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Abstract. We study restricted rotation distance between ternary and higher-
valence trees using approaches based upon generalizations of Thompson’s group F .
We obtain bounds and a method for computing these distances exactly in linear time,
as well as a linear-time algorithm for computing rotations needed to realize these dis-
tances. Unlike the binary case, the higher-valence notions of rotation distance do not
give Tamari lattices, so there are fewer tools for analysis in the higher-valence settings.
Higher-valence trees arise in a range of database and filesystem applications where
balance is important for efficient performance.

1 Introduction

Rotation distance for binary trees measures the difference in tree shape in terms of a number of
fundamental small changes. Changing tree shape via small steps has important role in arranging
unbalanced tree to balanced trees, which are needed for optimal performance of search algorithms.
A number of questions about rotation distance have been studied. No polynomial-time algorithm
is known to compute rotation distance exactly, though there are polynomial-time estimation al-
gorithms of Pallo [32], Rogers [37], Baril and Pallo [1], Cleary and St. John [18], and Cleary and
St. John [17] have shown that the rotation distance problem is fixed-parameter tractable. The
question of bounding rotation distance between two trees has been addressed by a number of re-
searchers, including Sleator, Tarjan and Thurston [38], who used hyperbolic volume methods to
show that no more than 2n − 6 rotations are needed to transform one rooted binary tree with n
nodes into any other and that this bound is achieved for all sufficiently very large values of n and
thus is optimal in this asymptotic sense. Pournin [35] showed that the bound is optimal in fact for
n ≥ 11.

There are natural analogues of rotation distance for higher-valence trees but the techniques
for analysis which are effective for binary trees do not work well in the more general setting.
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Particularly, as described by Pallo [33], the set of rotation transformations for binary trees gives
rise to a Tamari lattice on binary trees, but for any higher valence trees, the poset arising from
a natural generalization of the rotation transformations is not a Tamari lattice, as described by
Sunik [40]. Huguet [28] showed that the analogous posets in the higher valence setting are not even
lattices, so many of the techniques for the binary case are ineffective. Pallo [33] shows that the
posets arising from some rotation transformations for n-ary trees do satisfy the weaker condition
of being a χ-lattice in the sense of Leutola and Nieminen [30] which leads to some algorithms for
computing meets and joins there, but the analysis is quite difficult and the understanding is far
less complete than in the binary cases. Even in the ternary case, very little progress has been made
using these approaches.

Restricted rotation distance is similar to rotation distance in that it measures the difference
in rooted binary tree shape by counting the minimum number of rotations needed to transform
one tree to another, but it differs from ordinary rotation distance in that instead of rotations
being permitted anywhere in the tree, rotations are permitted only at two distinguished nodes–
the root node and the right child of the root (if present). Restricted rotation distance is in
general significantly larger than rotation distance, but there are a number of similarities and
differences, as described by Cleary [11] and Cleary and Taback [19, 20]. The metric properties of
the abstract group known as Thompson’s group F with respect to its standard finite generating set
give an effective means of studying restricted rotation distance. Restricted rotation distance can
be computed exactly in linear time using ideas developed by Fordham [25], and an exact sequence
of rotations needed to realize this distance can also be found with a linear-time algorithm. For
two trees with n interior nodes, the ordinary rotation distance is sharply bounded by 2n− 6 in an
asymptotic sense, as shown by Sleator, Tarjan and Thurston [38]. For restricted rotation distance
between two trees with n nodes, Cleary and Taback show that the restricted rotation distance is
bounded by 4n− 8 and that this bound is sharp and achieved for n ≥ 3. Cleary and Taback [20]
and Pallo [34] also study a number of other restrictions on possible locations where rotations are
permitted with various notions of “right-arm” and “restricted right-arm” rotation distance, and
Luccio, Mesa Enriquez and Pagli [31] study “level restricted” rotation distances, where rotations
are only permitted at the top levels of a tree. Cleary, Luccio, and Pagli [13] give sharper bounds
in specific cases of restricted right-arm rotation distances.

We mention that the well-developed connections between edge-flip distance between triangula-
tions of polygons and rotations of binary trees (see [38]) do not have well-studied analogs in higher
valence cases. Binary trees correspond to subdivision of polygons into triangles, and higher-valence
trees can correspond to subdivisions of polygons into larger subpolygons, such as quadrilaterals in
the ternary case and pentagons in the quarternary case, which have not drawn the extensive study
that subdivisions into triangulations have.

Here, we consider questions about the rotation distance between higher valence trees. Many
methods which work effectively for binary trees fail for higher valence trees, as described above, but
the approaches using Thompson’s group F can be adapted to effectively understand some of the
properties of appropriate notions of restricted rotation distance between higher valence (regular
k-ary) trees by considering generalizations of Thompson’s group F , known as F (k). The group
F (2) = F is the usual well-studied Thompson’s group F . In this interpretation of F , rooted binary
trees correspond to dyadic subdivisions of the unit interval, and group elements correspond to
piecewise-linear interpolations between dyadic subdivisions. The resulting slopes are necessarily
powers of 2 and the places where slope changes must be dyadic rationals. The corresponding
interpretation of F (3) corresponds to ternary trees with triadic subdivisions, for example. The
group elements in F (3) are piecewise-linear interpolations between triadic subdivisions, with slopes
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Figure 1: Right rotation at node N in a binary tree transforms the left tree to the right tree, where
A, B, C, and L can be leaves or subtrees. Left rotation at N performs the inverse operation taking
the right tree to the left one.

being powers of 3 and slopes changing only at triadic rationals Z[ 13 ]. Trees with higher valence
k have corresponding Thompson’s groups with slopes in ki and breakpoint sets contained in the
k−adics Z[ 1k ].

Here, we describe a linear time algorithm to compute restricted rotation distances exactly and
give sharp bounds on restricted rotation distances in these higher-valence settings, for rooted trees
of all valences k.

2 Background and definitions

A rooted k-ary tree is a rooted, ordered tree where each interior node has exactly k children, which
are each either interior or exterior nodes. In the following, by tree, we mean a rooted k-ary tree.
We call exterior nodes leaves and number the leaves in increasing order from left to right starting
at leaf 1. The right side of the tree is the root and those nodes connected to the root by a path
consisting entirely of right edges; similarly we have the left side of a tree. A rooted k-ary tree with
n interior nodes will have n(k − 1) + 1 leaves.

There are several possible notions of what constitutes a “basic rotation” in a higher-valence
tree. In a binary tree, there are only two possible children to consider, and rotation promotes a
grandchild from one of those children and demotes the other child to a grandchild. In the binary
case, the standard straightforward choice is to allow a left rotation which promotes the right child
of the right child of node N to be the new right child of N , moves the left child of the right child
of N to be the right child of the left child of N , and demotes the left child of N to be the left
child of the left child of N , as pictured in Figure 1. If we are permitted to operate at any node
present in the tree, and allow both right and left rotations when possible, we can transform any
rooted binary tree to any other rooted binary tree with the same number of nodes. The standard
rotation distance between two binary trees with the same number of nodes is the minimum number
of rotations needed to transform T1 to T2, where the rotations can be performed at any node.

For higher valence trees, since there are more children, there are a number of differing possible
notions for what constitutes a corresponding “basic rotation.” It is clear that in order to be able to
transform a given tree to any other tree with the same number of leaves, it will be necessary to allow
rotations which collectively can promote and demote into each of the k children of a node. Unlike in
the binary case, there are several competing reasonable choices for what rotations to allow during
these transformations. We could consider promotion and demotion, in order-preserving manners,
from any of combination of two of the children, giving

(
k
2

)
possible “basic rotations” at a node.
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Figure 2: The k−1 fundamental right rotations ri at the root in a tree of valence k, for 1 ≤ i ≤ k−1
transform the left tree to the right tree. The fundamental left rotations are the inverse operations.

Or we could allow promotion and demotion (again, preserving order) from combinations which
include the rightmost child and any of the other children of the node, giving k − 1 possible “basic
rotations”. Or, as Pallo does in the ternary case detailed in [33], we could only allow rotations
which promote from and demote into adjacent children, also giving k−1 possible “basic rotations.”
Each of these alternatives for fundamental allowed rotations will give rise to a different notion of
rotation distance on k-ary trees, as they each give a different set of fundamental moves which count
as one step in the associated metrics. The role of the right side of the tree and of the “all-right
tree” in the work of Culik and Wood [22] on binary trees suggest that we allow order-preserving
promotions and demotions involving various children and the rightmost child into any of the other
children of the node. This choice will allow the best use of the connections with the generalizations
of Thompson’s group F . Thus, our choice of “basic rotations” is to allow transformations from
the left-hand tree in Figure 2 to any of the right-hand trees and also to allow the inverses (“left
rotations”) of those transformations. And thus, we define the rotation distance dR(T1, T2) between
two k-ary trees T1 and T2 with the same number of leaves is the minimum number of rotations
needed to transform T1 to T2, where the rotations can be performed at any node present and are
of the types described in Figure 2.

As described in [11] and [19], it is not necessary to allow rotations at all possible nodes to
be able to transform any given tree to any other tree with the same number of nodes. Here,
we consider how restricting to a smaller set of allowed rotations leads to the notion of restricted
rotation distance.

As pointed out above, to ensure that we allow sufficiently many rotations to transform any
tree to any other with the same number of nodes, we will need at least k − 1 rotations (and their
inverses) to collectively promote and demote into any of the k children. But those rotations alone
at the root are insufficient, as will be shown below. So we must allow at least one additional
rotation. If we allow merely a single additional rotation at the right child of the root, shown in
Figure 3, we will be able to transform any tree to any other, as will be shown below. Further, any
set of fundamental rotations with fewer than k rotations will be insufficient for the desired goal of
being able to transform any tree of size n into any other tree of size n. There are other possible
minimal sets of fundamental rotations but the choice of these particular ones will allow the efficient
computation described in Section 5. Thus, we allow the k−1 different rotations pictured in Figure
2 at the root, together with the single rotation at the right child of the root from Figure 3 as the
basic rotations in the k-ary case. So we define restricted rotation distance dRR(T1, T2) between two
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Figure 3: A preferred single right rotation rk at the rightmost child of the root in a tree of valence
k.

rooted k-ary trees T1 and T2 with the same number of leaves is the minimum number of rotations
needed to transform T1 to T2, where the rotations allowed are from the set of k possible rotations
just described.

As in the binary case, restricted rotation distance between two trees is bounded below by
(ordinary) rotation distance. In general, restricted rotation distance is much greater as it may
take many rotations at the two distinguished nodes (the root and the right child of the root)
to accomplish the equivalent operation of a single rotation at a single node at a great distance
from the root, via a conjugation process. Though the number of steps required to perform the
transformation is higher, the individual steps are very simple and only of k possible types. To
understand restricted rotation distance, we study Thompson’s group F (k).

3 Thompson’s Groups F (k) and Tree Pair Diagrams

Just as Thompson’s group F = F (2) is useful for understanding restricted rotation distance in
the binary case with 2 children per node, the generalized Thompson’s groups F (k) with k ≥ 3
are useful for analyzing restricted rotation distances in the higher valence case with k children per
node. Thompson’s groups F (k) can be defined in three equivalent ways, all of which are useful in
understanding the structure of the group.

Analytically, we can define F (k) as a group of piecewise-linear homeomorphisms of the unit
interval. The group F (k) is the group of orientation-preserving piecewise-linear homeomorphisms
from [0, 1] to [0, 1] where each homeomorphism has only finitely many singularities of slope, all
such singularities lie in the k-adic rationals Z[ 1k ], and, away from the singularities, the slopes are
integral powers of k.

Combinatorially, we can define the group F (k) in terms of generators and relations. In terms
of generators and relations, F (k) has infinite presentation:〈

x0, x1, . . . |x−1
i xnxi = xn+k−1,∀i < n

〉



24 Cleary Restricted rotation distance between k-ary trees

There is a set of normal forms for elements of F given by:

xr1
i1
xr2
i2
. . . xrk

ik
x−sl
jl

. . . x−s2
j2

x−s1
j1

with ri, si > 0, i1 < i2 . . . < ik and j1 < j2 . . . < jl. This normal form is unique if we fur-
ther require a reduction condition that when both xi and x−1

i occur, so does at least one of
xi+1, x

−1
i+1, xi+2, x

−1
i+2, . . . xi+k−1, x

−1
i+k−1 appears, as discussed by Burillo, Cleary and Stein [6].

The relations provide a quick and efficient manner to rewrite a word into normal form, and form
a complete rewriting system, as described by Brown [5] and Stein [39].

There is also a finite presentation for F (p) which is essentially a sub-presentation of the infi-
nite presentation. Since x0 conjugates x1 to xk and similarly all higher-index generators xl with
l ≥ k are also conjugates of one of x1, . . . xk−1 by an appropriate power of x0, the k generators
{x0, . . . xk−1} suffice to generate the whole group. Furthermore, though the presentation of F (p)
given above is infinite both in terms of the number of generators and relations, F (p) is finitely pre-
sentable, requiring only the generators {x0, . . . xk−1} and a fundamental set of k(k − 1) relations,
as all of the remaining infinitely many relations are consequences of those fundamental ones, as
described by Brown [4] and Stein [39].

Geometrically, we can regard F (k) as equivalence classes of pairs of rooted k-ary trees. The
elements of F (k) are represented as equivalence classes of tree pair diagrams of valence k. A
tree pair diagram is a pair of k-ary trees with the same number of leaves, as described in [7].
Such a tree can be regarded as a procedure for constructing a subdivision of the unit interval
by successive division of intervals into k equal length pieces. A pair of such trees (S, T ) gives an
element of F (k) which can be regarded from the analytical perspective by considering the element f
which is the piecewise-linear homeomorphism which realizes the linear interpolation of subdivisions
described by the source tree S and the target tree T . The equivalence between the rooted tree pair
diagram perspective and the combinatorial perspectives described above by the infinite and finite
presentations is described in detail in the binary case by Cannon, Floyd and Parry [7] and Cleary
[12].

These generators correspond to the fundamental set of basic rotations chosen for restricted
rotation distance, where xi corresponds to the rotation ri+1 shown in Figure 2 or 3 owing to the
choices of numbering leaves starting from 0 (commonly done in the group-theoretic descriptions
of F (k)) or from 1 as done more commonly in data structures and as principally done here. The
additional generators xn for n ≥ k, which occur in the infinite generating set but not the standard
finite generating set, correspond to right rotations at nodes further down on the right-hand side of
the tree. Specifically, the generator xn rotates rightward from the child n mod (k − 1) from the
left of the rightmost node on the level ⌊ n

k−1⌋ to the rightmost child of the rightmost node at that
level.

As in the binary case, there is a natural notion of reduction and a natural group operation. A
tree pair diagram (T1, T2) is unreduced if there is an i such that the i-th through i+k−1th leaves of
T1 are all children of the same node and the corresponding i-th through i+k−1th leaves of T2 are
also children of a single node in T2. There is a natural reduction process by which the unreduced
tree pair (T1, T2) is replaced with a tree pair (T ′

1, T
′
2) where we obtain the primed trees by deleting

the leaves i-th through i + k − 1th leaves, replacing the parent node of the deleted leaves with a
leaf, and renumbering. A reduced tree pair diagram is not unreduced. For the equivalence relation
where two tree pairs (S, T ) and (U, V ) are considered equivalent if they have a common tree which
can be obtained via a sequence of reductions, there is a unique reduced tree pair diagram in each
equivalence class, just as there is in the binary case.

To obtain a group, we define composition analogously to the binary case. The group opera-
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tion is composition; it may be necessary to expand trees (by a succession of moves which change
leaves to interior nodes and add corresponding new leaves in both trees in the pair, making inter-
mediate unreduced diagrams) to create unreduced representatives of elements of F (p) to perform
composition (see [7, 12] for details in the binary case.)

To convert between the geometric description of elements of F (p) to the combinatorial one, we
use leaf exponents. The exponent E(i) of the ith leaf is the integral length of the longest path
consisting entirely of left edges beginning at the leaf which does not reach the right side of the
tree. To construct the normal form of an element given in terms of a k-ary tree pair diagram in
terms of the infinite generating set for F (k) we use a similar process to that described in [7] and
[11] number the leaves of T1 and T2 from left to right beginning at 0. For the ith leaf, we count the
maximal length path of left edges beginning at the leaf which does not reach the right side of the
tree. That is, we consider the set of ancestors of the ith leaf, and count the number of ancestors
which are connected to leaf i by a path consisting entirely of left edges, subtracting one if the most
distant such ancestor is on the right side of the tree. We call these exponents si for T1 and ri for
T2. Many of these exponents may be zero as the only way to have a non-zero exponent is if the
corresponding leaf is the leftmost leaf of its parent node and for its parent node is not on the right
side of the tree. The word xr0

0 xr1
1 . . . xrn

n x−sn
n . . . x−s1

1 x−s0
0 represents x in the normal form of the

infinite generating set for F (k).
Given any pair of rooted k−ary trees (T1, T2) with the same number of leaves, we can consider

that as representing an element of F (k). And given any element f of F (k), we can find (T1, T2)
representing f , which will be unique if we further require that the tree pair (T1, T2) is reduced.
Thus, there is a one-to-one correspondence between reduced tree pair diagrams and elements of
F (k).

4 The Metric on F (k) and Restricted Rotation Distance

Given a group G with a finite generating set, we define the length of a word g in G as minimum
length over all possible representatives of g as words in terms of the generators and their inverses.
This length is precisely the distance from the identity in the Cayley graph for the group G with
respect to that generating set, where each edge in the Cayley graph is declared to have length 1.
Geometric group theory is concerned with understanding the metric properties of groups and the
consequences of metric hypotheses on groups; see Clay and Margalit [10] or Epstein, Cannon, Holt,
Levy, Paterson and Thurston [24] for an introduction.

Burillo, Cleary and Stein [6] estimated the word metric on F (k), showing that word length of a
group element is proportional to the number of nodes in the reduced tree pair diagram representing
the element. Fordham developed a method, described in [26], for computing the word length in
F (k) exactly, using a method based upon his method for computing word length in F exactly [25].
We use his method here to approach restricted rotation distances.

First, we note that no set of less than k fundamental rotations can suffice to give all possible
transformations between rooted k-ary trees of the same size.

Proposition 1 Any set of rotations of size smaller than k cannot be sufficient to transform one
given tree with n nodes into all other possible trees of n nodes.

Proof: This follows from the fact that the group F (k) is a k-generator group with abelianization
ZZk, see Brown [4]. Given a set of less than k rotations at specified nodes, the subgroup of F (k)
generated by those rotations interpreted as group elements cannot be the whole group, as the rank
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of the abelianization will be too small, and thus there are elements not in the subgroup. The
elements not in the subgroup give tree pairs which are not expressible as products of the alleged
generating set and thus give pairs of trees which are not able to be transformed via those permitted
rotations. □

Second, we note that our collection of k rotations denoted pictured in Figures 2 and 3 form a
sufficient set of rotations to perform any desired transformation.

Proposition 2 Given two trees of the same size T1 and T2, there is a sequence of rotations of the
types ri with 1 ≤ i ≤ k which transform T1 into T2.

Proof: The tree pair (T1, T2) gives an element w of Thompson’s group F (k). In F (k), the word w
can be represented by a sequence of generators g1g2 . . . gN , each of which corresponds to a rotation
of the permitted type. Applying the N corresponding rotations to T1 in order will yield T2. □

The connection between word length in Thompson’s groups comes from regarding two k-ary
trees T1 and T2 as an element f = (T1, T2) in F (k) and the following:

Proposition 3 The restricted rotation distance between two k-ary trees T1 and T2 is exactly the
word length with respect to the standard generators in F (k) of the group element f represented by
the tree pair (T1, T2).

Proof: By expressing f as a product of the generators of length m then that expression for f in
terms of the generators gives that change broken down into m rotations at the root and right child
of the root, of the appropriate allowed types. One potential complication is that generators for
elements in F (k) may be applied to trees which are too small to accomplish the rotation- in the
case of F (k), we merely choose an appropriately larger unreduced representative of the element and
apply the generator to that. This increases the number of nodes in the tree pair diagram. There is
also a natural notion of reduction, which can result in the decrease of the number of nodes during
the application of a sequence of generators. For rotation distance, however, the number of nodes
must remain constant during the transformation. But by Theorem 2.5 of [26], for a geodesic path
representing f = (T1, T2), the number of nodes in the sequence of reduced representatives does not
increase and we may opt not to perform any reductions, so the tree sizes will indeed remain constant
during the sequence if we use this approach. Thus, the restricted rotation distance between T1 and
T2 will be no more than m. Conversely, were the restricted rotation distance between T1 and T2

to be less than m, we could use the applicable rotations to construct a shorter representative of
the group element (T1, T2) in F (k), contradicting the minimality of word length there. So indeed
the word length and the restricted rotation distance coincide. □

5 Fordham’s calculation of word length in F (p)

Fordham [25] presented an algorithm for finding the exact length of an element of F , later gener-
alized to find the exact length of an element of F (p+1), described in [26]. This process can give a
linear-time algorithm for finding rotation distance between k-ary trees, for arbitrary fixed k. Here
we describe the process and show that the running time is linear in the size of the trees.

Theorem 1 There is a linear-time algorithm to compute the restricted rotation distance between
two k-ary trees T1 and T2 each with n internal nodes.
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Proof: First, we note that the interior nodes of a tree T can be given orders in a manner somewhat
analogous to the natural infix order where the nodes in the left subtree of a node n precede it and
the nodes in the right subtree of n follow it. In the binary case, there was exactly one left child and
one right child. In the higher valence case, we segregate the children of a node into “left children”
and “right children.” Each node will have at least one child of each type but the particular
allocation of the number of left and right children will depend upon the node type in a way related
to its type relative to residues modulo k − 1. We give the following recursive definitions of node
type, where the node types broadly are root (considered as a distinguished node of type L), left
nodes L, right nodes R, and k − 1 types of middle nodes of types M1, . . . ,Mk−1. (Note that [26]
uses valence p+ 1 trees, and thus resulting in a different notation convention for node types.)

The node type of the root node is ‘root’, considered as type L and it has one left child of type
L and k − 1 right children of types M1, . . . ,Mk−2 and R.

A node of type L has one left child of type L and k − 1 right children of types M1, . . . ,Mk−1.
A node of type R has one left child of type Mk−1 and k−1 right children of types M1, . . . ,Mk−2

and R.
A node of type M i has k − i left children of types M i . . .Mk−1 and i right children of types

M1, . . . ,M i.
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Figure 4: Node types and corresponding child nodes. Though the number of total children is fixed
at k for all nodes, note that not all node types have the same number of left and right children, as
indicated by the spacing above.

This recursive definition of node types is described in Figure 4.
A tree pair (S, T ) is reduced if there is no sequence of leaves i + 1, i + 2, . . . , i + k which are

leaves of a single node in S and also leaves of a single corresponding node in T . If a tree pair is
not reduced, there is a unique reduced tree pair equivalent under a natural reduction process, as
described in [11] in the binary case. Further, if an unreduced tree pair (S′, T ′) reduces to a tree
pair (S, T ), the rotations required to transform S′ to T ′ are exactly the same as those required
to transform S to T , and all nodes where rotations are actually performed will be present in
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Target Node Type
LL R∅ RR Rj M i

∅ M i
j

LL 2 1 1 1 2 2
R∅ 1 0 2 2 1 3
RR 1 2 2 2 1 3

Source Rj1 1 2 2 2 3 3

node M i1
∅ 2 1 1 1 2 2

type M i1
j1

2 3 3 3 4 4

Rj2 1 2 2 2 1 3

M i2
∅ 2 1 1 3 2 4

M i2
j2

2 3 3 3 2 4

Table 1: Weights for node pairs with j1 ≤ i < j2, i1 < j ≤ i2.

both pairs at the appropriate times, using an argument parallel to that in [11]. The additional
reducible nodes and leaves are merely carried along unchanged during the transformation. Note
that reducible nodes are considered to not exist for the purposes of classify node types more finely
where the notion of the type of successor node is involved, just as in the binary case.

There is a natural inorder traversal of the nodes of these types of tree where all of the left
children are visited before the node, and all of the right children visited afterward, in the natural
left-to-right order when there are multiple left and right children occurring. By “successor node”
in the following, we mean the immediate successor of a node in the resulting inorder traversal of
the tree, ignoring leaves.

We further subdivide the node types after reduction as follows.
The leftmost node is of type L0. Left nodes with a preceding node are of type LL. This will

include all left nodes except a single left node of type L0. Right nodes all of whose non-reducible
successors are right nodes are of type R0. Right nodes whose immediate non-reducible successor
is a right node but which have at least once middle node nonreducible successor are of type RR.
Other right nodes are of type Rj , where the leftmost nonreducible successor of the node is of type
M j .

Middle nodes of type M i are classified further into finer types as follows. Middle nodes are of
type M i

∅ if they have no nonreducible successor nodes, or of type M i
j if the leftmost nonreducible

successor node is of type M j . For M i
j , it follows from the node type definitions that j ≥ i.

To measure the restricted rotation distance between two input trees S′ and T ′ with n interior
nodes each, we use the following process:

1. Form the reduced tree pair (S, T ) via a sequence of reductions if needed, which can be done
in a linear-time preprocessing step resulting in two trees of size l, with l ≤ n.

2. Determine the node types of the internal nodes in S and T , which can be done efficiently via
an inorder traversal of the tree S and then one for the tree T , done in time linear in l, and
constructing two lists of node types (S0, S1 . . . , Sl) and (T0, T1, . . . , Tl), ordered corresponding
to the inorder traversal described above.

3. Traverse the two lists and for each node pair type in the list, add to the restricted rotation
distance the entry from the appropriate matrix of node pair weights given in Table 1 again
time linear in l.
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The cumulative sum of all node pair weights will give the restricted rotation distance between
the original trees S′ and T ′, just as the corresponding process gives restricted rotation distance in
the binary case. □

We also note that not only is the restricted rotation distance efficiently findable, but further a
minimal sequence of permitted rotations is also obtainable quickly.

Theorem 2 There is an algorithm linear in the number of nodes n of two valence k trees T1 and
T2 to find a sequence of permitted rotations to realize the restricted rotation distance from T1 to
T2.

Proof: Just as in the binary case as described in [11] and [19], the type of pairing changes between
the applications of the generators is bounded in complexity as a constant obtained by multiplying
the size of the table by the number of allowed rotations, together with some cases from classifying
the presence or absence of particular nodes. Thus, we can construct larger versions of Table 1
which will give a reduction of total weight one in each case, resulting in a minimal length path,
just as in the binary case described in [25]. □

We note that the related problem of enumerating all possible minimal length paths is not feasible
in linear time, as there are specific examples where the total number of possible such paths grows at
least quadratically. Work of Elder, Fury, and Rechnitzer [23] shows that the number of geodesics in
Thompson’s group F (corresponding to the binary case) grows exponentially and at a rate at least
as large as that of elements. For the number of geodesics, the best known algorithms [23] run in
exponential time and presently only the first 22 terms of the geodesic growth sequence are known.
The computational evidence suggests that the exponential growth rate of the number of geodesics is
measurably larger than that for group elements. If so, it means that there are necessarily examples
with large numbers of geodesics and resultantly, tree pairs with many possible minimal length
paths realizing the restricted rotation distances. We anticipate that the higher valence cases have
similar behavior, where there being tree pairs have many possible minimal length paths realizing
restricted rotation distances.

6 Applications and related questions

Having a linear-time algorithm for restricted rotation distance in the ternary case opens up analyses
parallel to that for restricted rotation distance in the binary case. Some of the generalizations are
immediate. For example, the sharp bounds of Cleary and Taback [19] for binary restricted rotation
distance are precisely the same in all of the higher-valence instances:

Theorem 3 Given two rooted k-ary trees T1 and T2 each with n ≥ 3 internal nodes, the restricted
rotation distance between them satisfies dRR(T1, T2) ≤ 4n − 8. Furthermore, if (T1, T2) form a
reduced pair, then n− 2 ≤ dRR(T1, T2) ≤ 4n− 8 with these bounds being realized for all n ≥ 3.

Proof: The arguments are parallel those of [19] relating to possible reductions and analysis of pair
weight changes. The values in the table of weights for the k-ary case range from 0 to 4, the same
as in the binary case. There will always be one node pair of weight 0 corresponding to the first
node pair which is necessarily of type (L∅, L∅) and there can be at most one other node pair of
weight 0 in a reduced tree pair diagram, a final node pair of type (R∅, R∅). This gives the lower
and upper bounds, and the examples of Cleary and Taback [19] in the binary case apply here to
realize these bounds for all n ≥ 3. □
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There are a number of questions arising related to rotations and balance for higher-valence
trees. Just as rooted binary trees play a foundational role in search trees, higher-valence trees
arise in a range of settings related to information storage for databases and filesystems. The
applications of higher valence trees include tries, which play an important role in predictive text
applications, see Bentley and Sedgewick [2, 3]. The structure of 2-3 trees (see Knuth [29]) can be
used to store data efficiently, and these trees have either two or three child nodes at each internal
node. B-trees have valence up to a fixed m and arise in database applications and disk storage
applications, see Comer [21], and Rodeh, Bacikm and Mason [36] describing the use of B-trees
in Linux filesystems. B+ trees often have ordered lists of 100 child nodes or more to reduce the
number of levels of indexing for large databases, see Giampaolo [27]. All of these higher-valence
trees require reasonable balance to guarantee efficient worst-case search time complexity, and so
questions of balance arise in each of these higher-valence settings.

With the linear-time methods described here, many of the questions which have been addressed
for binary trees with respect to restricted rotation distance have natural generalizations to higher
valence cases. For example, the investigations of Chu and Cleary [8, 9] and Cleary, Passaro, and
Toruno [15] about expected numbers of conflicts and maximum vertex valence in rooted triangu-
lations, the understanding of Cleary and Nadeem [14] about the distribution of restricted rotation
distances, as well as the associated results of Cleary, Elder, Rechnitzer and Wong [16] on the
asymptotics of such conflicts and partitions, were all developed for the binary case. These ques-
tions are open in the higher-valence cases, but it is not clear which may be readily approachable
with the tools described here. The connections between rooted trees and the dual triangulations
of regular polygons which are useful in several of these works do have generalizations in the higher
tree-valence cases to subdivisions of regular polygons into quadrilaterals, pentagons, and so on,
but the combinatorial arguments are more complicated and not as well-understood.

Though presumably some of these phenomena have straightforward generalizations to the higher
valence cases, that is by no means assured and in fact the Thompson’s group versions F (p) have
a number of more complicated pathological behaviors, both cohomological and metric, not seen in
the much-better studied Thompson’s group F .

Many of these questions are wide open in settings where there are trees of variable valence.
In the fixed-valence setting, the tools connected to Thompson’s groups can be brought to bear,
but in the variable-valence cases, these approaches do not show nearly as much promise. The
Thompson’s group approaches rely upon the symmetry and regularity of the trees. The only
groups in this family for which there are exact efficient algorithms for the word metric require
constant fixed valences. There are natural group structures associated to the cases where the the
node valences can change such as Thompson’s group F (2, 3) (see Stein [39] for background and
Wladis [41, 42, 43] for understanding some of the additional complexities of the word metric in these
groups F (n,m) and F (n1, n2, . . . , nm) which are significantly more complicated), the associated
rotation operations do not correspond as neatly with a natural notion of rotation in variable-valence
trees. Furthermore, in these settings, the understanding of the word metric is far from complete.
Thus, it seems less likely that Thompson’s group based approaches are likely to have great success
in the variable-valence settings and different approaches may be more effective.
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