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Abstract. Flat origami studies straight line, planar graphs C = (V,E) drawn on a
region R ⊂ R2 that can act as crease patterns to map, or fold, R into R2 in a way that
is continuous and a piecewise isometry exactly on the faces of C. Associated with such
crease pattern graphs are valid mountain-valley (MV) assignments µ : E → {−1, 1},
indicating which creases can be mountains (convex) or valleys (concave) to allow R to
physically fold flat without self-intersecting. In this paper, we initiate the first study of
how valid MV assignments of single-vertex crease patterns are related to one another
via face-flips, a concept that emerged from applications of origami in engineering and
physics, where flipping a face F means switching the MV parity of all creases of C that
border F . Specifically, we study the origami flip graph OFG(C), whose vertices are all
valid MV assignments of C and edges connect assignments that differ by only one face
flip. We prove that, for the single-vertex crease pattern A2n whose 2n sector angles
around the vertex are all equal, OFG(A2n) contains as subgraphs all other origami flip
graphs of degree-2n flat origami vertex crease patterns. We also prove that OFG(A2n) is
connected and has diameter n by providing two O(n2) algorithms to traverse between
vertices in the graph, and we enumerate the vertices, edges, and degree sequence of
OFG(A2n). We conclude with open questions on the surprising complexity found in
origami flip graphs of this type.

This work was supported by NSF grants DMS-1851842 and DMS-1906202.

E-mail addresses: thull@wne.edu (Thomas C. Hull) mamora22@asu.edu (Manuel Morales) sarah.nash18@ncf.edu
(Sarah Nash) nt399@rutgers.edu (Natalya Ter-Saakov)

This work is licensed under the terms of the CC-BY license.

http://dx.doi.org/10.7155/jgaa.00605
https://orcid.org/0000-0002-3215-9767
mailto:thull@wne.edu
mailto:mamora22@asu.edu
mailto:sarah.nash18@ncf.edu
mailto:nt399@rutgers.edu
https://creativecommons.org/licenses/by/4.0/


504 Hull, Morales, Nash, Ter-Saakov Maximal origami flip graphs

1 Introduction

When folding a piece of paper into a flat object, the creases that are made will be straight lines. This
describes flat origami [7], which we formally model with a pair (C,P ), called the crease pattern,
where P is a closed region of the plane (our paper), and the set of creases C = (V (C), E(C)) is a
plane graph on P with straight line segments for the edges. (When the exact shape of the paper
P is not important, we will refer to the crease pattern merely as C.) If there exists a mapping
f : P → R2 that is continuous, non-differentiable along the edges of C, and an isometry on each
face of C, then we say that (C,P ) is locally flat-foldable. Also, folded creases come in two types
when viewing a fixed side of the paper: mountain creases, which fold away in a convex manner,
and valley creases, which are concave. We model this with a function µ : E(C) → {−1, 1}, called a
mountain-valley (MV) assignment for the crease pattern C, where 1 (respectively −1) represents
a mountain (respectively valley) crease. A MV assignment µ is called valid if µ can be used to fold
C into a flat object without the paper intersecting itself.

Capturing mathematically how paper self-intersection works, and how it can be avoided, to
achieve global flat-foldability is difficult. In fact, determining if a crease pattern (C,P ) is globally
flat-foldable is NP-hard [1, 4], even if a specific MV assignment is already given. In the special
case where the crease pattern has only one vertex in the interior of P , called a single-vertex crease
pattern or a flat vertex fold, determining if a MV assignment is valid is not straight-forward [7, 13]
but can be determined in linear time [5]. Indeed, there are many open questions that remain about
enumerating valid MV assignments [8] and understanding their structure [12], even for very simple
crease patterns.

Flat-foldability and valid MV assignments have been of interest to scientists in the study of
origami mechanics and their application in constructing metamaterials [14], even in the case of
single-vertex crease patterns [11]. A concept that has emerged from such applications is that of a
face flip, where a valid MV assignment µ is altered by switching only the mountains and valleys
that surround a chosen face F , denoting the new MV assignment (which may or may not be valid)
by µF . Face flips were first introduced in the literature by VanderWerf [16] and have been utilized
in applications ranging from tuning metamaterials [14] to analyzing the statistical mechanics of
origami tilings [3].

In this paper, we explore the relationships between valid MV assignments of a given crease
pattern C using a tool called the origami flip graph, denoted OFG(C), which is a graph whose
vertices are all valid MV assignments of C and where two vertices µ and ν are connected by an
edge if and only if there exists a face F of C such that flipping F changes µ to ν (and vice-versa,
i.e., ν = µF ). We may view face flips and the paths they generate on OFG(C) as a reconfiguration
setting for some problems in computational origami.

Origami flip graphs were introduced in [2], but only in the context of origami tessellations
(crease patterns that form a tiling of the plane). In the present work, we focus on flat-foldable
crease patterns that have a single vertex in the paper’s interior, called flat vertex folds, with the
additional requirement that the sector angles between the creases are all equal. We denote such a
crease pattern by A2n where 2n is the degree of the vertex. In Section 2, we provide background
on flat origami and show that OFG(A2n) serves as a maximal “superset” graph for flat vertex
folds–if C is any other flat vertex fold of degree 2n, then OFG(C) is a subgraph of OFG(A2n). In
Sections 3 and 4, we prove that OFG(A2n) is connected using two different algorithms for finding
paths in this graph, one of which further proves that the diameter of OFG(A2n) is n. In Section 5
we describe an algorithm for computing the size of OFG(A2n), generating a sequence that was not
originally in the Online Encyclopedia of Integer Sequences, and find a formula for this as well as
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OFG(A6)

Figure 1: The crease patterns (a) A4 and (b) A6 along with their origami flip graphs (for OFG(A6)
only the vertices withM−V = −2 are shown). Each vertex is labeled with the valid MV assignment
to which it corresponds (bold/non-bold means mountain/valley, respectively).

for the degree sequence of OFG(A2n). We conclude with open questions and a discussion of future
work.

2 Background and maximality of OFG(A2n)

Let (A2n, P ) denote the crease pattern that contains only one vertex v in the interior of P , where
v has degree 2n and the angles between consecutive creases around v are all equal (to π/n). We
normally let P be a disc with v at the center. Let e1, . . . , e2n denote the creases in A2n and αi

denote the face between ei and ei+1 (with the indices taken cyclically, so α2n is between e2n and
e1).

A basic result from flat origami theory is Maekawa’s Theorem, which states that, if v is a
vertex in a flat-foldable crease pattern with valid MV assignment µ, then the difference between
the number of mountain and valley creases at v under µ must be two, often denoted by M−V = ±2
[7]. However, in the case of the crease pattern A2n Maekawa’s Theorem is stronger:

Theorem 1 (Maekawa for A2n) A MV assignment µ on A2n is valid if and only if

2n∑
i=1

µ(ei) = ±2.

Theorem 1 is proved in [2, 9], but a summary of the sufficient direction is: Find a pair of
consecutive creases ei, ei+1 in A2n with µ(ei) ̸= µ(ei+1) and fold them (making a “crimp”) to turn
the paper into a cone, on which we now have the crease pattern A2(n−1) and a MV assignment
that still has

∑
µ(e) = ±2. We have two options when forming this cone; it could be convex or

concave, which will be preserved as we repeat this process until there are only two creases left,
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B4

OFG(B4) OFG(C4)

C4

Figure 2: Other flat vertex folds B4 and C4 of degree 4 and their origami flip graphs, viewed as
subgraphs of OFG(A4).

which must both be mountains (if the cone is convex) or both be valleys (if concave). This gives
us a flat folding of the original vertex A2n.

Examples of the origami flip graphs OFG(A4) and OFG(A6) are shown in Figure 1, although
in the latter case only half of the vertices (those whose MV assignment satisfies

∑
µ(e) = −2) are

shown. The vertices in these graphs are labeled with their corresponding valid MV assignment,
where bold creases are mountains and non-bold means valley, a convention we will use throughout
this paper. In [10], it is proved that OFG(C) is bipartite whenever C is a flat-foldable, single-vertex
crease pattern, although we will not be making particular use of that here.

Theorem 1 tells us that any MV assignment of A2n that satisfies M − V = ±2 will be valid.
Therefore, there are 2

(
2n
n−1

)
vertices in OFG(A2n).

We will now show that the origami flip graph of A2n has maximal size over all origami flip
graphs of flat vertex folds of degree 2n, and further that such origami flip graphs are all subgraphs
of OFG(A2n). The idea is that when all the sector angles of a flat vertex fold are equal, the only
requirement for a MV assignment to be valid is that it satisfies Maekawa’s Theorem. If, on the
other hand, the sector angles are not all equal, then other restrictions will apply. For example, if
a flat-foldable, single-vertex crease pattern C has consecutive sector angles αi−1, αi, αi+1 where αi

is strictly smaller than both αi−1 and αi+1, then the creases ei and ei+1 bordering αi must have
different MV parity, so µ(ei) ̸= µ(ei+1) must hold in any valid MV assignment µ of C. (This is
known as the Big-Little-Big Lemma; see [7].) This implies that the faces αi−1 and αi+1 can never
be individually flipped under a valid MV assignment µ, since doing so would make µ(ei) = µ(ei+1).
Other restrictions on when faces in a single-vertex crease pattern can be flipped are detailed in
[10], but since A2n does not have such restrictions, its origami flip graph will have the most edges
possible. Examples of this when 2n = 4 are shown in Figure 2. We formalize and slightly expand
this in the following Theorem.

Theorem 2 Let C be a flat-foldable, single-vertex crease pattern of degree 2n that is not A2n.
Then OFG(C) is isomorphic to at least 2n distinct, labeled subgraphs of OFG(A2n).

Proof: Suppose we have an arbitrary flat vertex fold C with degree 2n, creases c1, . . . , c2n, and
angles βi. Let ν be a valid MV assignment of C. Then, ν also represents a valid MV assignment
for A2n. Specifically, if e1, . . . , e2n are the creases in A2n and we define µ by µ(ei) = ν(ci), then µ
will be a valid MV assignment on A2n by Theorem 1 (since ν must satisfy Maekawa’s Theorem).
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Thus, we have a mapping f between all MV assignments ν of C and some MV assignments
µ of A2n (f(ν) = µ). If {ν, νβi

} is an edge of OFG(C) (where βi is flipped to make this edge),
then {f(ν), f(νβi

)} is an edge of OFG(A2n). That is, ν(ci) = −νβi
(ci) and ν(ci+1) = −νβi

(ci+1)
and ν(c) = νβi(c) for all other creases c of C. The same relationship holds true between f(ν) and
f(νβi). That is, flipping the corresponding face αi (between ei and ei+1 in A2n) in f(ν) will result
in f(νβi

). This can be written as f(ν)αi
= f(νβi

), which implies that {f(ν), f(νβi
)} is an edge of

OFG(A2n). Therefore, OFG(C) is isomorphic to a subgraph of OFG(A2n).
Furthermore, our labeling of the creases ei in A2n was arbitrary, and by the rotational symmetry

of A2n we had 2n different ways we could have done this, resulting in at least 2n distinctly-labeled
copies of OFG(C) (since C ̸= A2n) that may be found in OFG(A2n). □

If µ is a valid MV assignment for a crease pattern C, then we say that a face F of C is flippable
under µ if µF is also a valid MV assignment for C. In what follows, we will make extensive use of
the following Lemma.

Lemma 1 Let µ be a valid MV assignment of A2n. Then a face αk is not flippable under µ if and
only if µ(ek) = µ(ek+1) ̸= (

∑
µ(ei))/2.

Proof: By Theorem 1, µαk
will be an invalid MV assignment if and only if

∑
µαk

(ei) ̸= ±2.
This will only happen if µ(ek) = µ(ek+1) (i.e., the creases that border αk have the same MV
assignment under µ) and this value, µ(ek), is different from the majority of the creases in µ. For
example, if

∑
µ(ei) = 2 and µ(ek) = µ(ek+1) = −1, then

∑
µαk

(ei) = 6, meaning that µαk

violates Theorem 1 and thus is invalid. All other possibilities for µ(ek) and µ(ek+1) preserve the
MV summation invariant and thus allow αk to be flippable under µ. □

We will utilize the following definition in Section 4: given two MV assignments µ and ν of A2n,
let S(µ, ν) denote the set of creases e1, . . . , e2n with µ(ei) ̸= ν(ei). This set is useful because it
provides us with a quantity that is face-flip invariant.

Lemma 2 The parity of |S(µ, ν)| (the size of S(µ, ν)) is invariant under face flips. That is, if µ
and ν are valid MV assignment of A2n, then the |S(µ, ν)| will have the same even/odd parity as
|S(µαi

, ν)| for any face αi of A2n.

Proof: Suppose we flip a face αi of A2n under µ. Then we are changing the MV assignments
of two creases. This will change the size of S(µ, ν) by either 0 (if exactly one of ei and ei+1 is
different between µ and ν) or 2 (if ei and ei+1 are both the same or both different between µ and
ν). Therefore, the parity of |S(µ, ν)| is invariant under face flips. □

3 Connectivity of OFG(A2n)

In this section, we present an algorithm for face-flipping between any two valid MV assignments
µ and ν of A2n. This will prove that OFG(A2n) is connected. In contrast, if C is an arbitrary flat
vertex fold, then OFG(C) is not always connected. We invite the reader to verify that the degree-6
flat vertex fold with sector angles (45◦, 15◦, 60◦, 85◦, 75◦, 80◦) has two disconnected 4-cycles for
its origami flip graph. (Determining the connectivity of OFG(C) for general flat vertex folds C
is quite convoluted and beyond the scope of this paper; see [10] for details.) Note that we will
provide a different algorithm in Section 4 that also proves the connectedness of OFG(A2n), but the
one given here, which we will call the FEA-Shwoop algorithm, is useful for other reasons, such
as in an elegant proof of Lemma 3 below and as a warm-up for what follows.
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Figure 3: An example of a shwoop sequence of face flips that converts µ to ν.

In the algorithm, we start with crease e1. If µ(e1) = ν(e1), then we move on to crease e2. If
µ(e1) ̸= ν(e1), then we would like to flip the face α1, since µα1(e1) = ν(e1), and then continue the
algorithm on crease e2 comparing µα1

with ν.
However, if e1 and e2 have the same MV assignment under µ, then α1 might not be flippable

under µ if it falls under Lemma 1; such a µ and α1 are shown in Figure 3. Since α1 is not flippable,
we move to α2 and check to see if it is flippable under µ. If so, then we flip it, and doing so will
make α1 flippable (since it will no longer satisfy Lemma 1). Then we have µα2,α1(e1) = ν(e1), and
we may proceed with crease e2 comparing µα2,α1

and ν. If α2 is not flippable, then we try to flip
the next face, α3. Eventually we will find some face αi that can be flipped (otherwise µ would
be all mountain or all valley creases and violate Maekawa’s Theorem) and then we can flip the
sequence of faces αi, αi−1, αi−2, . . . , α1. We call this sequence of flipping faces in order to make
µαi,...,α1(e1) = ν(e1) a shwoop, and an example of such a shwoop is shown in Figure 3.

Thus, our algorithm is to start by comparing µ(e1) and ν(e1), flipping α1 or performing a
shwoop to make them agree on e1 if needed, and then moving on to e2, and so on. We call this
algorithm FEA-Shwoop(A2n, µ, ν), and pseudocode for it is shown in Algorithm 1. (FEA stands
for Flipping Equal Angles.)

Theorem 3 The FEA-Shwoop(A2n, µ, ν) algorithm inputs two valid MV assignments for A2n

and outputs a sequence of faces that, when flipped in order, will provide a sequence of valid MV
assignments that start with µ and end with ν.

Proof: As previously described, the algorithm uses single face-flips and shwoops to generate a
sequence of valid MV assignments of A2n that, starting with µ, make the MV parity of creases
e1, e2, e3, . . ., in order, agree with that of ν. We need to prove that (1) finding faces to perform
a shwoop is always possible and (2) that when the algorithm terminates after i = 2n − 1, the
resulting MV assignment will be ν.

Suppose we are at stage i = k in the algorithm where we have valid MV assignments µF and ν
for A2n where F is the sequence of faces we’ve already flipped, µF (ei) = ν(ei) for i = 1, . . . , k− 1,
and µF (ek) ̸= ν(ek).

Then, if αk is flippable under µF , we flip it so that µF∪{αk}(ek) = ν(ek) and move on to
i = k + 1.

If we cannot flip αk under µF , then that means, for example, that µF is majority-mountain
and ek and ek+1 are both valleys under µF . So we look to see if we can flip face αk+1 under µF .
If that’s not possible, then we look at face αk+2, and continue in search of a flippable face αk+j

under µF for some j.
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Algorithm 1: The FEA (Flipping-Equal-Angles) Shwoop algorithm.

FEA-Shwoop(A2n, µ, ν)

Let S = {}, η = µ
for i = 1 to 2n− 1 do

Let m = 0
if η(ei) ̸= ν(ei) then

if face αi of A2n is flippable under η then
Replace η with ηαi

Append αi to S
else

while face αi of A2n is not flippable under η do
Let m = m+ 1, i = i+ 1

Replace η with ηαi

Append αi to S
for j = m to 1 do

Let i = i− 1 // This is the shwoop.

Replace η with ηαi

Append αi to S

Output S

Suppose we get all the way to α2n−1 without finding a flippable face under µF . That means
that µF = ν on creases e1, . . . , ek−1 and, assuming µF is majority-mountain, that µF = −1 (valley
creases) on ek, . . . , e2n (since face α2n−1 borders the creases e2n−1 and e2n). Since µF is a valid
MV assignment, this means that ν must also be all valleys on ek, . . . , e2n, for if it were anything
else, then ν would have fewer valley creases than µF and thus violate Maekawa’s Theorem. This
contradicts our assumption that µF and ν disagreed on crease ek, and so our supposition is false.

Thus, we will find a face αk+j that is flippable under µF where k + j is no more than
2n − 1. We then flip αk+j and perform a shwoop to be able to make a new MV assignment
µF∪{αk+j ,αk+j−1,...,αk} that will agree with ν on crease ek.

We now examine how the algorithm terminates. The last face that could be flipped in this
algorithm is α2n−1. Let µx be the last MV assignment produced up to this point (so, after step
i = 2n− 2 in the algorithm). For step i = 2n− 1, suppose that µx(e2n−1) = ν(e2n−1). This means
µx and ν agree on all the creases e1, . . . , e2n−1, which implies that they must also agree on e2n,
for otherwise one of µx or ν would not satisfy Maekawa’s Theorem despite both being valid. Thus
µx = ν and the algorithm completes successfully.

Similarly, if µx(e2n−1) ̸= ν(e2n−1) then we must also have that µx(e2n) ̸= ν(e2n). Then flipping
face α2n−1 will make µx,α2n−1

= ν, and this face-flip must be possible because ν is a valid MV
assignment for A2n. Thus the algorithm completes successfully in this case as well. □

Corollary 1 The flip graph OFG(A2n) is connected.

The FEA-Shwoop(A2n, µ, ν) algorithm uses a nested loop, each of which are O(n), and there-
fore the running time of the whole algorithm is O(n2). Note that this algorithm does not necessarily
produce the shortest path in OFG(A2n) between µ and ν, since the choice of the first crease e1 to
consider might not be the most efficient, for instance.
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4 Diameter of OFG(A2n)

There is a different algorithm that we could use to flip between any two valid MV assignments µ
and ν of A2n, one that also proves that the diameter of OFG(A2n) is n. We call this algorithm
FEA-Halves(A2n, µ, ν).

Recall from Section 2 that, if µ and ν are two valid MV assignments of A2n, then S(µ, ν) is the
set of creases ei with µ(ei) ̸= ν(ei).

Lemma 3 If µ and ν are two valid MV assignments of A2n, then |S(µ, ν)| is even.

Proof: This can be proven using only Maekawa’s Theorem by considering the sums
∑

µ(ei) and∑
ν(ei) mod 4. That is, these two sums are equivalent mod 4, and if we remove the creases ei with

µ(ei) = ν(ei) these sums will still be equivalent mod 4, meaning
∑

e∈S(µ,ν) µ(e) ≡
∑

e∈S(µ,ν) ν(e)

mod 4. But we also have
∑

e∈S(µ,ν) µ(e) = −
∑

e∈S(µ,ν) ν(e), which implies the result.

A more elegant proof, however, uses Lemma 2 and Corollary 1. That is, |S(µ, µ)| = 0, and if
we already know that OFG(A2n) is connected, then since the parity of |S(µ, ν)| is invariant under
face flips, all values of |S(µ, ν)| must be even. □

In lieu of Lemma 3, let us denote S(µ, ν) = {ei1 , . . . , ei2k}, where i1 < · · · < i2k. For i < j let
us denote B(ei, ej) = {αi, αi+1, . . . , αj−1}, which is the set of all faces of A2n between creases ei
and ej . Define

B(µ, ν) = B(ei1 , ei2) ∪B(ei3 , ei4) ∪ · · · ∪B(ei2k−1
, ei2k) =

k⋃
j=1

B(ei2j−1
, ei2j ).

That is, B(µ, ν) is a set of faces of A2n between pairs of creases that have different MV parity
under µ and ν. The complement set B(µ, ν) among the faces in A2n will be a similar set, and thus
the sets B(µ, ν) and B(µ, ν) divide the faces of A2n into (probably not equal-sized) “halves.”

We may now summarize the FEA-Halves algorithm: Find a flippable face αj1 ∈ B(µ, ν). We
then claim that B(µαj1

, ν) will equal B(µ, ν) \ {αj1}, and so we repeat, finding a flippable face
αj2 ∈ B(µαj1

, ν), and so on, producing an ordering αj1 , αj2 , . . . of all the faces in B(µ, ν) that,
when flipped in order, will convert µ to ν.

Lemma 4 For valid MV assignments µ and ν of A2n, there exists a flippable face αj ∈ B(µ, ν)
such that B(µαj

, ν) = B(µ, ν) \ {αj}.

Proof: For a set C of creases, let M(C, µ) = the number of mountain creases in C under a MV
assignment µ and similarly define V (C, µ) for valleys. Assume without loss of generality that µ is
majority-valley on A2n. Then, if S(µ, ν) denotes the compliment of S(µ, ν) among the creases in
A2n, we have, by Maekawa’s Theorem applied to µ,

M(S(µ, ν), µ) +M(S(µ, ν), µ)− V (S(µ, ν), µ)− V (S(µ, ν), µ) = −2 (1)

Also, since ν is valid we have

M(S(µ, ν), ν) +M(S(µ, ν), ν)− V (S(µ, ν), ν)− V (S(µ, ν), ν) = ±2. (2)

However, by definition of S(µ, ν), we know that M(S(µ, ν), µ) = V (S(µ, ν), ν) and V (S(µ, ν), µ) =
M(S(µ, ν), ν). Also, M(S(µ, ν), µ) = M(S(µ, ν), ν) and V (S(µ, ν), µ) = V (S(µ, ν), ν). Thus
Equation (2) becomes

V (S(µ, ν), µ) +M(S(µ, ν), µ)−M(S(µ, ν), µ)− V (S(µ, ν), µ) = ±2. (3)
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Case 1: ν is majority-valley. Then Equation (3) will have −2 on its right-hand side, and
subtracting this from Equation (1) gives

M(S(µ, ν), µ)− V (S(µ, ν), µ) = 0. (4)

Suppose that there is a face αj ∈ B(µ, ν) whose creases ej and ej+1 have different MV parity under
µ, and therefore αj is a flippable face under µ. If ej or ej+1 are in S(µ, ν), then S(µαj , ν) will be
either S(µ, ν) \ {ej , ej+1} or (S(µ, ν) \ {ej})∪{ej+1} or (S(µ, ν) \ {ej+1})∪{ej}, and so B(µαj

, ν)
will equal B(µ, ν) but with the face αj removed, as desired. If neither ej nor ej+1 are in S(µ, ν),
then they will be elements of S(µαj

, ν), but, by definition of B(µ, ν), this means that αj will not
be an element of B(µαj , ν), and so B(µαj , ν) = B(µ, ν) \ {αj}.

On the other hand, if there is no face αj ∈ B(µ, ν) with µ(ej) ̸= µ(ej+1), then by Equation (4)
there must be a face αj ∈ B(µ, ν) with µ(ej) = µ(ej+1) = −1 (both valleys, since they can’t all
be mountains), in which case, αj is flippable by Lemma 1. Then, αj must be in some component
B(eik , eik+1

) in B(µ, ν) that has only valley creases under µ, whereby B(µαk
, ν) = B(µ, ν) \ {αj}.

Case 2: ν is majority-mountain. Then, Equation (3) will have +2 on its right-hand-side,
and subtracting from Equation (1) gives

M(S(µ, ν), µ)− V (S(µ, ν), µ) = −2.

This means that we have at least two valley creases in S(µ, ν) under µ. Let eim ∈ S(µ, ν) be a
valley crease under µ, and let αj be the face in B(µ, ν) that borders eim . We claim that αj is a
flippable face under µ: If the other crease bordering αj is also a valley under µ, then since µ is
majority-valley, µαj

will be majority-mountain and still satisfy Maekawa’s Theorem. If the other
crease bordering αj is a mountain under µ, then µαj

is still majority-valley and satisfies Maekawa
because µ did. In both cases we have that µαj is a valid MV assignment. Then B(µαj , ν) will have
one fewer face than B(µ, ν), the missing face being αj , and the Lemma is proved. □

Algorithm 2: The FEA (Flipping-Equal-Angles) Halves algorithm.

FEA-Halves(A2n, µ, ν)

Let L = B(µ, ν), S = {}, η = µ
if Length(L) > n then

Let L = the complement of B(µ, ν) in A2n

Let m =Length(L)
for i = 1 to m do

Find α ∈ L such that L is flippable under η
Append α to S
Replace η with ηα and L with L \ {α}

Output S

Therefore, the FEA-Halves algorithm (see Algorithm 2) will input two valid MV assignments,

µ and ν for A2n and compute the set of faces B(µ, ν) =
⋃k

j=1 B(ei2j−1 , ei2j ) as well as the comple-

ment set of faces (in A2n) B(µ, ν) = B(ei2k , ei1) ∪
⋃k−1

j=1 B(ei2j , ei2j+1). Since these form a disjoint

union of all the faces in A2n, one of B(µ, ν) and B(µ, ν) will have size ≤ n. Pick that set, say it’s
B(µ, ν), and apply Lemma 4 repeatedly to generate a sequence of at most n face flips that will
transform µ into ν. This proves most of the following theorem.
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Theorem 4 The flip graph OFG(A2n) is connected and has diameter n.

Proof: To see that the diameter of OFG(A2n) equals n, let µ be any valid MV assignment of A2n

and consider the complement MV assignment µ which is µ but with all the mountains and valleys
reversed. To transform µ to µ, every crease needs to be flipped, and (since there are 2n creases
and each face flip switches two creases) doing this this requires at least n face flips. Since every
crease is flipped, this gives us a lower bound on the required number of face flips between nodes
of OFG(A2n). The FEA-Halves algorithm guarantees at most n face flips to flip from µ to µ,
so the diameter of OFG(A2n) is n. Examples that require n face flips can be readily found (for
example, let µ have µ(ei) = 1 for i = 1, 3, 5, . . . , 2n − 3 and µ(ei) = −1 for i = 2, 4, 6, . . . , 2n and
i = 2n− 1). □

Like FEA-Shwoop, the FEA-Halves(A2n, µ, ν) algorithm runs in O(n2) time since each pass
through B(µ, ν) to search for a flippable face takes O(n) steps and Length(B(µ, ν)) is O(n).

5 Counting edges of OFG(A2n)

We saw in Section 2 that OFG(A2n) has 2
(

2n
n−1

)
vertices. Counting the edges in OFG(A2n) is not

as straight-forward. We first perform this enumeration using the method shown in Algorithm 3,
which we call Edge-Count(n). This takes each valid MV assignment µ of A2n and uses Lemma 1
to compute the degree of µ in OFG(A2n): each vertex µ will have degree 2n unless there are non-
flippable faces (bordered by “VV” if µ is majority-mountain or by “MM” if µ is majority-valley)
which must then be subtracted from 2n. We then take the sum of the vertex degrees and divide
by two to find the number of edges.

Algorithm 3: Counting the edges in OFG(A2n).

Edge-Count(n)

Let L = 2
(

2n
n−1

)
, MVAssigns = all L valid MV assignments of A2n

for i = 1 to L do
if MVAssigns[i] is majority mountain then

Let Deg[i] = 2n−(number of “VV” in MVAssigns[i])

if MVAssigns[i] is majority valley then
Let Deg[i] = 2n−(number of “MM” in MVAssigns[i])

Output (
∑

Deg[i])/2

The output of Edge-Count(n) for n = 1 to n = 13 is

2, 16, 84, 400, 1820, 8064, 35112, 151008, 643500, 2722720, 11454872, 47969376, 200107544.

When we first encountered it, this sequence Edge-Count(n) did not appear in the Online En-
cyclopedia of Integer Sequences. It has now been added by one of the authors and is sequence
A352626 [15].

The running time of this algorithm is super-exponential in n, since it needs to calculate and
check every valid MV assignment of A2n. Fortunately, we can do better.
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Theorem 5 The number of edges in OFG(A2n) is
(n+1)(3n−2)

2n−1

(
2n
n−1

)
.

Note that the formula in Theorem 5 matches the output of Edge-Count(n). We prove this
formula using a probabalistic approach.

Proof: In any uniformly chosen at random MV assignment of A2n, some faces will be flippable
and some will not be flippable. Define random variables G = the number of flippable faces in
a MV assignment of A2n (or “good” faces) and B = the number of unflippable faces (or “bad”
faces). Also let 1αi

denote the indicator random variable for αi being a bad face. That is,
B = 1α1

+ 1α2
+ · · ·+ 1α2n

. Then linearity of expectation gives us

E[G] = E[2n−B] = E[2n− Σ1αi
] = 2n−

∑
E[1αi

] = 2n− 2nP [αi is bad].

Now, by Lemma 1, P [αi is bad] = P [ei and ei+1 are minority] =

P [((ei and ei+1 are V) and (µ is majority M)) or ((ei and ei+1 are M) and (µ is majority V))]

= 2P [ei and ei+1 are V and µ is majority M] =

2P [µ is majority M]P [ei and ei+1 are V|µ is majority M]

= 2(1/2)P [ei and ei+1 are V|µ is majority M]

=

(
2n−2
n−3

)(
2n
n−1

) =
(n− 1)(n− 2)

2n(2n− 1)
.

Therefore E[G] = 2n(1− (n−1)(n−2)
2n(2n−1) ). However, since MV assignments µ of A2n form the vertices

of OFG(A2n), we have that E[G] = E[deg(µ) in OFG(A2n)], and

E[deg(µ)] =
1

|V |
∑
µ∈V

deg(µ) =
2|E|
|V |

where V and E are the vertices and edges in OFG(A2n), respectively. Thus we have

|E| = |V |
2

2n

(
1− (n− 1)(n− 2)

2n(2n− 1)

)
=

(n+ 1)(3n− 2)

2n− 1

(
2n

n− 1

)
,

as desired. □

The Edge-Count(n) algorithm can be used to generate the degree sequence for OFG(A2n).
Let fk(2n) denote the number of vertices of degree k in OFG(A2n), so that Edge-Count(n) =

(1/2)
∑2n

k=n−2 kfk(2n). The values for fk(2n) for 2 ≤ n ≤ 6 and the possible degrees k are shown
in Table 1, and studying these led to the following formula.

Theorem 6 The number of vertices of degree k in OFG(A2n) is

fk(2n) =
4n

n+ 1

(
n+ 1

k − n− 1

)(
n− 2

k − n− 2

)
,

for n+ 2 ≤ k ≤ 2n.
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2n\k 4 5 6 7 8 9 10 11 12
4 8
6 12 18
8 16 64 32
10 20 150 200 50
12 24 288 720 480 72

Table 1: Values for fk(2n) generated by running Edge-Count(n).

We provide a combinatorial proof of this result developed by Jonah Ostroff.

Proof: We will enumerate the number of valid MV assignments µ of A2n that are majority-
mountain with b non-flippable faces; such a vertex in OFG(A2n) will have degree k = 2n− b, and
this enumeration will equal fk(2n)/2. In this situation we will have n+1 mountains, n−1 valleys,
and by Lemma 1 there should be exactly b pairs of consecutive creases around A2n that are “VV”
under µ. That means there are exactly n − b − 1 valley creases that are not followed by a valley
(say, going clockwise around the vertex). Therefore we are counting the number of ways to arrange
mountains and valleys so that there are exactly n− b− 1 runs of consecutive valleys.

We can construct such MV assignments as follows:

� First we place the n + 1 mountains around a circle and mark one of them as the “start”
point.

� Then we place boxes in n− b− 1 of the n+ 1 spaces between the mountains.

� Place one valley in each of the n− b− 1 boxes. Then place the remaining b valleys in any of
the n− b− 1 boxes; by a “stars and bars” counting argument there are

(
n−b−1+b−1

b

)
=

(
n−2
b

)
ways to do this.

This gives us a MV assignment with the required conditions, but we’ve only counted ones that
“start” with a mountain crease. Call the set of these MV assignments A. We rotate each member
of A around the A2n crease pattern to get a bigger set of MV assignments, B, with 2n|A| elements.
We claim that each MV assignment we are looking for (valid, majority-mountain with exactly
b non-flippable faces) appears in B exactly (n + 1) times. To see this, let µ meet our required
conditions and suppose µ has no rotational symmetry (meaning that each rotation of µ in A2n is
a MV assignment distinct from µ). Then a rotated version of µ will appear in A exactly (n + 1)
times, since there are (n + 1) mountains in µ. These rotations of µ in A will result in exactly
(n+ 1) copies of µ appearing in B.

On the other hand, suppose µ has rotational symmetry, say rj(µ) = µ for some j that divides
2n, where r(µ) is µ rotated by π/n in A2n. Let 2n = qj. Then a rotated copy of µ will appear in
A exactly (n+1)/q times (that is, it would be (n+1) times, one for each mountain in µ, but every
qth one is a duplicate because of the rotational symmetry). Each of these rotated copies of µ are
rotated a full 2n times in B, each giving us q copies of µ in B. That’s a total of q(n+1)/q = (n+1)
copies of µ in B.

Therefore, the number of valid MV assignments of A2n that are majority-mountain and have
exactly b non-flippable faces is

2n

n+ 1

(
n+ 1

n− b− 1

)(
n− 2

b

)
.
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To include the majority-valley cases, we multiply by two. Substituting b = 2n− k and simplifying
gives the desired result. □

6 Conclusion

We have seen how the origami flip graph of A2n has the largest size among the flip graphs of flat
vertex folds of degree 2n, that it contains all such origami flip graphs as subgraphs, and that it is
a connected graph with diameter n. Furthermore, the algorithms used to prove these facts could
be useful in further studies of origami flip graphs. For example, the FEA-Shwoop algorithm has
the interesting property that it provides a way to flip between any two valid MV assignments of
A2n without flipping the face α2n. Since the labeling of the faces was arbitrary, this means that
we can always avoid flipping a chosen face and still traverse the origami flip graph. This feature is
used in the forthcoming paper [10] to help classify when OFG(C) will be connected for arbitrary
flat vertex folds C. Indeed, [10] also explores when the FEA-Shwoop algorithm can be used in
other situations besides the crease pattern A2n.

Despite A2n being, in a sense, the most simple case of all degree-2n flat vertex folds, as it
requires only Maekawa’s Theorem to determine if a MV assignment will be valid, its origami flip
graph nonetheless exhibits surprising complexity. Further details on the structure of OFG(A2n)
remains unexplored. For instance, Theorem 2 does not tell the whole story about the number of
copies of OFG(C) that can be found in OFG(A2n).

Open Problem 1 If C is a flat vertex fold of degree 2n, how do we determine the exact number
of distinct labeled subgraphs of OFG(A2n) that are isomorphic to OFG(C)?

There are various computational origami reconfiguration problems other than those already
considered in this paper that have yet to be explored. Perhaps the next most basic one to consider
is the following:

Open Problem 2 What is the computational complexity of finding a shortest path between two
vertices µ and ν in OFG(A2n)?

Readers familiar with closed meanders might suspect a connection between them and flat
foldings of A2n. A closed meander of order n is a closed curve in R2 that crosses a given directed
line 2n times [6]. The cross-section of any flat folding of A2n can be viewed as a closed meander if
we draw a directed line through (and perpendicular to) the cross-section. However, the number of
homeomorphically-distinct closed meanders of order n, denoted Mn, is not equal to the number of
vertices in OFG(A2n), since different layer orders of the paper give us different meanders but not
different MV assignments, and the latter is all we care about in origami flip graphs. Still, there
could be a way to extend our work in this paper to include layer orderings.

Open Problem 3 Is there a way to create a flip graph for the space of closed meanders of order
n where the number of vertices is Mn? Or, equivalently, an origami flip graph for A2n that also
considers different paper layer orders as distinct foldings?

Also, we have seen that determining the degree sequence of OFG(A2n) involves the different
ways to separate the valleys (assuming we’re majority-mountain) into runs of consecutive valleys.
In other words, if we have n − 1 valleys we are considering the integer partitions of n − 1. The
different integer partitions affect fk(2n) for different k, so their influence is lost in Theorem 6.
However, perhaps another connection is possible.
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Open Problem 4 Can we clarify the role that integer partitions of n− 1 play in OFG(A2n)?

This is further evidence, also seen in [7], that the single-vertex case of flat origami continues to
possess more combinatorial richness than one would originally expect.
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