
Journal of Graph Algorithms and Applications
http://jgaa.info/ vol. 26, no. 4, pp. 577–588 (2022)
DOI: 10.7155/jgaa.00609

A Simple and Efficient Algorithm for Finding Minimum
Spanning Tree Replacement Edges

David A. Bader 1 Paul Burkhardt 2

1Department of Data Science
New Jersey Institute of Technology

Newark, NJ 07102
2Research Directorate

National Security Agency
Fort Meade, MD 20755

Submitted: December 2021 Reviewed: November 2022

Revised: November 2022 Accepted: December 2022

Final: December 2022 Published: December 2022

Article type: Regular paper Communicated by: Petra Mutzel

Abstract. Given an undirected, weighted graph, the minimum spanning tree
(MST) is a tree that connects all of the vertices of the graph with minimum sum
of edge weights. In real world applications, network designers often seek to quickly find
a replacement edge for each edge in the MST. For example, when a traffic accident
closes a road in a transportation network, or a line goes down in a communication net-
work, the replacement edge may reconnect the MST at lowest cost. In the paper, we
consider the case of finding the lowest cost replacement edge for each edge of the MST.
A previous algorithm by Tarjan takes O(mα(m,n)) time and space, where α(m,n) is
the inverse Ackermann’s function. Given the MST and sorted non-tree edges, our algo-
rithm is the first practical algorithm that runs in O(m+ n) time and O(m+ n) space
to find all replacement edges. Additionally, since the most vital edge is the tree edge
whose removal causes the highest cost, our algorithm finds it in linear time.

1 Introduction

Let G = (V,E) be an undirected, weighted graph on n = |V | vertices and m = |E| edges, with
weight function w(e) for each edge e ∈ E. A minimum spanning tree T = MST(G) is a subset of
n− 1 edges with the minimal sum of weights that connects the n vertices.

Research supported by NSF Grant 2109988.

E-mail addresses: bader@njit.edu (David A. Bader) pburkha@nsa.gov (Paul Burkhardt)

This work is licensed under the terms of the CC-BY license.

http://dx.doi.org/10.7155/jgaa.00609
https://orcid.org/0000-0002-7380-5876
https://orcid.org/0000-0001-5472-2963
mailto:bader@njit.edu
mailto:pburkha@nsa.gov
https://creativecommons.org/licenses/by/4.0/

578 Bader & Burkhardt A Simple & Efficient Algorithm for Finding MST Replacement Edges

In real world applications the edges of the MST often represent roadways, transmission lines,
and communication channels. When an edge deteriorates, for example, a traffic accident shuts
a road or a link goes down, we wish to quickly find its replacement edge to maintain the MST.
The replacement edge is the lightest weight edge that reconnects the MST. For example, Cattaneo
et al. [2] maintain a minimum spanning tree for the graph of the Internet Autonomous Systems
using dynamic graphs. Edges may be inserted or deleted, and a deletion of an MST edge triggers
an expensive operation to find a replacement edge of lightest weight that reconnects the MST in
O(m log n) time from the non-tree edges, or O(m+ n log n) time when a cache is used to store
partial results from previous delete operations.

In this paper, we consider the problem of efficiently finding the minimum cost replacement
for all edges in the MST. Recomputing the MST for each of the original tree edges is clearly too
costly. The problem is deceptively difficult. Each replacement edge must be a non-MST edge in a
fundamental cycle with the obsolete MST edge. But there are O(m) unique cycles and each cycle
can have O(n) MST edges so choosing the lightest non-tree edges as replacements requires careful
planning to prevent repeatedly referencing the same MST edges. This and related problems for
updating the MST have been studied extensively (e.g., [19, 3, 22, 5, 14, 10, 11]). The best algorithm
is from 1979 due to Tarjan [22] and runs in O(mα(m,n)) time and space, where α(n,m) is the
inverse Ackermann’s function. But given edges sorted by weight, we show the problem can be
solved in linear time and space using a surprisingly simple approach.

The main result of this paper is a simple and fast deterministic algorithm for the MST replace-
ment edge problem. Given the minimum spanning tree and non-tree edges sorted by weight, our
algorithm finds all replacement edges in O(m+ n) time and O(m+ n) space. Although it is known
that these bounds are theoretically possible using pre-sorted edges, we give the first practical algo-
rithm. Sorted edges come free if the MST is computed by Kruskal’s algorithm. If the edge weights
have fixed maximum value or bit width, then the edges can be sorted in linear time making our
algorithm an asymptotic improvement over prior algorithms. Our algorithm is simple and does not
require queues or computing the Lowest Common Ancestor (LCA). It assigns a pair of numbers
to each vertex denoting the order in which they are first and last visited in a depth-first search
(DFS) over the MST, and for each replacement it applies linear-time path compression using the
static union tree of Gabow and Tarjan [7, 8]. All running times in this paper are deterministic
worst-case under the Word-RAM model.

2 Related Work

The problem of updating the MST should a tree edge be deleted or its cost increased has been
studied since the 1970s. In 1975 Spira and Pan [19] showed it takes O

(
n2

)
time to find the

replacement for one tree edge. Then in 1978 Chin and Houck [3] gave a O
(
n2

)
time algorithm to

find the replacements for all MST edges. This result was improved to O(mα(m,n)) time in 1979 by
Tarjan [22] and remains the best deterministic runtime for the general case of unordered, arbitrary-
weight edges. The algorithm due to Tarjan uses path compression that maintains balanced tree
height, which does not benefit from having edges sorted by weight. It finds the replacement edges
by evaluating paths in a specially constructed directed acyclic graph in which vertices correspond
to tree and nontree edges, and combining operations on vertex labels. This directed acyclic graph
has O(mα(m,n)) vertices and therefore Tarjan’s algorithm for the MST replacement edge problem
takes O(mα(m,n)) time and space. Our method is more efficient for the case in which edges are
pre-sorted by weight, taking O(m+ n) time and space.

JGAA, 26(4) 577–588 (2022) 579

The MST replacement edge problem can also be solved by MST sensitivity analysis, for which
Tarjan [23] gave a O(mα(m,n)) time algorithm in 1982. The MST sensitivity analysis determines
the amount each edge weight can be perturbed without invalidating the MST. The sensitivity of
a tree edge e is the weight of an edge f that is the minimum weight among the nontree edges
that cross the cut induced by removing e, and therefore f is the replacement for e. In 1994 Booth
and Westbrook [1] show for planar graphs that the MST sensitivity analysis and replacement edge
problems can be solved in O(n) time and space. They use a depth-first search ordering of vertices
similar to our method, but explicitly compute the LCA for each edge. Their method maintains
two LCA-ordered lists for each leaf vertex of the tree, and therefore sorting by edge weights does
not improve their runtime. In 1996 Kooshesh and Crawford [14] proposed an algorithm for the
MST replacement edge problem taking O(max(Cmst, n log n)) time, where Cmst is the cost of
computing the minimum spanning tree. But their runtime is not efficient and can take O(n log n)
time. Their approach uses similar ideas to that of [1] and therefore does not improve with sorted
edges in advance.

It took nearly thirty years to improve Tarjan’s MST sensitivity analysis result for general graphs
when in 2005 Pettie [16, 17] improved the runtime to O(m logα(m,n)) time. A more tantalizing
result is Pettie showed that the MST sensitivity analysis problem is no harder than solving the
MST. This implies that the MST replacement edge problem can be solved in deterministic, linear-
time given an MST algorithm with the same time complexity. But a deterministic, linear-time MST
algorithm is still an open problem. Interestingly, Pettie and Ramachandran [18] gave an optimal
MST algorithm. The 2002 Pettie-Ramachadran MST algorithm has the curious property that
although it is provably optimal, the runtime is unknown but is between O(m) and O(mα(m,n))
time.1 In the special case where edges are sorted by weight in advance, then the MST can be
solved in deterministic linear time using the Fredman and Willard algorithm [6] by transforming
real number weights to integers using relative ordering, e.g. the ith ordered edge gets weight i.
Then it follows from Pettie’s reduction that the MST replacement edge problem can be solved in
deterministic linear time, matching the same bounds as our algorithm. The important distinction
is our algorithm is far simpler.

A related problem to MST replacement edges is that of maintaining the MST as edges are
repeatedly updated, where an update means deletion, insertion, or weight change of an edge.
Frederickson [5] gave an algorithm to maintain an MST with edge updates (deletion, insertion,
or weight change) where each update takes O(

√
m) worst-case time, and sparsification makes the

bound O(
√
n). Henzinger and King [10] gave an algorithm to maintain a minimum spanning forest

with edge deletions or insertions; each update takes O(3
√
n log n) amortized time. Holm et al. [11]

give an algorithm for maintaining a minimum spanning forest with edge deletions or insertions;
each update takes O

(
log4 n

)
amortized time. Recently, Hanauer et al. gave a survey of fully

dynamic graph algorithms and discuss maintaining minimum spanning trees [9].

3 Algorithm

Given T and the remaining non-tree edges E\ET sorted from lowest to highest weight, then
Algorithm 1 finds all replacement edges for an MST in O(m+ n) time. Observe that each of the
m−n+1 edges in E\ET induces a fundamental cycle with the edges in T . Then for any MST edge
there is a subset of cycles containing that edge, and the cycle induced by the lightest non-MST
edge is the replacement for it. This follows from the Cut Property [4, c.f. Theorem 23.1] where the

1This is due to the decision tree complexity of the MST; the height of the tree is optimal but unknown.

580 Bader & Burkhardt A Simple & Efficient Algorithm for Finding MST Replacement Edges

lightest non-tree edge crossing a cut must be in the MST if some other edge in the induced cycle is
removed. Our Algorithm 1 finds the lightest weight cycle for each tree edge but avoids repeatedly
traversing these edges. Since replacement edges are found immediately after computing an MST,
we can re-use the sorted edges from Kruskal’s [15] MST algorithm.

The major steps of our approach are 1) assign the parent and the first and last visited numbers
to each vertex according to depth-first search over T 2) traverse the fundamental cycle induced by
each non-tree edge in order of ascending weight 3) compress paths to skip edges already assigned
replacements. With O(m) non-tree edges and O(n) edges in each cycle, the näıve approach has
Ω(mn) time complexity. This paper introduces an algorithm that reduces the cost to O(m+ n)
time by a novel use of a special case of the disjoint set union data structure. We use the disjoint
sets for fast path compression based on the Gabow-Tarjan static union tree method [7, 8].

Algorithm 1 first roots the MST at an arbitrary vertex vr and initializes a parent array P .
Next, each vertex v ∈ V is visited during a depth-first search traversal from the root, and the
value of P [v] is set to its respective parent vertex from the traversal order. For the root vr, its
parent P [vr] is set to vr. Our approach uses another innovation that alleviates the need to find
the lowest common ancestor vertex in the rooted MST for each non-tree edge. To do so, we use
a pair of vertex-based values, IN[v] and OUT[v], which are assigned as follows. During the depth-
first traversal of the rooted tree, a counter is incremented for each step in the traversal (up or
down edges). When the traversal visits v the first time during a traversal down an edge, IN[v]
is assigned the current counter value. When the traversal backtracks up an edge from vertex v,
OUT[v] is then assigned the current counter value. With a minor modification to our algorithm
we can also employ the conventional pre- and post-order numbers from depth-first search to detect
the LCA. Our ordering is chosen for convenience because it requires only a single increment on the
visit order, which simplifies tracking the traversal as an increasing sequence of visit numbers. For
example, using pre(v), post(v) to denote respectively the pre- and post-order of a vertex v, then
when identifying if s is an ancestor of t we can replace the conjunction pre(s) < pre(t) and post(t)
< post(s) with the straightforward inequality sequence IN[s] < IN[t] < OUT[t] < OUT[s].

The m− n+ 1 remaining edges in E\ET are scanned in ascending order by weight, inspecting
the tree edges in each corresponding fundamental cycle. In this order, the first time a tree edge e is
included in a fundamental cycle, its replacement Re is set to the non-tree edge from that cycle. As
we will describe, the disjoint sets provide subpath compression as replacement edges are assigned
to MST edges. In Algorithm 1, the disjoint sets are updated through the makeset, find, and link
functions.

For each non-tree edge (s, t), if vertex t is a descendant of s, (if and only if IN[s] < IN[t] <
OUT[t] < OUT[s]), we make a single PathLabel call for the edges from t up to s. Since IN[t] <
OUT[t], we simplify this check in Algorithm 1, line 2, to IN[s] < IN[t] < OUT[s].

Otherwise, two calls are made to PathLabel, corresponding to inspecting the left and right
paths of the cycle from s and t, respectively, that would meet at the LCA of s and t in the tree.
We assume, without loss of generality, that s is visited in the depth-first search traversal before t.
Let’s call z = LCA[s, t]. It is useful to use z in describing the approach, yet we never actually need
to find the LCA z. We know IN[z] < IN[s] < OUT[s] < IN[t] < OUT[t] < OUT[z] by definition of
the depth-first traversal. As illustrated in Figure 1, consider a vertex w that lies on the path from s
to the root vr. Vertex w must either lie on the path from s to the LCA z (where OUT[w] < IN[t]),
or from z to the root vr (where OUT[w] > IN[t]). We use this fact to detect when PathLabel
reaches the LCA without computing it.

As mentioned earlier, the disjoint sets provide subpath compression as replacement edges are
assigned to MST edges. Initially, each vertex is placed in its own set. While traversing edges in

JGAA, 26(4) 577–588 (2022) 581

Algorithm 1 Linear Time MST Replacement Edges

Require: Graph G, MST edges labeled, and sorted list of non-MST edges
Require: Zero-initialized arrays P , IN, OUT of size n indexed by all vertices v ∈ V .
1: procedure PathLabel(s, t, e)
2: if IN[s] < IN[t] < OUT[s] then ▷ s is ancestor of t
3: return
4: if IN[t] < IN[s] < OUT[t] then ▷ t is ancestor of s
5: PLAN ← ANCESTOR, k1 ← IN[t], k2 ← IN[s]
6: else
7: if IN[s] < IN[t] then
8: PLAN ← LEFT, k1 ← OUT[s], k2 ← IN[t] ▷ s is left of t
9: else

10: PLAN ← RIGHT, k1 ← OUT[t], k2 ← IN[s] ▷ s is right of t

11: v ← s
12: while k1 < k2 do ▷ Detecting when below LCA(s, t)
13: if find(v) = v then ▷ If true, set replacement edge for (v, P [v])
14: R(v,P [v]) ← e ▷ Set the replacement edge
15: link(v) ▷ Union the disjoint sets of v and P [v]

16: v ← find(v)
17: switch PLAN do
18: case ANCESTOR
19: k2 ← IN[v]

20: case LEFT
21: k1 ← OUT[v]

22: case RIGHT
23: k2 ← IN[v]

24: Root the MST T at arbitrary vertex vr and store parents in P .
25: P [vr]← vr ▷ root’s parent points to root
26: Run DFS on T , setting IN[v] and OUT[v] to the counter value when v is first and last visited,

respectively.
27: for all vertices v ∈ V do
28: makeset(v) ▷ Initialize the disjoint sets

29: for all edges e ∈ ET do
30: Re = ∅ ▷ Initialize the replacement edges

31: for k ← 1 ..m− n+ 1 do ▷ Scan the m− n+ 1 sorted non-MST edges
32: (vi, vj)← ek
33: PathLabel(vi, vj , (vi, vj))
34: PathLabel(vj , vi, (vi, vj))

582 Bader & Burkhardt A Simple & Efficient Algorithm for Finding MST Replacement Edges

vr

. . .

z

. . .

s

. . .

. . .

t

. . .

. . .

w

Figure 1: The PathLabel algorithm detects when vertex w on the path from s to the root vr is an
ancestor of the vertex z = LCA[s, t], without determining z.

a cycle that have not yet been assigned a replacement, the disjoint sets compress the subpath by
uniting the sets corresponding to each vertex and its parent in the tree, thereby ensuring that MST
edges are traversed at most once.

The conventional union heuristic with path compression for the disjoint set union problem
would not lead us to a linear-time algorithm. Gabow and Tarjan [7, 8] designed a linear-time
algorithm for the special case where the structure of the unions, called the Union Tree, is known
in advance. The Gabow-Tarjan approach executes a sequence of m union and find operations on n
elements in O(m+ n) time and O(n) space. The functions are makeset(v) that initializes v into
a singleton set with label v, find(v) that returns the label of the set containing v, and link(v) that
unites the sets v and P [v], where P [v] is the parent of v in the union tree, and gives it the label of
the set containing P [v].

For the path compression used in our MST replacement edge algorithm, the structure of unions
is known in advance; that is, the union tree is equivalent to the MST. Hence, we use the Gabow-
Tarjan approach for the disjoint sets and path compression.

There are cases when the algorithm may terminate prior to scanning the entire list of edges.
This observation leads to a faster implementation that still runs in linear time. A bridge edge
of a connected graph is defined as an edge whose removal disconnects the graph. Clearly, bridge
edges will always be included in the MST and will not have a replacement edge in the solution.
Tarjan [21] shows that counting the number of bridges in the graph G takes O(m+ n) time. Thus,
Algorithm 1 may terminate the scanning of remaining edges once n− 1− k replacement edges are
identified, where k is the number of bridges in G.

JGAA, 26(4) 577–588 (2022) 583

3.1 Example

In this section we give a simple walk-through of the algorithm on the graph in Figure 2. This
example exercises all three plans in the algorithm.

a

(13, 14)

b

(9, 10)

c(1, 16)

d
(2, 15)

e

(4, 11)

f
(3, 12)

g

(6, 7)

h

(5, 8)

1

2

3

4

5

7
9

10
6

8

11

12

13

Figure 2: An example graph on 8 vertices (a, . . . , h) and 13 weighted edges. The MST root vertex
c and MST edges are highlighted by thicker lines.

The MST edges have weights 1, 2, 3, 4, 5, 7, and 9, and say the root of the MST tree is vertex
c. The vertices in Figure 2 have been labelled with (IN,OUT) numbers assigned by DFS over the
MST edges with branching order by ascending edge weight. In the following walk-through of the
algorithm, the reader should note that all vertices retain their original parents. Also we remark
that all walks are in order from descendent to ancestor or from last to first in DFS order.

Then in sorted, non-MST edge order we begin with the (g, e) edge at line 33.

1. Vertex e is the ancestor of g, then at line 4 we get the ancestor (ANCESTOR) plan with
k1 = IN[e], k2 = IN[g] and thus k1 < k2.

2. The cycle traversal begins with g (line 11). Since g has not yet been visited then line 14
assigns the current non-MST edge (g, e) to (g, h), where h is the parent of g.

3. The disjoint sets are linked (line 15) so g’s disjoint set gets h’s label. This compresses the
subpath (g, h).

4. The next vertex is h since it is the parent of g (line 16) and then k2 is updated to IN[h].

5. Continuing the traversal with h (line 12), again line 14 assigns (g, e) to (h, e) where e is the
parent of h.

6. The disjoint sets are linked (line 15) so h’s disjoint set gets e’s label. This compresses the
subpath (g, h, e).

7. Now the next vertex is e so k2 gets IN[e] making it equal to k1, thus ending the while loop.

8. The oppositely-oriented edge (e, g) input at line 34 is not processed because e is the ancestor
of g and we have already followed the path from descendent to ancestor.

The next non-MST edge is (b, g) and input at line 33, since it happens that g was reached
before b in the DFS.

584 Bader & Burkhardt A Simple & Efficient Algorithm for Finding MST Replacement Edges

9. We get the RIGHT branch plan with k1 = OUT[g], k2 = IN[b] and so again k1 < k2.

10. The traversal begins with b (line 11) and since b has not yet been visited then (b, e) gets the
non-MST edge (b, g), where e is the parent of b.

11. The disjoint set is linked (line 15) so b’s disjoint set gets e’s label and the subpath (b, e) is
compressed.

12. The next vertex is e (the parent of b) and thus k2 is updated to IN[e] (lines 22-23) making
k2 < k1 and thus ending the while loop.

13. The oppositely-oriented edge (g, b) is input at line 34.

14. We get the LEFT branch plan (line 8) with k1 = OUT[g], k2 = IN[b] so k1 < k2 and start
the traversal with g.

15. Now observe that the disjoint sets had previously compressed the subpath (g, h, e). Thus
find(g) ̸= g. This jumps the walk to the LCA, which is vertex e, and updates k1 to OUT[e]
to end the while loop.

Observe for edge (b, g) that if b were reached before g in the DFS, it would have finished earlier
but all subpaths would have been compressed as before. We leave it as an exercise for the reader
to finish the algorithm on the remaining non-MST edges.

3.2 Proof of correctness

Claim 1 The lowest weight non-MST edge that induces a cycle containing an MST edge e is the
replacement for e. This follows from the Cut Property [4, c.f. Theorem 23.1].

Claim 2 Algorithm 1 traverses the cycle induced by a non-MST edge from descendent to ancestor,
and stops at the LCA (in the case that the LCA is different from s and t).

Proof: Observe that the parent is set for each vertex in DFS order so that the traversal carried out
by lines 12–23 follows a single path from descendent to ancestor. The path is an upwards traversal
of the compressed subpaths in the disjoint sets. For each (s, t) edge, s may be the ancestor of t
or vice versa, or the LCA is neither s nor t. The lines 2–10 always set the starting vertex in the
traversal of the cycle so that it proceeds from descendent to ancestor as follows.

If s is the ancestor of t then no traversal is made because line 2 returns. If t is the ancestor
of s, then the traversal begins with s at line 11 and each traversal up using the disjoint sets leads
to t. Otherwise, there is an LCA and from lines 33–34 each branch is traversed from s and t up
to the LCA. The subpath compression using disjoint sets occurs at line 15. The linking unites all
sets corresponding to vertices in the tree traversal from s and t up to the LCA. □

Claim 3 Algorithm 1 traverses only those edges in the unique cycle induced by a given non-MST
edge.

Proof: We prove this using a loop invariant for a single cycle. Let (s, t) be a non-MST edge and
denote the cycle it induces by s, vi, vi+1, . . . , t, s.

The loop invariant is: v at the start of the while loop at lines 12–23 must be a vertex in the
cycle induced by (s, t).

The base step holds trivially since the starting vertex is s.

JGAA, 26(4) 577–588 (2022) 585

The inductive step maintains the loop invariant as follows. At each iteration the disjoint sets of
each vertex and its parent are united and by Claim 2 this vertex must be a predecessor in the path
from descendent to ancestor. Thus every iteration produces the sequence vi, vi+1, . . . , vp where vp
is either t or an LCA of s and t. By Claim 2, the traversal cannot go above the LCA of s and t.

Termination of the loop is determined by new values for either k1 or k2 between lines 17–23.
If the case was that t was the ancestor of s, then k2 decreases in value as the path traversal using
disjoint sets approaches t. Otherwise the LCA is neither s nor t and if s is visited before t in DFS
order, then it is in the left branch and k1 increases in value as the upwards path traversal using
disjoint sets approaches t, otherwise we have the right branch and similarly the loop ends as the
path traversal using disjoint sets moves towards the other endpoint. □

Theorem 1 Given the Minimum Spanning Tree for an undirected, weighted graph G = (V,E),
and non-tree edges sorted by weight, then Algorithm 1 correctly finds all minimum cost replacement
edges in the Minimum Spanning Tree of G.

Proof: First observe that all non-MST edges are processed in ascending order by weight between
lines 31–34. Then the (s, t) edge that induces the first cycle to contain an MST edge must be the
replacement edge for that MST edge following Claim 1 and the order of processing. This is carried
out by line 14, hence each MST edge gets the first non-MST edge that induces a cycle containing
it.

It follows from Claim 3 and the loop over all non-MST edges at lines 31–34 that all MST edges
in a cycle will get a replacement edge.

At the end of a cycle, the traversed edges in the subpath are compressed with each parent set
by linking the disjoint sets so that any edge from this cycle cannot be traversed again because it
has been assigned a replacement edge. □

3.3 Complexity analysis

Claim 4 Algorithm 1 updates disjoint sets in O(m+ n) time and O(n) space.

Proof: The Gabow-Tarjan disjoint sets use O(n) makeset operations (lines 27-28), one for each
vertex v ∈ V ; and O(n) link operations (line 15) since there are at most n− 1 replacement edges.
For each non-tree edge, there are at most two find operations at the start and end of each of
the two PathLabel calls, corresponding with the initial find(s) (line 13) and the final find(v)
(line 16) that returns a label of either t or an ancestor of t. Hence these contribute to at most
4(m − n + 1) = O(m) find operations. Every other find precedes a link operation, so there are
O(n) of these find operations. Therefore, Algorithm 1 uses O(m) find operations.

The union tree is equivalent to the MST tree. Hence, Algorithm 1 uses the special case of
disjoint set union when the union tree is known in advance. Using the Gabow-Tarjan disjoint set
union, thus, takes O(m+ n) time and O(n) space. □

Theorem 2 Given the Minimum Spanning Tree for an undirected, weighted graph G = (V,E),
and non-tree edges sorted by weight, then Algorithm 1 finds all minimum cost replacement edges
of the Minimum Spanning Tree of G in O(m+ n) time and O(m+ n) space.

Proof: Let T be the Minimum Spanning Tree of G. Initializing all values in the parent array P
takes O(n) time. Since there are n−1 edges in T then running DFS on T (line 26) to initialize the
IN and OUT arrays takes O(n) time. Initializing the replacement edges of the MST edges takes
O(n) time.

586 Bader & Burkhardt A Simple & Efficient Algorithm for Finding MST Replacement Edges

There are m− n+ 1 = O(m) non-MST edges read in ascending order by weight, taking O(m)
time. For each non-MST edge, it was established by Claim 3 that the algorithm can only reference
edges in the fundamental cycle induced by that non-MST edge. These edges are traversed only
once as follows.

The algorithm walks each fundamental cycle in the same direction from descendant to ancestor,
as imposed by the DFS ordering set in the IN and OUT arrays. On visiting a vertex v, if v’s set
label equals v then the edge (v, P [v]) has not been visited before, otherwise it violates the path
compression at lines 13-15. When an edge (v, P [v]) gets a replacement (line 14), the disjoint set
corresponding with parent P [v] is united with v’s set (line 15) using the Gabow-Tarjan disjoint set
link operation. The label of the new set is the root of the induced subtree of the MST. Therefore
when a vertex v is first visited, link(v) results in the set label being the label of the set containing
P [v]. On completing the walk along the cycle, the set label will be the label of the set containing
the LCA. Then subsequent find(v) operations return the most recent root of the subtree containing
v. Thus this sequence of disjoint set unions perform path compression on tree edges with assigned
replacements. The compressed path decreases the traversal length of subsequent walks beginning
at vertices lower in the DFS ordering by skipping over tree edges already with assigned replacement
edges.

It follows from Claim 3 and this specific ordering of the disjoint set labels that the algorithm
cannot follow a path that does not close the cycle. Then because of path compression only O(m)
edges are traversed, taking O(m) time. Claim 4 establishes O(m+ n) time and O(n) space for all
disjoint set operations. Hence it takes O(m+ n) time to find all replacement edges in T . The data
structures are simple arrays and Gabow-Tarjan disjoint set union data structures, taking O(n)
space, and all non-MST edges take O(m) space. Therefore it takes O(m+ n) time and O(m+ n)
space as claimed. □

4 Most Vital Edge

The most vital edge of a connected, weighted graph G is the edge whose removal causes the largest
increase in the weight of the minimum spanning tree [12]. When the graph contains bridges (which
can be found in linear time [21]), the most vital edge is undefined. The input for methods to
find the most vital edge include both the graph and the edges sorted by weight. Hsu et al. [12]
designed algorithms to find the most vital edge in O(m logm) and O

(
n2

)
time. Iwano and Katoh

[13] improve this with O(m+ n log n) and O(mα(m,n)) time algorithms. Suraweera et al. [20]
prove that the most vital edge is in the minimum spanning tree. Hence, once Algorithm 1 finds all
replacement edges of the minimum spanning tree, the most vital edge takes O(n) time by simply
finding the tree edge with maximum difference in weight from its replacement edge. Thus, our
approach will also find the most vital edge in O(m+ n) time, and is the first linear algorithm
for finding the most vital edge of the minimum spanning tree given the non-tree edges sorted by
weight.

References

[1] H. Booth and J. Westbrook. A linear algorithm for analysis of minimum spanning and shortest-
path trees of planar graphs. Algorithmica, 11(4):341–352, 1994. doi:10.1007/BF01187017.

https://doi.org/10.1007/BF01187017

JGAA, 26(4) 577–588 (2022) 587

[2] G. Cattaneo, P. Faruolo, U. Ferraro Petrillo, and G. Italiano. Maintaining dynamic minimum
spanning trees: An experimental study. Discrete Applied Mathematics, 158(5):404–425, 2010.
doi:10.1016/j.dam.2009.10.005.

[3] F. Chin and D. Houck. Algorithms for updating minimal spanning trees. Journal of Computer
and System Sciences, 16(3):333–344, 1978. doi:10.1016/0022-0000(78)90022-3.

[4] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to Algorithms, 3rd
Edition. MIT Press, Inc., Cambridge, MA, 2009.

[5] G. Frederickson. Data structures for on-line updating of minimum spanning trees, with ap-
plications. SIAM Journal on Computing, 14(4):781–798, 1985. doi:10.1137/0214055.

[6] M. L. Fredman and D. E. Willard. Trans-dichotomous algorithms for minimum spanning
trees and shortest paths. Journal of Computer and System Sciences, 48:533–551, 1994. doi:
10.1016/S0022-0000(05)80064-9.

[7] H. N. Gabow and R. E. Tarjan. A linear-time algorithm for a special case of disjoint set union.
In Proceedings of the Fifteenth Annual ACM Symposium on Theory of Computing, STOC ’83,
pages 246–251, New York, NY, USA, 1983. ACM. doi:10.1145/800061.808753.

[8] H. N. Gabow and R. E. Tarjan. A linear-time algorithm for a special case of disjoint set
union. Journal of Computer and System Sciences, 30(2):209–221, 1985. doi:10.1016/

0022-0000(85)90014-5.

[9] K. Hanauer, M. Henzinger, and C. Schulz. Recent advances in fully dynamic graph algorithms
– a quick reference guide. ACM Journal of Experimental Algorithmics, 2022. doi:10.1145/
3555806.

[10] M. Henzinger and V. King. Maintaining minimum spanning trees in dynamic graphs. In
Proceedings of the 24th International Colloquium on Automata, Languages and Programming
(ICALP), pages 594–604, 1997.

[11] J. Holm, K. de Lichtenberg, and M. Thorup. Poly-logarithmic deterministic fully-dynamic
algorithms for connectivity, minimum spanning tree, 2-edge, and biconnectivity. Journal of
the ACM, 48(4):723–760, July 2001. doi:10.1145/502090.502095.

[12] L.-H. Hsu, R.-H. Jan, Y.-C. Lee, C.-N. Hung, and M.-S. Chern. Finding the most vital edge
with respect to minimum spanning tree in weighted graphs. Information Processing Letters,
39(5):277–281, 1991. doi:10.1016/0020-0190(91)90028-G.

[13] K. Iwano and N. Katoh. Efficient algorithms for finding the most vital edge of a minimum
spanning tree. Information Processing Letters, 48(5):211–213, 1993.

[14] A. Kooshesh and R. Crawford. Yet another efficient algorithm for replacing the edges of
a minimum spanning tree. In Proceedings of the 1996 ACM 24th Annual Conference on
Computer Science, CSC ’96, pages 76–78, New York, NY, USA, 1996. ACM. doi:10.1145/

228329.228337.

[15] J. Kruskal, Jr. On the shortest spanning subtree of a graph and the traveling salesman
problem. Proceedings of the American Mathematical Society, 7:48–50, 1956.

https://doi.org/10.1016/j.dam.2009.10.005
https://doi.org/10.1016/0022-0000(78)90022-3
https://doi.org/10.1137/0214055
https://doi.org/10.1016/S0022-0000(05)80064-9
https://doi.org/10.1016/S0022-0000(05)80064-9
https://doi.org/10.1145/800061.808753
https://doi.org/10.1016/0022-0000(85)90014-5
https://doi.org/10.1016/0022-0000(85)90014-5
https://doi.org/10.1145/3555806
https://doi.org/10.1145/3555806
https://doi.org/10.1145/502090.502095
https://doi.org/10.1016/0020-0190(91)90028-G
https://doi.org/10.1145/228329.228337
https://doi.org/10.1145/228329.228337

588 Bader & Burkhardt A Simple & Efficient Algorithm for Finding MST Replacement Edges

[16] S. Pettie. Sensitivity analysis of minimum spanning trees in sub-inverse-ackermann time.
In 16th International Symposium on Algorithms and Computation (ISAAC), volume 3827 of
Lecture Notes in Computer Science, pages 964–973, Sanya, Hainan, China, 2005. Springer.

[17] S. Pettie. Sensitivity analysis of minimum spanning trees in sub-inverse-ackermann time.
Journal of Graph Algorithms and Applications, 19(1):375–391, 2015. doi:10.7155/jgaa.

00365.

[18] S. Pettie and V. Ramachandran. An optimal minimum spanning tree algorithm. Journal of
the ACM, 49(1):16–34, 2002. doi:10.1145/505241.505243.

[19] P. Spira and A. Pan. On finding and updating spanning trees and shortest paths. SIAM
Journal on Computing, 4(3):375–380, 1975. doi:10.1137/0204032.

[20] F. Suraweera, P. Maheshwari, and P. Battacharya. Optimal algorithms to find the most vital
edge of a minimum spanning tree. Technical Report CIT-95-21, School of Comput. and Inf.
Tech., Griffith University, 1995.

[21] R. E. Tarjan. A note on finding the bridges of a graph. Information Processing Letters,
2(6):160–161, 1974.

[22] R. E. Tarjan. Applications of path compression on balanced trees. Journal of the ACM,
26(4):690–715, Oct. 1979. doi:10.1145/322154.322161.

[23] R. E. Tarjan. Sensitivity analysis of minimum spanning trees and shortest path trees. Infor-
mation Processing Letters, 14(1):30–33, 1982. doi:10.1016/0020-0190(82)90137-5.

https://doi.org/10.7155/jgaa.00365
https://doi.org/10.7155/jgaa.00365
https://doi.org/10.1145/505241.505243
https://doi.org/10.1137/0204032
https://doi.org/10.1145/322154.322161
https://doi.org/10.1016/0020-0190(82)90137-5

	Introduction
	Related Work
	Algorithm
	Example
	Proof of correctness
	Complexity analysis

	Most Vital Edge

