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Abstract

Since Qn, the hypercube of dimension n, is known to have n link-
disjoint paths between any two nodes, the links of Qn can be partitioned
into multiple link-disjoint spanning subnetworks, or factors. We seek to
identify factors which efficiently simulate Qn, while using only a portion
of the links of Qn. We seek to identify (n/2)-factorizations, of Qn where
1) the factors have as small a diameter as possible, and 2) mappings (em-
beddings) of Qn to each of the factors exist, such that the maximum
number of links in a factor corresponding to one link in Qn (dilation), is
as small as possible. In this paper we consider two algorithms for generat-
ing Hamilton decompositions of Qn, and three methods for constructing
(n/2)-factorizations of Qn for specific values of n. The most notable (n/2)-
factorization of Qn results in two mutually isomorphic factors, each with
diameter n + 2, where an embedding exists which maps Qn to each of the
factors with constant dilation.

Communicated by Balaji Raghavachari: submitted November 2001;
revised September 2002 and February 2003.
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1 Introduction

1.1 Traditional Partitioning of Hypercubes

In traditional computing environments with a single processor, a large number
of memory locations and multiple users, memory is a partitionable resource.
Processes make requests for certain amounts of contiguous memory locations,
and various allocation and collection strategies are used to minimize memory
fragmentation.

In an environment with 2n processors, connected in the form of the hy-
percube Qn, and multiple users, the body of processors is also a partitionable
resource. However, the hypercube is not partitioned in the same way as mem-
ory, as Qn has a recursive substructure. Qn consists of 2 copies of Qn−1, with
links connecting corresponding nodes in the two copies. When processes make
requests for some of the processors, they traditionally request a complete hyper-
cube of dimension smaller than n, known as a subcube. Significant research has
been conducted into identifying, allocating, and recollecting subcubes in order
to minimize subcube fragmentation [13, 19].

In this environment, if two or more processes require Qn, only one of them
can run at any given time. We seek to take advantage of the node-connectivity
of Qn, to increase the effective capacity of a hypercube-based computing envi-
ronment, so that two processes requiring Qn can run concurrently.

1.2 Definitions

A network G, is a pair (N , L), where N is a set of distinct nodes, and L is a
set of links. L is a set of two element subsets of N . In a network, the degree
of a node n is the number of elements of L containing n as an element. A
network is regular if every node n ∈ N has the same degree. The degree of a
regular network is the degree of any node n ∈ N . A path is a sequence of nodes
n1, n2, . . . , nk, such that ∀ i, 1 ≤ i ≤ k - 1, {ni, ni+1} ∈ L. A network is
connected if for all pairs of nodes u and v, there exists a path from u to v. The
node-connectivity of a network G is the minimal number of nodes which must
be removed from G, in order to make G no longer connected.

The hypercube of dimension n, or Qn, is a network of 2n nodes where each
node is labeled by a bit string b0 b1 . . . bn−1 of length n, and there is a link
between two nodes in Qn if and only if their labels differ in exactly one bit. Qn

is regular with degree n, and has n2n−1 links. A dimension k link is a link in
Qn which connects two nodes whose labels differ in the kth bit.

A Hamilton cycle of a network is a path n1, n2, . . . , nk, n1, which visits
each node in the network exactly once, and returns to its starting point n1. A
Hamilton decomposition of a network is a partitioning of the links of the network
into link-disjoint Hamilton cycles [2]. A matching in a network is a set of node-
disjoint links. A matching is orthogonal to a set of Hamilton cycles if it contains
one and only one link from each Hamilton cycle. The Cartesian product N1 ×
N2 of two networks N1 and N2 is the network where the nodes are ordered pairs
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of the nodes of N1 and N2, and there are links between {u, v} and {w, x} in
N1 × N2 if {u, w} is a link in N1 or {v, x} is a link in N2. Cn represents the
simple cycle of n nodes.

A spanning subnetwork S of a network N is a connected network constructed
from all the nodes of N and a proper subset of the links of N , such that for
every pair of nodes u and v in N , there is a path in S between u and v. A
perfect matching in a network is a matching where every node in the network is
incident to exactly one link. A k-factorization of a network is a partitioning of
the links of the network into disjoint regular spanning subnetworks, or factors,
of degree k [3]. The distance between two vertices u and v in a network G,
denoted by distanceG(u, v), is the length of the shortest path between u and v
in G. The diameter of a network G, denoted by diameter(G), is the maximum
value of distanceG(u, v) ∀ u, v ∈ N .

An embedding of a network G (commonly called the guest) into a network H
(commonly called the host) is a 1-1 function f mapping the nodes of G to the
nodes of H . When G and H have the same set of nodes, the identity embedding
I is the embedding I(u) = u ∀ u in G. The dilation of an embedding f is the
largest value of distanceH(f(u), f(v)), ∀ edges {u, v} in G.

1.3 An Alternate Partitioning of Hypercubes

We propose a different method for partitioning Qn, with a number of potential
benefits. Currently, when a process asks to use a subcube of Qn, it gets full
control of all the processors assigned to it. We propose that each node u of
Qn be divided into n

k virtual nodes, where 2 ≤ k ≤ n
2 , and n mod k = 0.

We propose that a k-factorization of Qn be constructed. In other words, let
the links of Qn be divided into n

k link-disjoint regular spanning subnetworks or
factors F1, F2, . . . , Fn/k of Qn with degree k. The jth virtual node (1 ≤ j ≤ n

k )
of some node u in Qn is connected to the jth virtual node of another node v in
Qn, by the links of Fj only.

Figure 1 shows an example of this arrangement, where n = 4 and k = 2.
The numbers on the nodes of Q4 are numeric representations of their bit string
labels. Each node of Q4 has been divided into 2 virtual nodes, which are colored
black and gray. The links of Q4 have been divided into two factors F1 and F2

of degree 4
2 = 2. F1 is the set of gray links, connecting the gray virtual nodes,

and F2 is the set of black links, connecting the black virtual nodes. F1 and F2

are a 2-factorization of Q4.
Under this arrangement, up to n

k different processes can access a virtual
copy of Qn at the same time with no link interference between computations;
since communication between virtual nodes is taking place over disjoint link
sets. Another potential application for k-factorizations of Qn is in the area
of fault-tolerant computing. If a factor could efficiently simulate Qn, then Qn

could tolerate the failure of all links not part of the factor. k-factorizations of
Qn could also be used in the construction of adaptive routing algorithms for Qn,
which make routing decisions based on the traffic for a particular node [11, 12].
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Figure 1: A 2-factorization of Q4

n 2 3 4 5 6 7 8
Links in Qn 4 12 32 80 192 448 1024

Removable Links 0 3 14 45 123 311 752

Table 1: The number of links removeable from Qn without increasing diameter.

1.4 Progress in Finding Factors of Small Diameter

Qn is known to have node-connectivity of n [17]. Menger’s Theorem states if
a network has node-connectivity k, then k node-disjoint paths connect any two
distinct nodes [15]. Therefore, perhaps some, or even most of the links can
be removed from Qn without increasing its diameter. Discovering the number
of removable links has been a subject of recent research [16, 10, 14]. It has
been shown that (n− 2)2n−1 +1−d 2n−1

2n−1e links are removable from Qn without
increasing its diameter [10]. Table 1 shows the number of links removable from
Qn without increasing its diameter, for small values of n.

However, the resulting spanning subnetwork of Qn is not regular, and there-
fore cannot be part of any k-factorization. Regular spanning subnetworks of
Qn are known to exist for specific values of n. These spanning subnetworks
are described in Table 2. For example, the cube-connected cycles network of
dimension n CCCn [23] is known to be a spanning subnetwork of Qn+lgn, where
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Network Spans Degree Diameter
CCCn Qn+lgn 3 5n

2 − 2
ACCC1

n Qn+lgn 4 2n - 2
ACCC2

n Qn+lgn 6 3n
2

Subcuben Qn−1 lg n 3n
2 - 2

Qn,2,1 Qn

⌊
n
2

⌋
+ 1 n

Table 2: Known regular spanning subnetworks of Qn.

n = 2k and lg n = log2 n [20]. The augmented cube-connected cycles networks
ACCC1

n and ACCC2
n [8] are derived from adding links to CCCn. The subcube

network Subcuben [6] is both a spanning subnetwork of Qn−1 and a subnetwork
of the pancake network of dimension n. The spanning subnetwork Qn,2,1 [7]
contains all the links for dimensions 0 and 1, and uses the value of the first two
bits of the label of each node to determine the dimensions of links incident to
that node. Qn,2,1 is the first regular spanning subnetwork of Qn with degree
less than n and diameter n.

However, none of the networks of Table 2 are part of any k-factorization of
the hypercubes they span, as they use all of the links for a particular dimension
of Qn. We therefore seek to identify k-factorizations of Qn, where the factors
have certain properties. The factors should have minimal degree (preferably
Θ(1)), so as to maximize the number of factors. The factors should have minimal
diameter (preferably n, the diameter of Qn). The factors in this paper all have
degree n

2 . It is an open question as to whether factors exist with degree smaller
than n

2 and diameter n. Finally, the factors should be constructed so that there
exists an embedding f of Qn into each of the factors, with minimal dilation
(preferably Θ(1)). An embedding can be considered as a high-level description
of how one network simulates another [22]. The dilation of an embedding is
a commonly used measure of the efficiency of the simulation. Since parallel
algorithms on hypercubes involve communication between adjacent nodes, the
path in each factor between f(u) and f(v), where u and v are adjacent nodes
in Qn, should have a length of at most a constant in order for each factor to
efficiently simulate Qn.

2 Creating Hamilton Decompositions of Qn

2.1 Creating Hamilton Decompositions of Q2n from Hamil-
ton Decompositions of Qn

Qn has been known to have a Hamilton decomposition for some time [4]. That
is, it is known that the links of Qn can be partitioned into disjoint Hamilton
cycles. However, the proof did not readily result in an algorithm for producing
the actual decomposition [1] [26].

Two algorithms are known for generating Hamilton decompositions of Qn.
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Algorithm HAMILTONCOMP1(n, input, output)
begin

outCycle = 0
for inCycle = 0 to n − 1 do
begin

for outCycleElement = 0 to 22n − 1 do
begin

Set the first n bits of output[outCycle][outCycleElement] to
input[inCycle][outCycleElement div 2n]

Set the last n bits of output[outCycle][outCycleElement] to
input[inCycle][(outCycleElement mod 2n) −
(outCycleElement div 2n)]

end
outCycle = outCycle + 1
for outCycleElement = 0 to 22n - 1 do
begin

Set the first n bits of output[outCycle][outCycleElement] to
input[inCycle][(outCycleElement mod 2n) −
(outCycleElement div 2n)]

Set the last n bits of output[outCycle][outCycleElement] to
input[inCycle][outCycleElement div 2n]

end
outCycle = outCycle + 1

end
end

Figure 2: Creating a Hamilton decomposition of Q2n

The first, discovered by Ringel and given in [24], yields a Hamilton decompo-
sition of Q2n from a Hamilton decomposition of Qn. Each Hamilton cycle of
the Hamilton decomposition of Qn is used to form two disjoint Hamilton cy-
cles of the Hamilton decomposition of Q2n. Let the Hamilton decomposition
of Qn be stored in the two-dimensional array input[n − 1][2n − 1], where the
first element for both dimensions (and for all dimensions of all arrays in this
paper) is 0. The Hamilton decomposition of Q2n will be stored in the array
output[2n − 1][22n − 1]. The algorithm is shown in Figure 2.

Example: The cycle 00, 01, 11, 10 is a Hamilton decomposition of Q2. The
algorithm yields the Hamilton decomposition of Q4, {{0000, 0001, 0011, 0010,
0110, 0100, 0101, 0111, 1111, 1110, 1100, 1101, 1001, 1011, 1010, 1000}, {0000,
0100, 1100, 1000, 1001, 0001, 0101, 1101, 1111, 1011, 0011, 0111, 0110, 1110,
1010, 0010}}. This is the Hamilton decomposition of Q4 shown in Figure 1.
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2.2 Creating Hamilton Decompositions of Q2n+2 from Hamil-
ton Decompositions of Q2n

The second Hamilton decomposition algorithm, based on [26] and given in [5],
yields a Hamilton decomposition of Q2n+2 from a Hamilton decomposition of
Q2n, and an orthogonal matching to the Hamilton decomposition of Q2n. This
algorithm is based on the following result:

Theorem 1 If a network N can be decomposed into n - 1 Hamilton cycles, and
there exists a matching orthogonal to the set of Hamilton cycles, then N × C2k,
k ≥ 2, can be decomposed into n Hamilton cycles [26].

C4, the cycle of 4 nodes, is but another way of describing Q2. It is known
that Qi × Qj = Qi+j for all nonnegative integers i and j. We take advantage
of these facts to arrive at the following corollary:

Corollary 1: If Q2n can be decomposed into n Hamilton cycles, and there
exists a matching in Q2n orthogonal to the set of Hamilton cycles, then Q2n ×
C4 = Q2n × Q2 = Q2n+2 can be decomposed into n + 1 Hamilton cycles.

The algorithm [25] generates two Hamilton cycles for Q2n+2 from a selected
Hamilton cycle for Q2n, and one Hamilton cycle for Q2n+2 from each of the
remaining Hamilton cycles for Q2n. Let N = 22n. Assume the nodes of Q2n

are labeled by the integers 0, 1, ..., N - 1, where two nodes are adjacent if they
differ in exactly one bit in their binary representations. The n Hamilton cycles
of Q2n are stored in the array in[n][N - 1]. The n + 1 Hamilton cycles of Q2n+2

are stored in the array out[n + 1][4N - 1]. We arrange the cycles so that the
links of the orthogonal matching are {{in[0][0], in[0][N - 1]}, {in[1][0], in[1][N -
1]}, ..., {in[n - 1][0], in[n - 1][N - 1]}}. Furthermore, flipping cycles if necessary,
we arrange that for 1 ≤ i ≤ n - 1, in[i][0] occurs before in[i][N - 1] in the list
in[0][0], in[0][1], ..., in[0][N - 1]. The purpose of arranging the edges in the
orthogonal matching in this manner is to simplify the algorithm. We also use
an array flag[n] to keep track of the paths taken through nodes of Q2n, which
are related to endpoints of links in the matching. The algorithm is shown in
Figures 3, 4 and 5 and 6.

Example Let C1 and C2 be the Hamilton cycles of Q4 shown in Figure 1. Let
C1 be the black links, and C2 be the gray links. In this example, n = 2 and N
= 16. C1 can be expressed as {0, 1, 3, 2, 6, 4, 5, 7, 15, 14, 12, 13, 9, 11, 10, 8},
and C2 can be expressed as {4, 0, 2, 10, 14, 6, 7, 3, 11, 15, 13, 5, 1, 9, 8, 12}.
The orthogonal matching we will use will be the two links {0, 8} and {4, 12}.
The cycles have been arranged so that the links of the orthogonal matching are
in the proper position.

The algorithm FIRST-OUTPUT-CYCLE produces the Hamilton cycle for
Q6 {0, 1, 3, 2, 6, 4, 5, 7, 15, 14, 12, 13, 9, 11, 10, 8, 40, 56, 48, 16, 24, 26, 58,
42, 43, 59, 27, 25, 57, 41, 45, 61, 29, 28, 30, 62, 46, 47, 63, 31, 23, 55, 39, 37,
53, 21, 20, 52, 60, 44, 36, 38, 54, 22, 18, 50, 34, 35, 51, 19, 17, 49, 33, 32}.
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Algorithm FIRST-OUTPUT-CYCLE(n, N , in, out)
begin

Set out[0][0] through out[0][N - 1] to
in[0][0] through in[0][N - 1], respectively

if n is even then begin
Set out[0][N ] through out[0][N + 4] to

in[0][N - 1] + 2N , in[0][N - 1] + 3N ,
in[0][0] + 3N , in[0][0] + N , in[0][N - 1] + N , respectively

count = N + 5
end
else begin

out[0][N ] = in[0][N - 1] + N
count = N + 1

end
for j = N - 2 downto 1 do
begin

if out[0][count - 1] is of the form in[0][j + 1] + N and
in[0][j] is not an endpoint of a link in the matching then

begin
Set out[0][count] through out[0][count + 2] to in[0][j] + N ,

in[0][j] + 3N , in[0][j] + 2N , respectively
count = count + 3

end
else if out[0][count - 1] is of the form in[0][j + 1] + 2N and

in[0][j] is not an endpoint of an edge in the matching then
begin

Set out[0][count] through out[0][count + 2] to in[0][j] + 2N ,
in[0][j] + 3N , in[0][j] + N , respectively

count = count + 3
end
else if out[0][count - 1] is of the form in[0][j + 1] + N and

in[0][j] = in[k][N - 1] for some k then
begin

out[0][count] = in[0][j] + N
count = count + 1
flag[k] = 0

end
else if out[0][count - 1] is in[0][j + 1] + 2N and

in[0][j] = in[k][N -1] for some k then
begin

out[0][count] = in[0][j] + 2N
count = count + 1
flag[k] = 1

end

Figure 3: Creating the first cycle of the Hamilton decomposition.
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else if out[0][count - 1] is of the form in[0][j + 1] + N and
in[0][j] = in[k][0] for some k then
if flag[k] = 0 then
begin

Set out[0][count] to out[0][count + 4] to
in[0][j]+ N , in[0][j] + 3N ,
in[k][N - 1] + 3N , in[k][N - 1] + 2N , in[0][j] + 2N ,
respectively

count = count + 5
end
else
begin

Set out[0][count] to
out[0][count + 4] to in[0][j] + N , in[k][N - 1] + N,
in[k][N - 1] + 3N , in[0][j] + 3N , in[0][j] + 2N , respectively

count = count + 5
end

else if out[0][count - 1] is of the form in[0][j + 1] + 2N and
in[0][j] = in[k][0] for some k then
if flag[k] = 1 then
begin

Set out[0][count] to
out[0][count + 4] to in[0][j] + 2N , in[0][j]+ 3N ,
in[k][N - 1] + 3N , in[k][N - 1] + N , in[0][j] + N , respectively

count = count + 5
end
else
begin

Set out[0][count] to
out[0][count + 4] to in[0][j] + 2N , in[k][N - 1] + 2N ,
in[k][N - 1] + 3N , in[0][j] + 3N , in[0][j] + N , respectively

count = count + 5
end

end
if n is even then

out[0][count] = in[0][0] + 2N
else

Set out[0][4N - 5] through out[0][4N - 1] to in[0][0] + N , in[0][0] + 3N ,
in[0][N - 1] + 3N , in[0][N - 1] + 2N , in[0][0] + 2N , respectively

end

Figure 4: Creating the first cycle (Continued).
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Algorithm SECOND-OUTPUT-CYCLE(n, N , in, out)
begin

Set out[1][0] through out[1][N - 1] to in[0][0] + 3N
through in[0][N - 1] + 3N , respectively

if n is even then
begin

Set out[1][N ] through out [1][N + 3] to in[0][N - 1] + N ,
in[0][N - 1], in[0][0], in[0][0] + N , respectively

for count = N + 4 to 4N - 2 do
output[1][count] = output[0][5N + 2 - count] XOR 3N

output[1][4N - 1] = input[0][0] + 2N
end
else
begin

Set out[1][N ] through out[1] to in[0][N - 1] + N , in[0][0] + N , in[0][0],
in[0][N - 1], in[0][N - 1] + 2N

for count = N + 5 to 4N - 1 do
out[1][count] = out[0][count - 4] XOR 3N

end
end

Figure 5: Creating the second cycle of the Hamilton decomposition

Algorithm REMAINING-CYCLES(n, in, out, N)
begin

for cycle = 1 to n - 1 do
for node = 0 to N - 1 do
begin

out[cycle + 1][node] = in[cycle][node]
out[cycle + 1][node + 2N ] = in[cycle][node] + 3N
out[cycle + 1][node + N ] = in[cycle][N - 1 - node] +

((2 - flag[cycle]) * N)
out[cycle + 1][node + 3N ] = in[cycle][N - 1 - node] +

((1 + flag[cycle]) * N)
end

end

Figure 6: Creating the remaining cycles of the Hamilton decomposition.
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The algorithm SECOND-OUTPUT-CYCLE produces the Hamilton cycle
for Q6 {48, 49, 51, 50, 54, 52, 53, 55, 63, 62, 60, 61, 57, 59, 58, 56, 24, 8, 0, 16,
17, 1, 33, 35, 3, 19, 18, 2, 34, 38, 6, 22, 20, 28, 12, 4, 36, 37, 5, 21, 23, 7, 39,
47, 15, 31, 30, 14, 46, 44, 45, 13, 29, 25, 9, 41, 43, 11, 27, 26, 10, 42, 40, 32}.
Taking elements of the first output cycle, and performing an exclusive or with
3N has the effect of toggling (changing 0 to 1 and 1 to 0) the first two bits of
those elements.

Finally, the algorithm REMAINING-CYCLES produces the Hamilton cycle
for Q6 {4, 0, 2, 10, 14, 6, 7, 3, 11, 15, 13, 5, 1, 9, 8, 12, 44, 40, 41, 33, 37, 45,
47, 43, 35, 39, 38, 46, 42, 34, 32, 36, 52, 48, 50, 58, 62, 54, 55, 51, 59, 63, 61,
53, 49, 57, 56, 60, 28, 24, 25, 17, 21, 29, 31, 27, 19, 23, 22, 30, 26, 18, 16, 20}.

Variable flag[1] was set to 0 in the course of executing algorithm FIRST-
OUTPUT-CYCLE. REMAINING-CYCLES creates four copies of C2 with one
edge removed, within Q6, by adding either 0, N , 2N or 3N . The Hamilton
paths where N and 3N are added are traversed in the opposite direction of the
Hamilton paths where 0 and 2N are added. Since REMAINING-CYCLES uses
n−1 disjoint Hamilton cycles of Q2n as input, it creates n−1 disjoint Hamilton
cycles for Q2n+2.

The Hamilton decomposition of Q2n+2 generated by this algorithm is par-
tially determined by the Hamilton cycle of Q2n, which is selected as input[0],
the input to FIRST-OUTPUT-CYCLE and SECOND-OUTPUT-CYCLE. It is
also partially determined by the edges selected for the orthogonal matching re-
quired by the algorithm. It is therefore possible that a large number of distinct
Hamilton decompositions of Q2n+2 can be generated using this algorithm. For
example, four distinct Hamilton decompositions of Q4 were generated using this
algorithm.

3 Constructing (n/2)-Factorizations of Qn

3.1 Constructing Factorizations from Perfect Matchings
Derived From Hamilton Decompositions

In Section 1.3, we proposed creating k-factorizations of Qn. In this section and
the next, we use Hamilton decompositions of Qn to create (n/2)-factorizations
of Qn for certain values of n. One method of constructing (n/2)-factorizations
from Hamilton decompositions is uniting perfect matchings derived from the
cycles of the Hamilton decomposition.

Suppose C1, C2, . . . , Cn/2 is a Hamilton decomposition of Qn. If the links of
any cycle were numbered, the even-numbered links would form a perfect match-
ing of Qn, as would the odd-numbered links. n link-disjoint perfect matchings
of Qn can be constructed in this manner. When n mod k = 0, and n

k unions of
k perfect matchings are selected, the result is a k-factorization of Qn. However,
not all unions of k perfect matchings are connected. Table 3 shows the results
of a computer search for the (n/2)-factorizations of Qn, whose factors had the
smallest diameter.
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Network Degree of Factors Diameter
Q4 2 8, 8
Q6 3 8, 10
Q8 4 8, 8
Q12 6 12, 12

Table 3: Degrees and diameters of factors in factorization of Qn

The 2-factorization of Q4 is the same as a Hamilton decomposition of Q4,
where the cycles of 16 nodes have diameter 8. The difference in the diameters
of the factors in the 3-factorization of Q6 reflects the fact that the algorithm
of Section 2.2 generates two Hamilton cycles for Q6 from one of the Hamilton
cycles for Q4, and one Hamilton cycle for Q6 from the other Hamilton cycle for
Q4. Table 3 shows that half the links incident to each node of both Q8 and Q12

can be removed without increasing their diameters. Furthermore, the removed
links themselves form a spanning subnetwork with the same diameter as the
original hypercube.

3.2 Constructing Factorizations from Hamilton Cycles of
Hamilton Decompositions

Observation of Algorithm HAMILTONCOMP1 reveals that the algorithm cre-
ates two disjoint Hamilton cycles of Q2n for each Hamilton cycle of Qn. If C
is a Hamilton cycle of Qn, then let these Hamilton cycles of Q2n be called the
children of C. Let the descendants of C at level k be the 2k disjoint Hamilton
cycles of Qn2k , obtained by repeatedly applying the algorithm. Let D(C, k)
represent the union of the descendants of C at level k.

We observe the following regarding the children of C. One of the children
has a pattern of changing the first n bits 2n - 1 times, then changing the last
n bits once. This pattern is repeated 2n times. The other child has a pattern
of changing the last n bits 2n - 1 times, then changing the first n bits once, a
pattern which is repeated 2n times. In general, each descendant of C at level k
has a pattern of changing a unique block of n bits 2n - 1 times, then changing
some other bit once.

Lemma 1 If C is a Hamilton cycle in Qn, then D(C, k) is a spanning subnet-
work of Qn2k , with degree 2k+1 and diameter 2n−1+k.

Proof: The diameter of C is 2n−1. Since D(C, k) is the union of 2k Hamilton
cycles of Qn2k , D(C, k) is a spanning subnetwork of Qn2k . Since D(C, k) is
the union of 2k disjoint Hamilton cycles of Qn2k , D(C, k) is of degree 2k+1. Let
w and w’ be the labels of two nodes in D(C, k). Algorithm ROUTE provides a
route in D(C, k) between w and w’, and is shown in Figure 7. It takes at most
2n−1 nodes to arrange the bits of each of the 2k blocks of n bits, therefore the
diameter is 2n−1+k. 2
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Algorithm ROUTE(w, w’)
begin

for i = 0 to 2k - 1 do
begin

Select the descendant of C at level k which changes the ith block of n
bits 2n - 1 times

Set the ith block of n bits of w to the ith block of n bits of w’ by
traversing that descendant, using as few nodes as possible

end
end

Figure 7: A routing algorithm for D(C0, k)

Theorem 2 Let C be the Hamilton cycle for Q2. Then D(L(C), k) and D(R(C),
k) are mutually isomorphic.

Proof: Consider any of the cycles in D(L(C), k). If the labels of the nodes of
this cycle are reversed, then the labels for one of the cycles in D(R(C), k) are
obtained. This is because in the cycles of D(L(C), k), some portion of the first
half of the 2k+2 bits of the labels are changed most rapidly while traversing the
cycle, while in the cycles of D(R(C), k), some portion of the second half of the
bits of the labels are changed most rapidly. 2

Theorem 3 For j ≥ 2, there exists an 2j−1-factorization of Q2j where the two
factors have diameter 2j+1.

Proof: Let A and B be any Hamilton decomposition of Q4. A and B are a
2-factorization of Q4, where each of the factors have diameter 8. D(A, k) and
D(B, k), k ≥ 1, form a 2k+1-factorization of Q4∗2k = Q2k+2 , because they are
comprised of all the Hamilton cycles of the Hamilton decomposition of Q2k+2 .
D(A, k) and D(B, k) have degree 2k+1 and diameter 24−1+k = 2k+3 by Lemma
1, which is twice the diameter of Q2k+2 . 2

In Section 1.4, we mentioned that in order for a factor to effectively simulate
Qn, an embedding of Qn into the factor must exist with no more than constant
dilation.

Theorem 4 Let A and B represent the Hamilton cycles of any Hamilton de-
composition of Q4. For j > 2, The identity embedding embeds Q2j into D(A, j
- 2) and D(B, j - 2) with Θ(1) dilation.

Proof: Suppose we wish to route in either D(A, j - 2) or D(B, j - 2) between
adjacent nodes in u and v differ in some bit in some block of 4 bits. Without
loss of generality, we select D(A, j - 2). There exists a descendant of A at level
k - 2, which changes the block of 4 bits, containing the bit in which u and v
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differ, 24 - 1 times before changing another bit. By using that descendant, we
can route from u to v in at most 24 - 1 = 15 = Θ(1) links. 2

In summary, it is possible to create (n/2)-factorizations from Hamilton de-
compositions of Qn in two ways; by uniting perfect matchings derived from
Hamilton cycles, and by uniting the Hamilton cycles themselves. It is cur-
rently unknown whether the factors in the factorizations of Section 3.1 have a
Hamilton cycle. Since the factors mentioned in this section are composed of the
union of Hamilton cycles, they have Hamilton cycles of their own. Furthermore,
Hamilton decompositions exist for the factors as well.

3.3 Constructing Factorizations of Qn from Variations on
Reduced and Thin Hypercubes

Many reduced-degree variations on hypercubes have been proposed. Some of
these variants use the values of portions of the labels of nodes, to determine the
dimensions of the links incident to those nodes. Examples include the reduced
hypercube [27], and the thin hypercube [7, 18]. The motivation for these net-
works was to construct a subnetwork of a hypercube with a smaller degree than
the original hypercube, and a diameter which is either the same (thin hyper-
cube) or only slightly larger (reduced hypercube) than the original hypercube.
However, neither the reduced hypercube nor the thin hypercube are part of a
k-factorization. We use the idea behind reduced and thin hypercubes, to con-
struct an (n/2)-factorization of Qn, where n is even, where the factors have
diameter n + Θ(1). This factorization was first given in [9].

Consider Qn, where n is even. Recall that the label of each node is a bit
string b0b1 . . . bn−1. Let the substring b0b1 represent the first two bits of the
label of a node. Let the parity of a bit string signify the number of 1’s in the
bit string. Let F1 be a degree n

2 spanning subnetwork, defined as follows:

• If a label of a node has the value 00 in b0b1, then that node is incident to
links in dimensions n - 4 and n - 3

• If a label of a node has the value 01 in b0b1, then that node is incident to
links in dimensions n - 3 and n - 2

• If a label of a node has the value 11 in b0b1, then that node is incident to
links in dimensions n - 2 and n - 1

• If a label of a node has the value 10 in b0b1, then that node is incident to
links in dimensions n - 1 and n - 4

• If a label of a node has even parity in bn−4bn−3 bn−2bn−1, then that node
is incident to a link in dimensions 0, 2, . . . , n - 6. Otherwise, that node is
incident to a link in dimension 1, 3, . . . , n - 5.

For example, the node with the label 010010, is incident to links of dimen-
sions 3 and 4, because 01 is the value of b0b1, and is connected to nodes with
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Figure 8: F1, a spanning subnetwork of Q6, for n = 6.

labels 010110 and 010000. This node is incident to a link of dimension 1, since
0010, the value of b2b3b4b5, has odd parity. Therefore, this node is connected
to the node with label 000010. F1 is shown in Figure 8, with the dimension
0 and 1 links not shown. The bold links in Figure 8 are the links of F1. The
black nodes are incident to dimension 0 links, and the gray nodes are incident
to dimension 1 links.

Let F2 be a degree n
2 spanning subnetwork, defined as follows:

• If a label of a node has the value 00 in b0b1, then that node is incident to
links in dimensions n - 2 and n - 1

• If a label of a node has the value 01 in b0b1, then that node is incident to
links in dimensions n - 1 and n - 4

• If a label of a node has the value 11 in b0b1, then that node is incident to
links in dimensions n - 4 and n - 4

• If a label of a node has the value 10 in b0b1, then that node is incident to
links in dimensions n - 3 and n - 2

• If a label of a node has odd parity in bn−4bn−3 bn−2bn−1, then that node
is incident to a link in dimensions 0, 2, . . . , n - 6. Otherwise, that node is
incident to a link in dimension 1, 3, . . . , n - 5.

F1 and F2 form an n
2 -factorization of Qn. F1 and F2 contain exactly half of

the links in each dimension. If a node u in Qn is incident to links in dimensions
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0, 2, ..., n - 6, then any node v adjacent to u by dimensions n - 4 through n -
1, is incident to links in dimensions 1, 3, ..., n - 5.

Theorem 5 F1 and F2 are isomorphic to each other.

Proof: F1 and F2 are isomorphic if there exists a mapping g from the nodes of
F1 to the nodes of F2, such that for all pairs of adjacent nodes u and v in F1,
g(u) is adjacent to g(v) in F2. Let g(u) be obtained from u by toggling b0 and
b1. If u and v are adjacent in F1 by some dimension, then g(u) will be adjacent
to g(v) in F2 by the same dimension. 2

Theorem 6 Both F1 and F2 have diameter n + 2.

Proof: Let u and v be two nodes in F1. Without loss of generality, let the value
of b0b1 in u be 00, and let bn−4bn−3bn−2bn−1 have even parity. Assume bits b2

through bn−1 of u are to be toggled to form bits b2 through bn−1 of v.
Case I: b0b1 in v is 00. Toggle b0, b2, . . . , bn−6, causing b0b1 to be 10. Now

bn−1 can be toggled. Toggle b1, b3, . . . , bn−5, causing b0b1 to be 11. Now bn−2

can be toggled. Toggle b0, causing b0b1 to be 01. Now bn−3 can be toggled.
Toggle b1, causing b0b1 to be 00. Now bn−4 can be toggled. b0 and b1 were
toggled twice, while the remaining bits were toggled once, for a total of n + 2
links.

Case II: b0b1 in v is 01. Toggle b0, b2, . . . , bn−6, causing b0b1 to be 10. Now
bn−1 and bn−4 can be toggled. Toggle b0, causing b0b1 to be 00. Now bn−2 can
be toggled. Toggle b1, b3, . . . , bn−5, causing b0b1 to be 11. Now bn−3 can be
toggled. b0 was toggled twice, while the remaining bits were toggled once, for a
total of n + 1 links.

Case III: b0b1 in v is 11. Toggle bn−4 and bn−3. Toggle b0, b2, . . . , bn−6,
causing b0b1 to be 10. Now bn−1 can be toggled. Toggle b1, b3, . . . , bn−5, causing
b0b1 to be 11. Now bn−2 can be toggled. No bit was toggled more than once for
a total of n links.

Case IV: b0b1 in v is 10. Toggle bn−3. Toggle b1, b3, . . . , bn−5, causing b0b1

to be 01. Now bn−2 can be toggled. Toggle b0, b2, . . . , bn−6, causing b0b1 to be
11. Now bn−1 can be toggled. Toggle b1, causing b0b1 to be 10. Now bn−4 can
be toggled. b1 was toggled twice, while the remaining bits were toggled once,
for a total of n + 1 links.

Let u and v be two nodes in F2. Without loss of generality, let the value
of b0b1 in u be 00, and let bn−4bn−3bn−2bn−1 have odd parity. Assume bits b2

through bn−1 of u are to be toggled to form bits b2 through bn−1 of v.
Case I: b0b1 in v is 00. Toggle b1, b3, . . . , bn−5, causing b0b1 to be 01. Now

bn−1 can be toggled. Toggle b0, b2, . . . bn−6, causing b0b1 to be 11. Now bn−4

can be toggled. Toggle b1, causing b0b1 to be 10. Now bn−3 can be toggled.
Toggle b0, causing b0b1 to be 00. Now bn−2 can be toggled. b0 and b1 were
toggled twice, while the remaining bits were toggled once, for a total of n + 2
links.

Case II: b0b1 in v is 01. Toggle bn−2. Toggle b0, b2, . . . , bn−6, causing b0b1

to be 10. Now bn−3 can be toggled. Toggle b1, b3, . . . , bn−5, causing b0b1 to be
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11. Now bn−4 can be toggled. Toggle b0, causing b0b1 to be 01. Now bn−1 can
be toggled. b0 was toggled twice, while the remaining bits were toggled once,
for a total of n + 1 links.

Case III: b0b1 in v is 11. Toggle bn−2 and bn−1. Toggle b1, b3, . . . , bn−5,
causing b0b1 to be 01. Now bn−4 can be toggled. Toggle b0, b2, . . . , bn−6, causing
b0b1 to be 11. Now bn−3 can be toggled. No bit was toggled more than once for
a total of n links.

Case IV: b0b1 in v is 10. Toggle b1, b3, . . . , bn−5, causing b0b1 to be 01. Now
bn−1 and bn−4 can be toggled. Toggle b1, causing b0b1 to be 00. Now bn−2 can
be toggled. Toggle b0, b2, . . . , bn−6, causing b0b1 to be 10. Now bn−3 can be
toggled. b0 was toggled twice, while the remaining bits were toggled once, for a
total of n + 1 links. 2

Theorem 7 The identity embedding embeds Qn into both F1 and F2 with dila-
tion 5.

Proof: Let u and v be two nodes in Qn, which differ in exactly 1 bit. Without
loss of generality, let the value of b0b1 in u be 00, and let bn−4bn−3bn−2bn−1

have even parity. We show that the maximum distance in F1 between u and v
is 5.

Case I: u and v differ in either b0, b2, . . . , bn−6, bn−4 or bn−3. In this case,
u and v are adjacent in F1.

Case II: u and v differ in b1, b3, . . . , or bn−5. In this case, toggle bn−3, toggle
the bit in which u and v differ, then toggle bn−3 again, for a total of three links.

Case III: u and v differ in bn−2. In this case, toggle bn−3, toggle b1, toggle
bn−2, toggle bn−3, and toggle b1, for a total of five links.

Case IV: u and v differ in bn−1. In this case, toggle b0, toggle bn−1, toggle
bn−4, toggle b0, and toggle bn−4, for a total of five links.

We now show that the maximum distance in F2 between u and v is also 5.
Case I: u and v differ in either b1, b3, . . . , bn−5, bn−2 or bn−1. In this case,

u and v are adjacent in F1.
Case II: u and v differ in b0, b2, . . . , or bn−6. In this case, toggle bn−2, toggle

the bit in which u and v differ, then toggle bn−2 again, for a total of three links.
Case III: u and v differ in bn−4. In this case, toggle b1, toggle bn−4, toggle

bn−1, toggle b1, and toggle bn−1, for a total of five links.
Case IV: u and v differ in bn−3. In this case, toggle bn−2, toggle b0, toggle

bn−3, toggle bn−2, and toggle b0, for a total of five links. 2

4 Conclusions and Future Research

Table 4 summarizes our findings. The consequence of our findings is that the
links of Qn can be partitioned into two factors, each having a diameter close to
that of Qn. The factorizations can be produced either from Hamilton decom-
positions or directly. Furthermore, since there is an embedding of Qn into these
factors with constant dilation, the factors can efficiently simulate the operation
of Qn.
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Best Section 3.1 Section 3.2 Section 3.3
Possible

Original Qn Q4, Q6, Qn, Qn,
Hypercube Q8, Q12 n = 2k n is even
Degree of Θ(1) 2, 3, 4, 6 n

2
n
2

Factors
Mutually Yes Unknown Yes Yes

Isomorphic?
Diameter n {8, 8}, {8, 10}, 2n n + 2
of factors {8, 8}, {12, 12}

Best Θ(1) Unknown Θ(1) Θ(1)
Dilation
Hamilton Yes Unknown Yes Unknown
Cycle?

Hamilton Yes Unknown Yes Unknown
Decomposition?

Table 4: Properties of factorizations of hypercubes.

Possible directions for future research into Hamilton decompositions include
identifying Hamilton decompositions for other well-known networks, determin-
ing if a given Hamilton cycle is part of a Hamilton decomposition and using
Hamilton decompositions for solutions to various graph problems [21].

Possible directions for future research into k-factorizations include 1) deter-
mining the existence of a k-factorization of Qn, constructed from perfect match-
ings, where the factors have diameter n, 2) determining if k-factorizations of Qn

exist where k < n
2 , and the diameters of the factors is n, 3) finding embeddings

of minimal dilation of Qn into its factors.
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