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Abstract. A grounded 1-bend string graph is an intersection graph of a set of
polygonal lines, each with one bend, such that the lines lie above a common horizontal
line ℓ and have exactly one end point on ℓ. We show that the problem of finding a
maximum clique in a grounded 1-bend string graph is APX-hard, even for strictly y-
monotone strings. For general 1-bend strings, the problem remains APX-hard even if
we restrict the position of the bends and end points to lie on at most three parallel
horizontal lines. We give fast algorithms to compute a maximum clique for different
subclasses of grounded segment graphs, which are formed by restricting the strings to
various forms of L-shapes.

1 Introduction
A geometric intersection graph consists of a set of geometric objects (e.g., disks, rectangles, etc.)
representing the nodes of the graph, where two nodes are adjacent if and only if the corresponding
objects intersect. Intersection graphs are intriguing from the perspective of algorithm design as
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Figure 1: (a) A graph G. (b) A string representation. (c) A 1-bend outerstring representation.
(d) A grounded 1-bend string representation. (e) An outersegment representation. (f) A grounded
segment representation. (g) A ray intersection graph. (h) Transformation from a ray intersection
representation to an outersegment representation.

many optimization problems that are NP-hard for general graphs, are known to be polynomial-
time solvable for different classes of intersection graphs [13, 17, 19, 24]. Intersection graphs ap-
pear naturally in many applied scenarios [5, 10, 17], e.g., wireless communication networks are
commonly modeled with disk intersection graphs, scheduling problems are often modeled on in-
tersection graphs of intervals in one dimension, and so on. Intersection graphs in R2 have been
extensively studied in graph drawing area to intuitively visualize the relational information present
in a graph [23]. We refer the readers to [17] for more details on intersection graphs.

String Graphs: In this paper we restrict our attention to strings, which are simple curves in
R2, and to objects obtained by imposing various geometric restrictions to them. A string graph is
a geometric intersection graph, where each node represents a string and each edge represents an
intersection between the two strings that correspond to the end points of the edge. Figure 1(a)
illustrates a string graph and Figure 1(b) illustrates its string intersection representation. In 1959,
Benzer [2] first introduced string graphs while exploring the topology of genetic structures. Later,
Sinden [22] explored string graphs in the context of electrical networks. A rich body of literature
has examined string graphs since then to understand the structure of string graphs [6, 16,21].

A string is often modeled with a polygonal chain and sometimes, with an orthogonal polygonal
chain. In this paper, unless otherwise stated, we consider a string to be a polygonal chain where
its segments may have arbitrary slopes. A k-bend string is a polygonal chain with at most k bends
or (k + 1) segments.

A number of restrictions on the strings have been examined in the literature [3,12]. Outerstring
graphs and grounded string graphs are two widely studied classes of graphs that resulted from
such restrictions. An outerstring graph is a string graph, where each string must lie inside a
disk, with exactly one end point on the boundary of the disk. If each string in an outerstring
representation contains at most k bends, then we call the corresponding graph a k-bend outerstring
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graph. Figure 1(c) illustrates a 1-bend outerstring representation. A grounded string graph is a
string graph, where each string must lie above a common horizontal line ℓ, with exactly one end
point on ℓ. The line ℓ is referred to as a ground line. If each string in a grounded segment
representation contains at most k bends, then we call the corresponding graph a k-bend grounded
segment graph. Figure 1(d) illustrates a grounded 1-bend string representation. A grounded
segment graph is called strictly y-monotone if admits an intersection representation with strings
that are strictly monotone with respect to the y-axis (Figure 1(e)).

Although the outerstring graphs and grounded string graphs are the same for general strings,
they can be different when we put restrictions on the number of bends that a string can have.
For example, if we restrict the strings to be straight line segments, the resulting outerstring (re-
spectively, grounded segment) graph is called an outersegment (respectively, grounded segment)
graph. Figures 1(f)–(g) illustrate such graphs. The grounded segment graph class is known to be
a proper subclass of the outersegment graph class [6]. We refer the readers to [12] for more details
on various subclasses of string graphs, and their inclusion or separation properties.

Maximum Independent Set and Maximum Clique Problems: A maximum independent
set in a graph G is a largest set of vertices S in G such that no two vertices in S are adjacent
in G. A maximum clique in G is a largest set of vertices that are pairwise adjacent in G. The
hardness of independent set and maximum clique problems in general graphs inspired researchers
to examine these problems for restricted intersection graph classes [11,15,19,24]. Both maximum
independent set and maximum clique problems are known to be NP-complete in general segment
intersection graphs, i.e., the intersection graph of a set of segments in R2 [15]. Since a segment
is a 0-bend string, this implies that these problems are NP-complete for string graphs. Fox and
Pach [11] gave subexponential time algorithms for computing a maximum independent set for
string graphs. They also considered k-intersecting string graphs, which are string graphs with
the additional property that one string cannot intersect another string more than k times. They
gave algorithms for approximating independent set and maximum clique for k-intersecting string
graphs.

While the maximum independent set problem is NP-complete for string graphs, Keil et al. [13]
showed the problem to be polynomial-time solvable for outerstring graphs with a given outerstring
representation of polynomial size [13]. Given an outerstring representation, where each segment
is represented as a polygonal chain, they showed how to compute a maximum independent set in
O(s3) time, where s is the total number of segments in the representation. Bose et al. [3] gave an
O(n2)-time algorithm when the strings are y-monotone polygonal paths of constant length with
segments at integral coordinates. They also showed this to be the best possible under strong
exponential time hypothesis.

Middendorf and Pfeiffer [18] showed the maximum clique problem to be NP-hard for axis-
aligned 1-bend strings, even when the strings are of two types:

L

and L. They also showed the
problem to be polynomial-time solvable for two cases: (a) For the strings of type Γ and

L

, and (b)
for grounded segments when the free end points of the segments lie on a fixed number of horizontal
lines.

A ray intersection graph is a geometric intersection graph, where each node represents a ray and
each edge represents an intersection between the two rays that correspond to the end points of the
edge. Figure 1(h) illustrates a ray intersection graph. Cabello et al. [4] proved the maximum clique
problem to be NP-complete even for ray intersection graphs. Since one can enclose a ray intersec-
tion graph inside a circle such that all the rays hit the perimeter (e.g., Figure 1(i)), their result
implies NP-completeness for computing a maximum clique in an outersegment graph. Therefore,
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Figure 2: (a) A graph G. (b) An 1-sided L-shape representation. (c) A square L-shape represen-
tation. (d) A two-sided L-shape representation.

an interesting question that arises in this context is whether the maximum clique problem remains
NP-complete for grounded segment graphs. While the problem remains open, in this paper, we
show APX-hardness for two subclasses of grounded 1-bend string graphs.

A rich body of research examines the recognizability of various classes of string graphs [6,16,21].
The recognition problem is known to be NP-hard even for the intersection graphs of L-shapes [9].
Throughout this paper, whenever we examine an intersection model, we assume that the input
graph comes with a representation satisfying that intersection model. For the grounded string
graphs, we assume the x-axis to be the ground line.

1.1 Contributions
We first prove that the problem of computing a maximum clique in a grounded 1-bend string graph
is APX-hard, even for strictly y-monotone strings. Although grounded 1-bend strings include
grounded segments, our reduction heavily relies on bends and thus the maximum clique problem
remains open for grounded segment graphs.

We then show that the problem remains NP-hard for grounded 1-bend strings even when the
bend and end points of the strings (not necessarily y-monotone) are restricted to lie on three
horizontal lines. This is interesting since the maximum clique problem is polynomial-time solvable
for grounded segment graphs with the end points on a set of fixed horizontal lines [18].

We give fast polynomial-time algorithms for some axis-aligned grounded 1-bend string graphs.
In particular, here a grounded 1-bend string is an inverted L-shape or the vertical mirror reflection
of an inverted L-shape. For simplicity we will refer to them as L-shapes with exactly one end
point on the ground line (e.g., Figures 2(b)–(d)). The reason to investigate the maximum clique
problem on grounded L-shape graphs is that they belong to the class of grounded segment graphs
for which the problem is open.

The time-complexity of the maximum independent set problem has been examined for various
subclasses of grounded L-shape graphs [3]. It is thus natural to examine the maximum clique
problem on them. Here we consider three types of grounded L-shape intersection representations
and throughout the paper we assume the L-shapes are in general position, i.e., no two segments in
the intersection representation lie on the same horizontal or vertical line. An L-shape intersection
representation is 1-sided (Figure 2(a)–(b)), if the L-shapes in the representation all turn clockwise,
or all turn anticlockwise. Otherwise, the representation is two-sided (Figure 2(c)). In a square L-
shape representation, the horizontal and vertical segments of every L-shape are of the same length
(Figure 2(d)). These graph classes are already known in the literature [3, 12]. It is known that
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there exist grounded 2-sided L-shape graphs that are not grounded 1-sided L-shape graphs [12].
In this paper, we show that there exist grounded 2-sided L-shape graphs that are not grounded
2-sided square L-graphs, and there exist grounded 2-sided square-L graphs that are not grounded
1-sided L-shape graphs. Therefore, it is worth investigating the time-complexity of the maximum
clique problem on each of the above graph classes independently.

The results are summarized in the following table. Note that the class of 2-sided grounded
L-shapes is known to be a proper subclass of grounded segment graph class [12]. Therefore, our
results do not settle the time complexity question for computing a maximum clique in a grounded
segment graph.

Graph Class Complexity Reference
Grounded 1-bend string graphs APX-hard Section 2
Grounded 2-sided L-shape graphs O

(
n2 log2 n

(log log n)2

)
Section 3

Grounded 2-sided square-L graphs O(n2 log log n) Section 4
Grounded 1-sided L-shape graphs O(n2 log log n) Section 5

2 APX-hardness
In this section we first show that finding a maximum clique in a grounded 1-bend string graph is
an APX-hard problem, even when each string is strictly y-monotone (Theorem 1). We then prove
that the maximum clique problem for grounded 1-bend string graphs remains APX-hard, even
when the bends and end points are restricted to lie on three horizontal lines (Theorem 2).

Theorem 1 The maximum clique problem is APX-hard for grounded 1-bend string graphs, even
when the strings are strictly y-monotone.

Theorem 2 The maximum clique problem is APX-hard for grounded 1-bend string graphs, even
when the bends and end points are restricted to lie on three horizontal lines above the ground line.

We now introduce a few definitions and notation, which will be used to present the NP-hardness
results in the subsequent sections (Sections 2.1–2.2).

A 2-subdivision of a graph is obtained by replacing each edge (u, v) of G with a path (u, d1, d2, v)
of 2 division vertices. Let G be a graph. The complement of G is a graph on the same set of vertices
as that of G and there exists an edge in the complement if and only if the edge does not exist in
G. We denote the complement of G as G. A cubic graph is a graph where every vertex is of degree
three. Thus a cubic graph with n vertices has 3n/2 edges.

Given a 1-bend string, we will refer to its two end points as fixed or free depending on whether
they lie on the ground line or not. Similarly, we call its segments as fixed or free depending on
whether the segment is adjacent to the ground line or not.

2.1 APX-Hardness results for Grounded 1-Bend String Graphs with
y-Monotone Strings

In this section we prove Theorem 1. We first prove that the complement of a 2-subdivision of a
cubic graph admits a strictly y-monotone grounded 1-bend string representation (Lemma 1). We
then show that finding a maximum clique is APX-hard for such string graphs.



558 Keil et al. Maximum Clique in Two-sided L-shape Graph

a

c

b

s2ac

s1ac

s2cd
s1cd

c a b d`1
(a) (b) (c)

c a b d

p = (0, 2)
d

s1cd s1cd
s2cd

s2cd

s1ac
s2cd y = 2

Figure 3: Illustration for the (a) graph G, and (b) the construction of the original strings. (c)
Construction of a grounded 1-bend string representation for G.

Lemma 1 Let H be a cubic graph and let G be a 2-subdivision of H. Then the complement G of
G admits a strictly y-monotone grounded 1-bend string representation and such a representation
can be constructed in polynomial time.

Proof: While constructing the y-monotone grounded 1-bend string representation for G, we will
refer to the strings corresponding to the vertices that originally belong to H as the original strings,
and the other strings as the division strings. The vertices of G that originally belong to H are
called the original vertices and the remaining vertices are division vertices.

Note that the original vertices form a clique in G. Therefore, they must mutually intersect in
the string representation. We now describe the construction for the original strings. We label the
vertices of H from 1 to n. For each vertex i = 1 . . . , n in H, we construct an original string, which
is a straight line segment with end points (i, 0) and (−3ni, 6n + 2). All these lines pass through
the point p = (0, 2). Consequently, we obtain a set of pairwise intersecting strings. Figure 3(a)
illustrates an example of a 2-subdivision of a cubic graph G. Figure 3(b) illustrates the construction
of the original strings for G.

We now describe the construction for the division strings. For each edge of H, G contains a
pair of division vertices. These two division vertices must not be adjacent in G, but they must
be adjacent to all the other division vertices in G. Moreover, each division vertex in G must be
adjacent to all the original vertices except for the one original vertex that is adjacent to it in G.
We construct the division strings such that they satisfy these properties, e.g., the blue and red
strings in Figure 3(c). The idea is to create pairs of non-intersecting strings such that these pairs
mutually intersect and the two strings in each pair intersect the necessary original strings. The
detailed construction is as follows.

Let ℓ1 be the vertical segment that starts at (−3n2 − 1, 6n + 2) and hits the ground line.
Figure 3(b) illustrates ℓ1 with a dotted line for the construction being carried out for the example
graph of Figure 3(a). There are at least 6n horizontal lines through integral coordinates between
y = 3 and y = 6n + 6. This number is larger than 3n, i.e., the number of division vertices in G.
We use these lines to create the division strings.

We number the edges of H from 1 to (3n/2). Let (c, d) be the jth edge in H and let s1
cd, s2

cd be
the corresponding division vertices in G. The vertex s1

cd (resp., s2
cd) is adjacent to all the original

vertices and division vertices of G, except for c (resp., d) and s2
cd (resp., s1

cd). We now construct a
pair of division strings that realize these adjacencies.

Let c and d be the tth and rth vertex of H. Assume without loss of generality that the string
of c appears to the left of the string of d on the ground line. The division string for s1

cd starts
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at the ground line, makes a bend at ℓ1, and then intersects all the original strings that lie to
the left of the string for c. In particular, the string starts at (t − 1

j , 0), makes a right turn at
q = (−3n2 − 1, 6n − j + 3) following the line y = (6n − j + 3), and stops as soon as it intersects
all the strings that appear before the string of c on this line. The division string for s2

cd starts at
w = (r− 1

j , 0), makes a right turn at the intersection point of the lines qw and y = (6n−j +2), and
continues until it intersects all the strings that appear before the string of d. Figure 3(c) illustrates
the construction of the division strings for the complement of the example graph in Figure 3(a),
where (c, d) is labelled as the first edge, (a, c) is labelled as the second edge, and so on.

We now verify whether the division strings satisfy the necessary adjacencies in G. We again
consider the jth edge (c, d) of H. We first examine whether its corresponding division vertices
in G are adjacent to the appropriate set of original vertices in G. Since the permutation of the
original strings on the ground line is opposite to the permutation on the line y = 6n + 2, it is
straightforward to verify that the string for s1

cd intersects all the original strings except the one for
c. Similarly, the string for s2

cd intersects all the original strings except the one for d.
We now examine whether s1

cd and s2
cd are adjacent to the appropriate set of division vertices in

G. By construction, the strings of s1
cd and s2

cd are disjoint. Therefore, it suffices to check whether
they intersect all the previously added division strings. Let z be a division string which is added
prior to the strings of s1

cd and s2
cd. By construction, the line determined by the fixed segment of

z intersects the required original strings below the line y = 2 and keeps the bend points of s1
cd

and s2
cd to its left half-plane. Since the free segments of s1

cd and s2
cd lie above y = 2 and reach the

original strings, they both intersect the fixed segment of z. This completes the grounded string
representation for G.

Since the coordinates explicitly described above are polynomial in n, the intersection of the line
segments required to carry out the construction also have coordinates of polynomial number of
bits. Hence one can compute the string representation in polynomial time. Note that the strings
that we computed are y-monotone. To make the strings strictly y-monotone, one can carry out
the same construction for division strings with a set of slanted parallel lines of small positive slope
for the free segments of the division strings, instead of horizontal ones. Note that all the original
strings in our construction pass through a common point. However, one can perturb the free end
points of the original strings to construct a representation where no three strings intersect at a
common point. □

We are now ready to prove Theorem 1.

Proof of Theorem 1: We reduce the maximum independent set problem in 2-subdivisions of
cubic graphs, which is known to be APX-hard [8]. Let G be a 2-subdivision of a cubic graph
H. We compute the complement graph G. By Lemma 1, G admits a grounded 1-bend string
representation with strictly y-monotone string.

Note that an independent set in a graph corresponds to a clique in its complement, and vice
versa. Therefore, the existence of a (1 − ε)-approximation algorithm for the maximum clique in G
implies a (1 − ε)-approximation algorithm for the maximum independent set in H. □

2.2 APX-Hardness Results for Grounded 1-Bend String Graphs on a
Few Lines

In this section we prove Theorem 2.
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Proof of Theorem 2: The proof structure is the same as the proof of Theorem 1 except that
we slightly modify the construction presented at Lemma 1 in the previous section such that the
bends and end points of the strings lie on at most three lines above the ground line. In particular,
we show that G admits a grounded 1-bend string representation where the bends and end points
are restricted to lie on three horizontal lines above the ground line.

We define three horizontal lines ℓ1, ℓ2, ℓ3 above the ground line with increasing heights, as
illustrated in Figure 4. We omit the coordinate details for this construction. It is straightforward
to use a very similar approach as in Lemma 1 to compute the representation with coordinates of
polynomial number of bits.

We create the original strings such that bend-points and free end points lie on ℓ2 and ℓ1,
respectively. We also ensure that the order of the free end points on ℓ1 is opposite to the order of
the fixed end points. Therefore, the original strings mutually intersect, which is consistent to the
property that the original vertices of G are mutually adjacent in G.

We now construct the division vertices. Consider the jth edge (c, d) of H. The division vertices
s1

cd and s2
cd of G, that correspond to the same edge in the cubic graph H must be non-adjacent in

H. However, they are adjacent to all other division vertices. Furthermore, s1
cd and s2

cd are adjacent
to all the original vertices except c and d, respectively.

Let q be a point to the right of all the free end points of the original strings on ℓ1. A pair of
division strings start at the ground line near their corresponding original strings (as in our earlier
construction), but their bends are placed on ℓ2 and ℓ3 such that the strings remain disjoint. We
also ensure that fixed segments of these strings lie to the right of q. Consider now a division string
z that starts at the ground line and reaches ℓ2 or ℓ3. If only a subset of the required intersections
is realized at its fixed segment, then the free segment is created by connecting the bend-point to
an appropriate point q′ to the left of q on ℓ1. If all the required intersections are realized at its
fixed segment, then we create the free segment by connecting q and its bend-point. Since the
permutation of the fixed end points of the original strings is the reverse of the permutation of their
free end points, such a point q′ must exist.

c a b d

q

sac scd

`2

`1

`3

Figure 4: Construction of a grounded string representation for G on three lines.

The division vertices are created in pairs and their bend-points are placed to the right of all the
previously created bend-points, as illustrated using the vertical stripes in Figure 4. Note that every
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newly created string z needs to reach either q or to a point to the left of q on ℓ1. Therefore, we
can choose the new bend-point of z sufficiently far apart such that its free segment crosses all the
previously added division strings at their fixed segments. This completes the required construction
for G.

The proof now follows from the observation that the existence of an (1 − ε)-approximation
algorithm A for the maximum clique problem in G implies an (1 − ε)-approximation algorithm for
the maximum independent set problem for G. □

3 Two-sided L-shapes
In this section we consider the case when the grounded strings are two-sided L-shapes. For sim-
plicity, we first describe a dynamic program to compute a maximum clique on this class of graphs
(Section 3.1), and give an O(n3)-time algorithm to compute a maximum clique. We then improve
the running time to O(( n log n

log log n )2) in (Section 3.2).

3.1 Computing a Clique in O(n3) time
Let G be an intersection graph of two-sided L-shapes, and let Q be a maximum clique with at
least two vertices in G. Let a and b be the highest and second-highest L-shape in Q, respectively,
and without loss of generality assume that a appears to the left of b on the ground line (Figure 5).
Then any other L-shape c in Q must be below the line ℓ determined by the horizontal segment of
b. Furthermore, since c intersects both a and b, its end point on the ground line must be to the left
of a or to the right of b. In other words, the interval [a, b] on the ground line acts as a forbidden
interval for the other vertices in the clique.

If c is the next highest L-shape after b in Q, then depending on whether it lies to the left or
right of the interval [a, b], the forbidden region for the remaining vertices in Q grows to either [c, b]
or [a, c]. Without loss of generality assume that c lies to the right of b, and the new forbidden
region is [a, c]. Then an L-shape intersecting c and a must also intersect b, where b already belongs
to Q. One can thus continue adding a new L-shape that intersect the L-shapes representing the
current forbidden interval, without worrying about the L-shapes which have been chosen already.
We use this idea to design the dynamic programming algorithm.

If G does not contain any edge, then the maximum clique size is 1. Otherwise, let D(a, b)
denote a maximum clique, where a, b, or b, a are the first and second highest L-shapes, and a lies
to the left of b. Let c be an L-shape that intersects the vertical segments of a and b, and for an
L-shape w, let wx be its x-coordinate on the ground line. Then D(a, b) is defined as follows.

D(a, b) =


2, if c doesn’t exist ,

max


max

cx<ax

{D(c, b)} + 1

max
cx>bx

{D(a, c)} + 1, otherwise.

We take the maximum over all pairs of L-shapes a, b in the input. We can use a 2-dimensional
table T (a, b) to store the solution of D(a, b). The size of the dynamic programming table is O(n2),
where n is the number of L-shapes. Computing each entry of the table requires O(n) table look-up.
Therefore, it is straightforward to compute the maximum clique in O(n3) time.
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cba

Figure 5: Illustration for the dynamic programming for two-sided L-shapes. The clique Q is shown
in black.

3.2 Computing a Clique in O(( n log n
log log n

)2) time

We now show how the implementation of the dynamic programming algorithm can be done faster
by using the range maxima data structure. We first describe the data structure in Section 3.2.1
and then describe the details of the implementation of the dynamic program in Section 3.2.2.

3.2.1 Data Structure for Range Maxima Queries

Let P be a set of points in R2, where each point is assigned a positive weight. An orthogonal range
maxima query on P receives an axis-aligned rectangle and returns a point with the maximum
weight within the given rectangle. We assume that points are in rank space, i.e., each coordinate
of a point is replaced by its rank in the set of corresponding coordinates.

For small point sets in a rank space, Nekrich [20] described a data structure that supports
queries and weight updates in O(1) time, as stated in the following lemma. Here we briefly outline
the idea. Since the points are in rank space, the coordinates and weights can be represented
using log n bits. Therefore, a set of t = log n

6 log log n weighted points can be described in a bit string
of length 3t log log n = 1

2 log n bits. Hence the solution to all possible O(log2 n) queries for all
possible sets that can arise from at most t points can be precomputed and stored in a table of size
O(2 1

2 log n log2 n) ∈ O(
√

n log2 n). Hence a query can be answered in constant time, and a weight
update can be done in constant time by maintaining a pointer that keeps track of the set that
represents the current set of points. Nekrich [20] showed how this idea can be leveraged to process
a set of O(log2ε n) points, where 0 < ε < 1, using a ‘grid approach’ [1, 7].

Lemma 2 (Nekrich [20]) If a point set P contains O(log2ε n) points, where 0 < ε < 1, and
coordinates and weights of all points are bounded by O(log n), then we can support range maxima
queries under weight updates on P in O(1) time. The data structure uses a universal look-up table
of size o(n).

For the general point set, we modify the range tree data structure to obtain an O(( log n
log log n )2)

time query and weight update. A range tree on a set of points in R2 is a balanced binary search
tree on one coordinate of the points, where each node u stores a balanced binary search tree on
the other coordinate over the points that are stored at the leaves of the subtree rooted at u.
Consequently, a range tree consists of a first-level tree and a set of second-level trees stored at the
nodes of the first-level tree. We assume the readers are familiar to the range tree data structure
and refer to [10] for the detailed construction and properties of a range tree. We will leverage a
generalization of the range tree data structure [20] that uses search trees of higher degree.
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Figure 6: Illustration for the search paths in a balanced search tree of degree 3. The candidate
nodes are shown in red squares.

Lemma 3 Let P be a set of n points with all the coordinates and weights bounded by O(n). Then
there exists a data structure that supports range maxima queries and weight updates on P in
O(( log n

log log n )2) time.

Proof: We construct a range tree using balanced search trees of degree logε n, where 0 < ε ≤ 1/2.
By Ty we denote the first-level tree which is constructed using y-coordinates. For a node w in Ty,
we use T w

x to denote the second-level tree stored at w.
A query (or an update) finds two search paths in Ty and thus O( log n

log log n ) nodes in Ty. At each
such node w, we need to query T w

x to identify O( log n
log log n ) nodes on the search paths in T w

x . Hence
we now have O(( log n

log log n )2) candidate nodes in the second-level trees.
There are O( log n

log log n ) nodes in a search path, and each node may have O(logε n) children that
contain points with correct coordinates. We refer to these children as candidate nodes (Figure 6).
Therefore, if we simply store the maximum weight of a subtree at the root of the subtree, then to
answer a query we need to take the maximum over all the O(( log1+ε n

log log n )2) candidate nodes in the
second-level trees. To obtain an upper bound of O(( log n

log log n )2) for query (or update) time, for each
node w that belongs to a search path in Ty we find the search paths in the second-level tree T w

x

and query each node on the search path of the second-level tree in O(1) time. The goal here is to
leverage the data structure of Lemma 2, which requires the point coordinates to be bounded by
O(log n) and the point set size to be bounded by O(log2ε n). To satisfy this property at each node
of the second-level tree, we take the following two steps at the time we construct T w

x .
First, at each second-level tree T w

x , we modify the y-coordinates of the points so that they
are bounded by O(logε n). To achieve this, for each point p, we find the child of w that stores
p. If p is stored at the jth child of w, then we replace the y-coordinate of p with j. Since the
degree is bounded by O(logε n), the y-coordinates of the points of the second-level trees are now
bounded by O(logε n). Second, at each node u of T w

x , we select for each child of u, the points with
the maximum weight for each y-coordinate. Since there are O(logε n) distinct y-coordinates and
O(logε n) children, the number of points that we select is O(log2ε n). Note that the y-coordinates
of these points are already bounded by O(log n). We map the x-coordinate of each selected point q
to the index of the child of u that stores q. Hence the x-coordinates become bounded by O(logε n).
Since there are at most O(log2ε n) points, the weight can be reduced to a rank space. Since ε ≤ 1/2,
the rank is bounded by O(log n). Since the number of selected points is O(log2ε n) and the point
coordinates are bounded by O(log n), we can store these points in a data structure of Lemma 2.

For each of the O(( log n
log log n )2) queries at the second-level trees, we can now use the data structure

of Lemma 2. Similarly, when the weight of a point p needs to be updated, we consider the
O(( log n

log log n )2) candidate nodes in the second level tree and for each node, pass the point coordinates
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and weight information in the rank space to the data structure of Lemma 2 stored in the node.
Hence the overall running time becomes O(( log n

log log n )2). □

3.2.2 Implementation of the Dynamic Program

We now describe the implementation of the dynamic program using the data structure of Lemma 3.
A straightforward implementation of the data structure takes O(n2) time. Assume that we are
computing an entry D(a, b) where a and b are the first and second highest L-shapes, respectively.
For each L-shape v, we maintain a data structure Sv that maintains a set of weighted points as
follows. Each point p ∈ Sv corresponds to an L-shape w that intersects v. The x and y-coordinates
of p are the x and y-coordinates of the bend point of w, and the weight of p is the solution of
D(v, w) or D(w, v) depending on whether v precedes w on the ground line.

Let r and r′ be two points on the ground line such that all the fixed ends of the L-shapes
are between r and r′. To compute D(a, b), it now suffices to compute two range maxima queries
(Figure 5), as follows. One range is defined by the vertical segment of b, the horizontal line
determined by the highest point of b, the ground line, and the vertical line through r′. The other
range is defined by the vertical segment of a, the horizontal line determined by the highest point
of b, the ground line, and the vertical line through r.

Since a range maxima query takes O(( log n
log log n )2) time (Lemma 3), the dynamic programming

table can be filled in O(n2( log n
log log n )2) time. The following theorem summarizes the result of this

section.

Theorem 3 Given a set of n grounded two-sided L-shapes, one can compute a maximum clique
in the corresponding intersection graph in O(( n log n

log log n )2) time.

4 Two-sided Square L-shapes
In this section, we consider two-sided square L-shapes, and give an O(n2 log log n)-time algorithm
to compute a maximum clique. We assume the L-shapes are in general position.

Lx1

h

ba cba c

Lx2

(a) (b)
a b c d

b

ac
d

a b c d

adcb

(c) (d)

Lx1 Lx2

σ =

σ′ =

Figure 7: (a) A maximum clique in a two-sided square L-shape representation. (b) Illustration
for the properties of the clique. (c)–(d) Construction of the permutation graph.

We first discuss some geometric properties of a maximum clique, which will help us to design
the dynamic programming (Figure 7). Let a be the lowest L-shape of a maximum clique Q. Then
all other L-shapes must intersect the horizontal segment h of a. Let Lx1 and Lx2 be vertical lines
through the left and right end points of h. We now have the following observation.

Lemma 4 Every square L-shape that intersects h, must intersect Lx1 or Lx2 .
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Proof: Suppose for a contradiction that b is an L-shape that intersects h but does not intersect
Lx1 or Lx2 . Then the length of the horizontal segment of b is at most the length of h. Thus the
maximum length for the vertical segment of b is also bounded by the length of h. Since the bend-
point of b is above h, the vertical segment of b cannot reach the ground line, which contradicts
that b is a grounded square L-shape. □

Let R be the region above h, bounded by Lx1 and Lx2 . Let H be the intersection graph induced
by the L-shapes intersecting h. In the following we show that H is a permutation graph. Here a
permutation graph is an intersection graph of straight line segments where the line segments are
drawn between a pair of parallel lines, i.e., all the top end points of these segments lie on one line
and the bottom end points lie on the other.

Lemma 5 The graph H is a permutation graph.

Proof: Let σ be the labels of the L-shapes that intersect h in left to right order, and let σ′ be
the labels of these L-shapes in the clockwise order of their intersection points on the boundary
of R excluding h. Let H ′ be the permutation graph determined by the orderings σ and σ′ on
two parallel lines, as illustrated in Figure 7(c)–(d). It now suffices to prove that two vertices are
adjacent in H (i.e., the corresponding L-shapes intersect) if and only if they are adjacent in H ′

(i.e., the corresponding line segments intersect).
Let a and b be two L-shapes that intersect in the square-L representation of H. If they both

intersect Lx1 (resp., Lx2), then their ordering in σ is different from that of σ′. If one intersects Lx1

and the other intersects Lx2 , then again, their ordering in σ is different from that of σ′. Thus in
both cases, the corresponding vertices in H ′ must be adjacent, i.e., the line segments must intersect
in the permutation graph representation of H ′.

Consider now the case when the L-shapes a and b do not intersect. If they both intersect Lx1

(resp., Lx2), then one L-shape must ‘nest’ the other and thus their ordering would be the same in σ
and σ′. If one L-shape intersects Lx1 and the other intersects Lx2 , then the one that intersects Lx1

must appear to the left of the other on the ground line. Therefore, in both cases, the corresponding
vertices in H ′ cannot be adjacent, i.e., the line segments cannot intersect in the permutation graph
representation of H ′. □

We precompute a permutation representation of the permutation graph for every L-shape. A
maximum clique in a permutation graph corresponding to an L-shape determines a maximum
clique containing that L-shape. Since a maximum clique in a permutation graph can be obtained
in O(n log log n) time [25], we can find the maximum clique containing an L-shape in the same
time.

Finally, we iterate the above process over all L-shapes to find the maximum clique. Let S be
the input L-shapes. It is straightforward to precompute the permutation representation of the
permutation graph for every L shape in O(n2) time in total by first computing the sorted orders
of the vertical segments and horizontal segments of the L-shapes, and then for each segment a,
computing the L-shapes that intersects h, Lx1 and Lx2 in sorted order. Hence the time complexity
for computing maximum clique is O(n2) +

∑
q∈S O(n log log n) ∈ O(n2 log log n), where S is the

set of L-shapes in the input.
The following theorem summarizes the result of this section.

Theorem 4 Given a set of n grounded two-sided square L-shapes, one can find the maximum
clique of the corresponding intersection graph in O(n2 log log n) time.
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5 One-sided L-shapes

In this section, we consider 1-sided L-shapes, and give an O(n2 log log n)-time algorithm to compute
a maximum clique. We assume the L-shapes are in general position. We noticed that Chmel [9]
has independently discovered this result at the same time the conference version of this paper was
accepted. Chmel mentioned an O(n2 log n) time complexity. While the algorithm is the same as
ours, in our analysis we use an improved subroutine for computing a maximum clique in a restricted
class of graphs [25] to obtain a faster overall running time.

cd ab

Figure 8: Illustration for the dynamic programming for 1-sided L-shapes. The clique Q is shown
in black.

Let S be the set of L-shapes in the input and let Q be a maximum clique. Let a be the highest
L-shape in Q. Then all the other L-shapes in Q must intersect the vertical segment of a (Figure 8).
There may also exist L-shapes (e.g., b) that do intersect the vertical segment of a but do not belong
to Q.

Let D(S′) be the maximum clique in the intersection graph of the set S′ ⊆ S. For any L-shape
q ∈ S, let N(q) be the subset of S such that every L-shape in N(q) intersects the vertical segment
of q. Then D(S) can be defined as follows.

D(S) = max
q∈S

(D(N(q)) + 1)

To compute the maximum clique efficiently, we do some preprocessing. We first compute the
adjacency list of the intersection graph G of S in O(n2) time. We then compute a sorted list Sx

consisting of the fixed end points (on the grounded line) of all the L-shapes. We next compute
another sorted list Sh of the heights of the L-shapes (Figure 9). Both these lists can be computed
in O(n log n) time. Hence the total preprocessing takes O(n2) + O(n log n) ∈ O(n2) time.

For each q ∈ S, we now compute the maximum clique in N(q). First note that N(q) corresponds
to a permutation graph, where the edges are determined by the intersection of the L-shapes in
N(q). We first find two ordered lists for the L-shapes of N(q), one list corresponds to the order
they appear on the ground line, and the other list corresponds to the order they appear on the
vertical segment of q. We then use an O(n log log n)-time algorithm [25] for computing a maximum
clique in a permutation graph to compute the maximum clique in N(q).

To list the L-shapes of N(q) in the order they appear on the ground line, we scan Sx from left
to right and create a new ordered list S′

x with the L-shapes that intersect the vertical segment
of q. We then scan Sh and create a new ordered list S′

h that contains the L-shapes intersecting
the vertical segment of q. Constructing S′

x and S′
h takes O(n) time. Hence computing N(q) and

finding a maximum clique in N(q) takes O(n) + O(n log log n) time. Thus the total running time
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Figure 9: Illustration for Sx and Sh.

is ∑
q∈S

O(n) + O(n log log n) ∈ O(n2 log log n).

The following theorem summarizes the result of this section.

Theorem 5 Given a set of n grounded 1-sided L-shapes, one can find the maximum clique of the
corresponding intersection graph in O(n2 log log n) time.

6 Separation Between Graph Classes
In this section we show that there exist graphs that can be represented with 2-sided square L-
shapes, but not with grounded 1-sided L-shapes (Theorem 6). Furthermore, there exist graphs
that can be represented with grounded 2-sided L-shapes but not with grounded 2-sided square
L-shapes (Theorem 7).

Theorem 6 There is a graph G which admits an intersection graph representation with 2-sided
grounded square L-shapes but not with 1-sided grounded L-shapes.

Proof: Jelínek and Töpfer [12] showed that there exists a graph G that can be represented using
grounded 2-sided L-shapes but not with grounded 1-sided L-shapes. It thus suffices to show that
G admits an intersection representation with grounded 2-sided square L-shapes.

Figure 10(a) shows an intersection graph representation of G with grounded 2-sided L-shapes.
The L-shapes can be partitioned into five groups as follows:

Group 1: Four L-shapes x1, x2, x3, x4 with edges (x1, x4), (x1, x2), (x2, x3).
Group 2: Four L-shapes x5, x6, x7, x8 with edges (x5, x8), (x7, x8), (x6, x7).
Group 3: Four L-shapes x9, x10, x11, x12 similar to Group 1.
Group 4: Four L-shapes x13, x14, x15, x16 similar to Group 2.
Group 5: A cycle y1, . . . , y80 with xi intersecting the L-shape corresponding to y5i.
The L-shapes corresponding to Group 1 and 3 are shown in blue. The L-shapes corresponding

to Group 2 and 4 are shown in red. The L-shapes corresponding to the cycle are shown in black.
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Figure 10(b) and (c) illustrate a representation of Group 1 and Group 2 with square L-shapes
and their associated L-shapes on the cycle. We can scale up and patch the representation of Group
2 with that of Group 1 such that the rightmost L-shape intersects the leftmost L-shape of Group
2. We can thus extend the drawing to integrate the Groups 3 and 4. A schematic representation of
this configuration is illustrated in Figure 10(d). The first and the last L-shapes on the cycle (i.e., y1
and y2) only intersect the leftmost and rightmost of these configuration. Hence it is straightforward
to add them to the configuration completing the square L-shape representation of G. □

We now prove that there exists a 2-sided grounded L-shape graph that is not a 2-sided grounded
square-L graph. We first provide a remark that would help to present this result.

Remark 1 Let p, q, r be three grounded square-L shapes in this left to right order on the ground
line. Then the following two properties hold.

A. If r is lower than p and both turn clockwise, then q cannot intersect p and r simultaneously.

B. If r turns clockwise and p turns anticlockwise, then q cannot intersect p and r simultaneously.

Theorem 7 There exists a graph G that admits an intersection graph representation with 2-sided
grounded L-shapes but not with 2-sided grounded square L-shapes.

Proof: We will use the wheel graph G of 6 vertices to prove this theorem (Figure 11(a)). G has
an intersection representation with 2-sided grounded L-shapes [3]. Suppose for a contradiction
that G admits an intersection representation R with grounded 2-sided square L-shapes. Consider
now a representation R′ of the 5-cycle C = (a, b, c, d, e) in R. We now examine the first and last
L-shapes of R′, and examine two cases depending on whether they are adjacent on the 5-cycle.
Case 1 (The first and last L-shapes in R′ are adjacent in C): Without loss of generality
assume that a and e are the leftmost and rightmost L-shapes, and a is taller than e. Since e is
adjacent to a but not to b, b must be lower than e. Since b is adjacent to a, it must be of type

L

.
We now consider two subcases depending on c’s position on the ground line.

Case 1.1 (c is lies to the right of b): Since c is adjacent to b, it must be of type

L

. Since d needs
to intersect c and e, d must lie to the left of c on the ground line. Since d must not intersect b it
needs to lie to the right of b. Hence a, b, c, d and e have unique x-coordinate order on the ground
line, as illustrated in Figure 11(b).

We now need to add the vertex x.
If we put x between a and b, then to intersect both a and e, it must be higher than e. First

assume that the vertical segment of d intersects e. If a is of type Γ, then d must be of type Γ and
thus d must be lower than a. By Remark 1 property A, x would fail to intersect both a and d
simultaneously. If a is of type

L

and d is of type Γ, then by Remark 1 property B, x would fail to
intersect both a and d simultaneously. If a and d are both of type

L

, then a must be lower than d
and by Remark 1 property A, x would fail to intersect both a and d simultaneously. Assume now
that the horizontal segment of d intersects e. In this scenario, d is lower than a and is of type Γ.
Hence, by Remark 1, x fails to intersect both a and d simultaneously.

If we put x between b and e, then by Remark 1 property A, x cannot intersect both b and e
simultaneously.

Therefore, x either lies to the right of e or to the left of a. Consider first that x lies to the left
of a. Since c does not intersect a and e, it is inside the region bounded by a and e. Hence x must
be lower than c and intersect the vertical segment of c. But then x would need to lie to the right of
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a. Consider now the case when x lies to the right of e. In this case the height of x must be smaller
than that of c. Since c does not intersect a, in the square representation x will fail to intersect a.

Case 1.2 (c is lies to the left of b): Similar to Case 1.2, this case also results in a unique
x-coordinate ordering for the L-shapes on the 5-cycle. If c is of type

L

, then to intersect b it has
to be higher than b. But then c would also intersect a. Since c is not adjacent to a, c must be of
type Γ. Since d is not adjacent to b, it must be between b and e. Furthermore, d must be of type
Γ to intersect c and e simultaneously. Figure 11(c) illustrates this scenario.

If x lies to the left of c, then the height of x must be smaller than c. Since c does not intersect
e, x will also fail to intersect e.

If x lies between c and d, then first assume that the vertical segment of d intersects e. If a is
of type Γ, then d must be of type Γ and thus d must be lower than a. By Remark 1 property A,
x would fail to intersect both a and d simultaneously. If a is of type

L

and d is of type Γ, then by
Remark 1 property B, x would fail to intersect both a and d simultaneously. If a and d are both
of type

L

, then a must be lower than d and by Remark 1 property A, x would fail to intersect
both a and d simultaneously. Assume now that the horizontal segment of d intersects e. In this
scenario, d is lower than a and is of type Γ. Hence, by Remark 1, x fails to intersect both a and d
simultaneously.

If x lies to the right of d, then to intersect both b and e, x must lie also to the right of e. In
this case the height of x must be smaller than c. Hence x will fail to intersect a.
Case 2 (The first and last L-shapes in R′ are not adjacent in C): Without loss of generality
assume that a and c are the first and last L-shapes, and a is taller than c.

If a and c are both of type Γ, then since b appears between them, by Remark 1 property A, b
cannot intersect both a and c simultaneously.

If a is of type
L

and c is of type Γ, then by Remark 1 property B, b cannot intersect both a and
c simultaneously.

We now consider the scenario when c is of type

L

. If b intersects the vertical segment of c, then
b would be lower than c, and thus b would be lower than a. Therefore, b would fail to intersect
a. We may thus assume that b must intersect the horizontal segment of c. We now consider two
cases depending on whether the vertical or horizontal segment of b intersects a.

Case 2.1 (The horizontal segment of b intersects a): If d lies to the left of b, then it would lie
in the region bounded by b and intersect the horizontal segment of c. This situation is illustrated
in Figure 12(a). To intersect d and a simultaneously, e must lie to the left of d. We now consider
the placement of x. If x lies to the right of d, then to intersect d, it must be lower than d. Since d
does not intersect a, x would fail to intersect a. If x lies to the left of d and intersects the vertical
segment of c, then x will be lower than c and nested inside c, and hence, would fail to intersect e.
Therefore, the only remaining option for x is to lie to the left of d and to intersect the horizontal
segment of c. Since the horizontal segment of b intersects a, b is of type

L

. Since e intersects a but
not b, e is of type

L

. Therefore, by Remark 1 property A, x cannot intersect b and e simultaneously.
Consider now the scenario when d lies to the right of b. Since e needs to intersect a, but to

avoid b and c, its bend must be in the region bounded by a and b. Since d lies to the right of b, to
avoid the intersection with b, d must be higher than b. Therefore, d fails to intersect e.

Case 2.2 (The vertical segment of b intersects a): Recall that we have already argued b to
intersect the horizontal segment of c. This scenario is illustrated in Figure 12(b).

If d lies to the left of b, then to avoid the intersection with a and b, d must lie in the region
bounded by a and b. To intersect d and a simultaneously, e must lie to the left of d. We now
consider the placement of x. If x lies to the right of d, then to intersect d, it must be lower than d.
Since d does not intersect a, x would fail to intersect a. If x lies to the left of d and intersects the
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vertical segment of c, then x will be nested inside c and would fail to intersect e. Therefore, the
only feasible option for x is to lie to the left of d and to intersect the horizontal segment of c, x must
lie to the right of e. If x intersects the vertical segment of a, then it fails to intersect b. Therefore, x
must be higher than a. We now show that x cannot intersect e and b simultaneously. First consider
the scenario when b is of type

L

. Since e lies between a and b, to avoid an intersection with b, e
must be lower than b. Hence by Remark 1 property A, x fails to intersect e and b simultaneously.
Consider now the scenario when b is of type Γ. If e intersects the vertical segment of a, then by
Remark 1 property B, x fails to intersect e and b simultaneously. If e intersects the horizontal
segment of a, then to avoid an intersection with b, e can either be of type

L

, or be of type Γ with
a height larger than b. Hence by Remark 1, x fails to intersect e and b simultaneously.

Consider now the scenario when d lies to the right of b (Figure 12(c)). If e lies to the left of b
and b is of type

L

, then to avoid the intersection with b, e must be lower than b. Hence e would
fail to intersect d. Consider now the scenario when e lies to the left of b and b is of type Γ. Since
b must intersect c (while c is to the right of d and d does not intersect b), d must be lower than b.
Hence e fails to intersect d. Finally, consider the scenario when e lies to the right of b. Since c is
the rightmost L-shape, e must be to the left of c. Furthermore, e must be lower than c to avoid
any intersection with b and c. Since a is taller than c, e fails to intersect a. □

7 Conclusion
In this paper we examined the maximum clique problem for grounded 1-bend string graphs. We
showed the problem to be APX-hard for y-monotone strings. We also showed that the problem
remains APX-hard when we relax monotonicity, but restrict the bends and free end points of the
strings to lie on three horizontal lines. The most intriguing open problem in this context is to
settle the time complexity for grounded segment graphs.

Open Problem 1: Does there exist a polynomial-time algorithm to compute a maximum clique
in grounded segment graphs?

There are also various questions worth investigating for grounded 1-bend strings where the
bends and end points lie on a few lines. If we allow only one horizontal line, then the resulting
strings become grounded segments and the corresponding intersection graph is a permutation
graph, where one can find a maximum clique in polynomial time. For a fixed number of lines
the problem is polynomial-time solvable for segments [18]. Therefore, it would be interesting to
examine whether the problem becomes polynomial-time solvable for two horizontal lines, where we
can explore 1-bend strings. We think such restriction on the number of lines would be non-trivial
even for strictly y-monotone 1-bend strings.

Open Problem 2: Does there exist a polynomial-time algorithm to compute a maximum clique
in grounded 1-bend string graphs when the bends and end points are restricted to lie on two
horizontal lines above the ground line?

We developed polynomial-time algorithms to find maximum clique for various types of L-shapes.
A natural question is whether the running times of these algorithms can be improved. It would
also be interesting to find non-trivial lower bounds on the time complexity.

Open Problem 3: Does there exist a subquadratic-time algorithm to compute a maximum clique
in grounded 1-sided or 2-sided L-shape graphs?
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We examined the inclusion relations among various types of grounded L-shape graphs. However,
the inclusion relations between grounded L-shape graphs and grounded 1-bend string graphs (i.e.,
non-axis aligned setting) are not well understood.

Open Problem 4: Find a tight function f(n) such that every grounded 2-sided L-shape graph
with n vertices can be drawn as an intersection graph of grounded 1-bend strings with the bends
and end points on at most f(n) horizontal lines.
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Figure 10: (a) An intersection graph G of grounded 2-sided L-shapes that cannot be represented
with 1-sided L-shapes. (b)–(c) Illustration for an intersection representation of G with grounded
2-sided square L-shapes. (e) A zoomed in view of the L-shapes of figure (b).
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Figure 11: (a) A wheel graph. Illustration for (b) Case 1.1 (c) and Case 1.2.
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Figure 12: Illustration for (a) Case 2.1, and (b)–(c) Case 2.2.
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