.00612
https://orcid.org/0000-0001-8579-3588
https://orcid.org/0000-0001-6455-4246
mailto:gotsman@njit.edu
mailto:kai.hormann@usi.ch
https://creativecommons.org/licenses/by/4.0/

36 Gotsman and Hormann Efficient Point-to-Point Resistance Distance Queries

with a direction per edge, such that the total incoming flow is equal to the total outgoing flow at
all nodes except the source and sink. At the source, the total outgoing flow is 1, as is the total
incoming flow at the sink. In this case r(i, j) is just the square of the norm of the minimal flow,

r(i, j) = min

 ∑
e∈E(G)

f2
e : f is a unit flow in G from source i to sink j

 .

Another way to express the resistance distance as an optimal value uses vectors of real values for
the n graph vertices [2, Corollary 6]:

1

r(i, j)
= min

 ∑
(u,v)∈E(G)

(xu − xv)
2 : x ∈ Rn and xi − xj = 1

 .

The resistance distance is known to be a metric and is usually computed in one of two ways: the
“direct” method,

r(i, j) = Γi,i + Γj,j − 2Γi,j , (1)

where Γ = L+ is the pseudoinverse of the positive semi-definite symmetric Laplacian matrix L
of G, or the “spectral” method,

r(i, j) =

n∑
k=2

1

λk

(
ϕk
i − ϕk

j

)2
, (2)

where λk and ϕk are the k-th eigenvalue and normalized eigenvector of L (such that λ1 = 0). While
these are straightforward formulae, they compute simultaneously the resistance distance between
all O(n2) pairs of vertices in the graph, or, at the very least, the resistance distance between a
vertex and all O(n) other vertices. They require solving global systems before anything can be
done for any pair of vertices, with run-time complexity of O(n3). As such, the methods are not
practical to use in an application where queries on the resistance distance between arbitrary pairs
of vertices in very large graphs are to be computed rapidly on demand. This arises, for example, in
graph sparsification [12], where an edge is deemed important if and only if its resistance distance
is large. Thus an edge may be discarded if its resistance distance is small, since there exist many
other paths in the graph connecting its two endpoints. Similarly, in the opposite problem of link
prediction [10], a link is predicted to appear in a network in the future if the resistance distance
between its two endpoints is small, implying that there already is a strong indirect connection
between the two edge endpoints.

It may be possible to approximate r(i, j) using (2) by computing only the m ≪ n eigen-
value/eigenvector pairs for L having the smallest eigenvalues, as these dominate the spectral sum,
thus avoiding the computation of all n pairs. Indeed, if preprocessing and storing the results is
allowed, to be used later in a fast online query, then m eigenvalues and eigenvectors of L may
be precomputed and stored, at a storage cost of O(m) “coordinates” per graph vertex, and a
resistance distance query may be answered in O(m) time. Alas, for many graphs, the value of m
necessary to obtain a sufficiently accurate approximation may be quite large, sometimes m = O(n).
Spielman and Srivastava [12] expand on this idea to form a (high probability) ϵ-approximation to
the resistance distance based on (2), while avoiding explicit computation of eigenvectors. They
preprocess the graph using random projections and an efficient linear solver, resulting in a matrix
with m = O(logn

ϵ2) entries (“coordinates”) per vertex. This matrix may then be used to answer

JGAA, 27(1) 35–44 (2023) 37

C
G2

1G

e1
e2e3

e4

e1
e2e3

e4

G = G4 G3 G2 G1 G0

Figure 1: Left : graph G with edge-cut C (green) consisting of k = 4 edges. Left to right : partial
graphs Gi resulting from successively removing one edge of the cut at a time.

online queries in O(m) time. Although asymptotically efficient, the values of ϵ and the implicit
constants needed to produce high-quality approximations can make this expensive in practice.

In this paper we describe an alternative method to efficiently answer point-to-point resistance
distance queries. This is achieved by preprocessing a graph by recursive edge-cuts, resulting in
storage of m = O(k log n) “coordinates” per vertex and leads to a method to compute r(i, j) exactly
in O(m) time, where k is the size of a balanced edge-cut of G, for example, k = O(

√
n) for planar

graphs. Using the same stored data, a very good approximation of r(i, j) may be obtained in much
less time if we apply dimension reduction to the coordinates.

2 Resistance distance through an edge-cut

If G(V,E) is a connected graph with vertex set V and edge set E, an edge-cut of G is a subset
C ⊂ E such that G(V,E \ C) consists of two disconnected components G1 = G(V1, E1) and
G2 = G(V2, E2), where V = V1 ∪ V2, V1 ∩ V2 = ∅ and E = E1 ∪ C ∪ E2, E1 ∩ E2 = ∅. Denote
by B1 the boundary of V1 relative to V2, that is, B1 = V1 ∩ V (C), and similarly B2 the boundary
of V2. If v1 ∈ V1 and v2 ∈ V2, then we say that C separates v1 and v2, and show how to express
rG(v1, v2) as a function of rGi(v1, ui) and rGi(v2, wi) only, where ui and wi are the vertices in B1

and B2, respectively and Gi are graphs simpler than G, as will be described below. Note that we
have added a subscript to the resistance distance function r to indicate the graph to which it is
applied.

The starting point for our analysis is the “perturbation formula” of Yang and Klein [14, Theo-
rem 2.1], also mentioned by Ranjan et al. [11], which describes how the resistance distance between
two vertices v1, v2 in a graph changes when a new edge is added to the graph.

Theorem 1 [14] Let G(V,E) be an undirected graph and G′ = (V,E ∪ e) be the graph after a new
edge e = (u,w) is added. Denote by rG(v1, v2) the resistance distance between vertices v1 and v2
in the graph G. Then,

rG′(v1, v2) = rG(v1, v2)− δ(G, v1, v2, u, w),

where

δ(G, v1, v2, u, w) =

(
(rG(v1, u)− rG(v1, w))− (rG(v2, u)− rG(v2, w))

)2
4(1 + rG(u,w))

.

Note that the addition of new edge always decreases the resistance distance, as expected. We
apply Theorem 1 to analyse the effect of the edges in an edge-cut on the resistance distance.

38 Gotsman and Hormann Efficient Point-to-Point Resistance Distance Queries

Theorem 2 Let G(V,E) be an undirected graph containing an edge-cut C consisting of the k edges
{ei = (ui, wi) : i = 1, . . . , k} partitioning V into V1 and V2. Denote by Gi the graph containing all
the edges of G except the edges {ej : j = i+1, . . . , k} (see Figure 1). If v1, ui ∈ V1 and v2, wi ∈ V2

are on opposite sides of the edge-cut, then

rG(v1, v2) = rG0
(v1, ui) + rG0

(v2, wi) + 1−∆(G, v1, v2, C), (3)

where

∆(G, v1, v2, C) =

k∑
i=2

δ(Gi, v1, v2, ui, wi). (4)

Proof: Theorem 1 may be applied k − 1 times by starting with the graph G1 containing just one
edge of C and repeatedly adding one more edge of C at a time, so that

rG(v1, v2) = rG1
(v1, v2)−∆(G, v1, v2, C). (5)

Observing that the removal of the first edge e1 = (u1, w1) disconnects G1 into G0 consisting of two
disconnected vertex sets V1 and V2 with u1 ∈ V1 and w1 ∈ V2, we trivially have

rG1
(v1, v2) = rG0

(v1, u1) + rG0
(v2, w1) + 1,

from which (3) results. □

3 Nested bisection

Assuming the cut C is balanced, namely, partitions V into two sets V1 and V2 of approximately
equal size, then Theorem 2 is applicable in approximately 50% of the cases, when vertex pairs
(v1, v2) are separated by C. In this case, it provides an efficient way to compute rG(v1, v2) if only
rGi

(v1, ui) and rGi
(v2, wi) are known. However, if v1 and v2 are not separated by C, for example,

without loss of generality, v1, v2 ∈ V1, then obviously

rG1
(v1, v2) = rG0

(v1, v2)

and the computation of (5) may proceed recursively on G1 = G0 to evaluate the first term. This
means that an edge-cut C1 must be found for G1, and then (5) applied again on G1. This process
will continue recursively and terminate when v1 and v2 are separated by the edge-cut, at which
point (3) is applied. Note that the superscript i in Gi denotes the subgraph of G treated at
recursion level i.

Thus, in order that this recursive method apply to any vertex pair, a nested bisection tree [6]
must be constructed, where edge-cuts are computed recursively until small enough vertex sets
are obtained. Each node of the binary tree represents a subgraph of G and an edge-cut of the
subgraph. Each descendant of the node represents one of the two connected components obtained
from the edge-cut. Leaves of the tree represent small subgraphs which are not partitioned further.
If the edge-cuts are balanced, the height of the binary tree will be O(log n). For any vertex v,
we say that v is associated with all nodes of the tree that contain v, and also associated with the
subgraphs and edge-cuts in those nodes. In the opposite direction, we say that these subgraphs
and edge-cuts are associated with v.

JGAA, 27(1) 35–44 (2023) 39

Once the binary tree is constructed, the resistance distance between v1 and v2 may be computed
by traversing the tree and considering all nodes associated with v1 and associated with v2, namely

rG(v1, v2) = rGd(v1, u) + rGd(v2, w) + 1−
d∑

i=0

∆(Gi, v1, v2, C
i),

where the Gi are the subgraphs of G contained in the nodes along the path of the tree from its
root at depth 0 to the node at depth d containing the edge-cut Ci separating v1 from v2. The
vertices u and w are the endpoints of the final edge of the edge-cut Cd in Gd.

4 Implementation details

4.1 Preprocessing

In order to use the method described in the previous section to efficiently answer resistance distance
queries between any two vertices of a given graph, it is necessary to precompute the bisection
tree and resistance distances between each vertex and the endpoints of its associated cut edges
in the relevant subgraphs. This is performed just once on the graph, namely, we compute and
store “coordinates” of each vertex to all associated cut edges. This will result in a very compact
representation of the resistance distance information and will facilitate efficient computation of the
resistance distance between any two vertices at query time. In practice the graph is recursively
partitioned and a binary tree built. The resistance distances from each vertex to all associated
edge-cuts are then computed postorder (bottom-up). For a leaf of the tree, the resistance distance
matrix is computed simply by applying (1) to the subgraph stored in that leaf. Once we have
the resistance distance matrix of two components of a graph, rG1

and rG2
, the resistance distance

matrix rG of the complete graph is computed by inserting one edge of the cut at a time and
updating the matrix accordingly. Adding the first edge (u,w) (where u ∈ V (G1) and w ∈ V (G2))
triggers the computation

rG(v1, v2) :=

rG1(v1, v2), v1, v2 ∈ G1,

rG2(v1, v2), v1, v2 ∈ G2,

rG1
(v1, u) + rG2

(w, v2) + 1, v1 ∈ G1, v2 ∈ G2.

Adding any of the other edges ei = (ui, wi) triggers the update

rG(v1, v2) := rG(v1, v2)− δ(G, v1, v2, ui, wi).

As this proceeds, the following “coordinates” (one per each edge ei = (ui, wi) in the cut) are stored
for all v ∈ G,

c(v, ei) :=

rG(v, ui), i = 1, v ∈ G1

rG(v, wi), i = 1, v ∈ G2

rG(v, ui)− rG(v, wi)

2
√

1 + rG(ui, wi)
, i > 1.

(6)

The end result is a tree data structure containing O
(∑d

i=1 |Ci|
)
values for vertex v, where Ci are

the edge-cuts associated with v. There are d = O(log n) such edge-cuts.

40 Gotsman and Hormann Efficient Point-to-Point Resistance Distance Queries

Balanced edge-cuts of a graph may be obtained using a variety of methods (see the survey
by [3]), some implemented quite efficiently in the METIS software package [7]. A simple method
is the spectral method [13] which uses the so-called Fiedler eigenvector of the graph Laplacian
matrix. Whether these edge-cuts are compact or not depends on the type of graph. For example,
it is well known that both planar graphs and unit disk graphs with n vertices admit balanced
edge-cuts of size O(

√
n) [4, 9]. Unit disk graphs model well radio, wifi and IoT networks. For these

cases, the storage requirements of our method are O(
√
n log n) values per vertex, as opposed to

the naive O(n) values per vertex if all pairwise resistance distances are precomputed and naively
stored for lookup at query time.

4.2 Answering point-to-point queries

At query time, given a pair of vertices v1, v2 ∈ G, the coordinates computed in (6) and stored in
preprocessing are used to compute rG(v1, v2) exactly and efficiently by traversing a path of the
binary tree, starting at the root and ending at the node whose associated cut separates v1 and v2.
Starting with rG(v1, v2) = 0, at each node with associated cut C consisting of k edges ei = (ui, wi),
i = 1, . . . , k, this is updated as

rG(v1, v2) := rG(v1, v2) +

k∑
i=2

(
c(v1, ui)− c(v2, wi)

)2
. (7)

At the terminal tree node that separates v1 and v2, we also perform the following update involving
the first edge in the associated cut

rG(v1, v2) := c(v1, u1) + c(v2, w1) + 1− rG(v1, v2). (8)

The time complexity of this computation is O(k log n), where k is the size of an edge-cut. However,
observing that for a balanced edge-cut, 50% of the possible vertex pairs will be separated already
at depth d = 1, 25% at depth d = 2, 12.5% at depth d = 3 and so on, we conclude (by summing a
geometric series) that the average time complexity for a query is O(k).

We note that as the resistance distance is accumulated bottom-up, its value can only decrease
(because of the negative sign in front of rG(v1, v2) in (8)). This is to be expected, as climbing the
tree towards the root exposes more and more of the graph, thus more possible paths between the
two vertices, which can only reduce the resistance distance between them.

5 Approximating the resistance distance

The contribution to the resistance distance between two vertices in a graph separated by an edge-
cut of size k, as described in (7), is the sum of squares of the differences of k− 1 values associated
with each of the edges, namely the square of an Euclidean distance between the embeddings of
the vertices in a space of dimension k − 1. As such, it is amenable to dimension reduction by
principal component analysis (PCA) to a space of much smaller dimension which captures most
of this distance, in which the coordinates are sorted in decreasing order of “importance”. This
has the potential to reduce the storage requirements of this method dramatically, at the cost of
a minor loss of accuracy of the computed resistance distance. This optimization also reduces
the computation runtime, since (4) may be replaced by a sum of much less than k terms. Note
that since the number of vectors m is typically much larger than the dimension k, we use the

JGAA, 27(1) 35–44 (2023) 41

PCA method which performs a cheap eigendecomposition of the covariance matrix of size k × k
(rather than the standard multidimensional scaling method which would require a very expensive
eigendecomposition of a matrix of size m×m), followed by a projection of the input vectors on to
the reduced space.

Another possible optimization leading to an even shorter query time is possible when vertices
are close to each other in the graph. This means that separation occurs deep in the nested
bisection tree and most of the resistance distance is accumulated at the lower levels. In this case,
the resistance distance may be approximated well by using most of the coordinates at the lower
levels, and much fewer at the higher levels. At each level, coordinates are used, starting from the
most important, as long as the contribution of that coordinate is above a threshold. Once the
threshold is crossed, all other coordinates at that level are ignored completely.

6 Examples

We have implemented our methods in MATLAB and run them on some sample graphs. Our
code may be found here. Edge-cuts are computed using the spectral method [13] and resistance
distance of the leaf clusters are computed using the Laplacian pseudo-inverse (1). Although our
entire implementation is serial, we note that the method is “embarrassingly parallel” in the sense
that it can easily be parallelized to significantly reduce both the preprocessing time and the query
time.

Some results on a planar graph and a unit disk graph are shown in Figures 2 and 3. Figure 2
illustrates the computation of the exact resistance distance between two vertices in both types of
graphs, using four levels of edge-cuts within a nested bisection in both examples until the vertices
are separated. In the planar graph of 401 vertices, 62 “coordinates” are required, and in the unit
disk graph of 379 vertices, 113 “coordinates” are required. Figure 3 illustrates how the distance may
be approximated well using far less “coordinates” than needed for the exact distance computation.
A unit disk graph containing 4,653 vertices is preprocessed with a nested bisection of depth 9 and
the dimension of the coordinate space is reduced at each level using PCA. As a result the resistance
distance may be approximated well: 0.8047 instead of 0.8057 using 40 instead of 254 coordinates,
and 0.6054 instead of 0.6063 using 38 instead of 291 coordinates. In contrast, were we to use that
number of coordinates in the truncated spectral approximation (2), the approximation would have
been completely off by two orders of magnitude.

7 Discussion and conclusion

We have described a method that preprocesses a graph G, building a data structure that may be
used to rapidly answer online queries approximating the point-to-point resistance distance between
two vertices of the graph. The fundamental idea is that the resistance distance between two vertices
on opposite sides of an edge-cut C may be expressed using only values relating the two vertices
and the edges of the cut in each of the two components G1 and G2. This is analogous to the fact
that the shortest-path distance d(v1, v2) between these two vertices may also be expressed in a
similar manner as

dG(v1, v2) = min
{
dG1(v1, ui) + dG2(wi, v2) + 1 : (ui, wi) ∈ C

}
Equation (4) expresses the resistance distance in G in terms of the resistance distances to the
separating edges in Gi, which contain partial edge-cuts. It would be more satisfying if it could be

https://www.inf.usi.ch/hormann/software/P2PRD.zip

42 Gotsman and Hormann Efficient Point-to-Point Resistance Distance Queries

Figure 2: Example of the portion of the nested bisection needed to compute the resistance distance
between the two black vertices in two (unweighted) graphs. Left : planar graph containing 401
vertices. Four recursive edges-cuts are shown, each partitioning the relevant subgraph into two
balanced components until the two vertices are separated. The edge-cuts are coloured (red, green,
blue, cyan) with increasing depth (0, 1, 2, 3). In order to compute the required resistance distance,
each of the two vertices must store “coordinates” related only to the 62 edges in their associated
cuts. As the cuts are traversed top-down and the resistance distance then refined bottom-up,
the values start at r = 1.0151 and decrease to 0.9572, 0.9173, and the final value 0.9164. Right :
Unit disk graph within polygonal domain containing 379 vertices. Similar to (left), four cuts are
required to separate the two black vertices, in total 113 edges. The resistance distance is refined
bottom-up as 0.5004, 0.3772, 0.3741, 0.3741.

expressed in terms of resistance distances to the fully separated graph G0. Theorems 4.9 and 4.12
in [14] have such expressions for the cases k = 2, 3, but it seems like the expression for a larger k
would be quite cumbersome.

Our method relies on the fact that the graph admits compact edge-cuts. By “compact” we
mean O(np), preferably for some p ≤ 2

3 . This is true for planar graphs, minor-free graphs, unit
disk graphs, hyperbolic random graphs and geometric inhomogeneous random graphs [4]. For more
general graphs, such as the scale-free (“power law”) graphs that model the internet and social net-
works, the edge-cuts will be less compact and we have to rely on the compression of “coordinates” in
the approximation stage to reduce the resulting number to manageable proportions. For example,
in a social network graph consisting of 7,623 vertices and 27,805 edges, two vertices are separated
at the second level (level 1 = 1,393 edges, level 2 = 577 edges), thus in principle requiring 1,970
coordinates to compute the resistance distance between them exactly. After dimension reduction,
415 + 49 = 464 coordinates suffice, incurring an error of 1.3%.

Finally, we mention that while our description has dealt with the simple case of unit resistances
on the edges (i.e., unweighted graphs), the entire analysis applies also to arbitrary resistance values
(i.e., weighted graphs). In this case, the off-diagonal entries of the Laplacian matrix mentioned
in (1) and (2) are the negative inverses of the edge weights, and the value “1” appearing in the
update formulae should be replaced by the appropriate edge weight.

JGAA, 27(1) 35–44 (2023) 43

Figure 3: Unit disk graph on 4,653 vertices with 8.6 neighbors on average, decomposed using nested
bisection of depth 9. Left : exact resistance distance of 0.8047 between the two black vertices is
computed using three levels of the tree (red, green, blue) involving 105+78+71 = 254 coordinates.
The approximate distance of 0.8057 may be computed on these levels using 24 of the 55 reduced
coordinates on the top level, 5 of 49 at the second level, and 11 of 50 at the third, in total 40
reduced coordinates. Right : Exact resistance distance of 0.5956 is computed on five levels (red,
green, blue, cyan, magenta) using 105+78+69+39+31 = 322 coordinates. Approximate resistance
distance of 0.5958 is computed using 4/55 + 11/49 + 5/39 + 7/28 + 11/20 reduced coordinates, in
total 38 reduced coordinates.

References

[1] R. B. Bapat. Graphs and Matrices. Springer, London, 2nd edition, 2014. doi:10.1007/

978-1-4471-6569-9.

[2] B. Bollobás. Modern Graph Theory, volume 184 of Graduate Texts in Mathematics. Springer, New
York, 1998. doi:10.1007/978-1-4612-0619-4.

[3] A. Buluç, H. Meyerhenke, I. Safro, P. Sanders, and C. Schulz. Recent advances in graph partitioning.
In L. Kliemann and P. Sanders, editors, Algorithm Engineering, volume 9220 of Lecture Notes in
Computer Science, pages 117–158. Springer, Cham, 2016. doi:10.1007/978-3-319-49487-6_4.

[4] P. Carmi, M. K. Chiu, M. J. Katz, M. Korman, Y. Okamoto, A. van Renssen, M. Roeloffzen, T. Shi-
itada, and S. Smorodinsky. Balanced line separators of unit disk graphs. Comput. Geom., 86:Article
101575, 14 pages, Jan. 2020. doi:10.1016/j.comgeo.2019.101575.

[5] E. J. Evans and A. E. Francis. Algorithmic techniques for finding resistance distances on structured
graphs. Discrete Appl. Math., 320:387–407, Oct. 2022. doi:10.1016/j.dam.2022.04.012.

[6] A. George. Nested dissection of a regular finite element mesh. SIAM J. Numer. Anal., 10(2):345–363,
1973. doi:10.1137/0710032.

[7] G. Karypis and V. Kumar. A fast and high quality multilevel scheme for partitioning irregular
graphs. SIAM J. Sci. Comput., 20(1):359–392, 1998. The METIS source code is available at http:

//glaros.dtc.umn.edu/gkhome/views/metis. doi:10.1137/S1064827595287997.

https://doi.org/10.1007/978-1-4471-6569-9
https://doi.org/10.1007/978-1-4471-6569-9
https://doi.org/10.1007/978-1-4612-0619-4
https://doi.org/10.1007/978-3-319-49487-6_4
https://doi.org/10.1016/j.comgeo.2019.101575
https://doi.org/10.1016/j.dam.2022.04.012
https://doi.org/10.1137/0710032
http://glaros.dtc.umn.edu/gkhome/views/metis
http://glaros.dtc.umn.edu/gkhome/views/metis
https://doi.org/10.1137/S1064827595287997

44 Gotsman and Hormann Efficient Point-to-Point Resistance Distance Queries

[8] D. J. Klein and M. Randić. Resistance distance. J. Math. Chem., 12:81–95, 1993. doi:10.1007/

BF01164627.

[9] R. J. Lipton and R. E. Tarjan. A separator theorem for planar graphs. SIAM J. Appl. Math.,
36(2):177–189, 1979. doi:10.1137/0136016.

[10] B. Pachev and B. Webb. Fast link prediction for large networks using spectral embedding. J. Complex
Netw., 6(1):79–94, Feb. 2018. doi:10.1093/comnet/cnx021.

[11] G. Ranjan, Z.-L. Zhang, and D. Boley. Incremental computation of pseudo-inverse of Laplacian.
In Z. Zhang, L. Wu, W. Xu, and D.-Z. Du, editors, Combinatorial Optimization and Applications,
volume 8881 of Lecture Notes in Computer Science, pages 729–749. Springer, Cham, 2014. doi:

10.1007/978-3-319-12691-3_54.

[12] D. A. Spielman and N. Srivastava. Graph sparsification by effective resistances. SIAM J. Comput.,
40(6):1913–1926, 2011. doi:10.1137/080734029.

[13] D. A. Spielman and S.-H. Teng. Spectral partitioning works: Planar graphs and finite element meshes.
Linear Alg. Appl., 421(2–3):284–305, Mar. 2007. doi:10.1016/j.laa.2006.07.020.

[14] Y. Yang and D. J. Klein. A recursion formula for resistance distances and its applications. Discrete
Appl. Math., 161(16–17):2702–2715, Nov. 2013. doi:10.1016/j.dam.2012.07.015.

https://doi.org/10.1007/BF01164627
https://doi.org/10.1007/BF01164627
https://doi.org/10.1137/0136016
https://doi.org/10.1093/comnet/cnx021
https://doi.org/10.1007/978-3-319-12691-3_54
https://doi.org/10.1007/978-3-319-12691-3_54
https://doi.org/10.1137/080734029
https://doi.org/10.1016/j.laa.2006.07.020
https://doi.org/10.1016/j.dam.2012.07.015

	Introduction
	Resistance distance through an edge-cut
	Nested bisection
	Implementation details
	Preprocessing
	Answering point-to-point queries

	Approximating the resistance distance
	Examples
	Discussion and conclusion

