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Abstract. A vertex set S of a graph G is geodetic if every vertex of G lies on
a shortest path between two vertices in S. Given a graph G and k ∈ N, the NP-
hard Geodetic Set problem asks whether there is a geodetic set of size at most k.
Complementing various works on Geodetic Set restricted to special graph classes,
we initiate a parameterized complexity study of Geodetic Set and show, on the
one side, that Geodetic Set is W[1]-hard when parameterized by feedback vertex
number, path-width, and solution size, combined. On the other side, we develop fixed-
parameter algorithms with respect to the feedback edge number, the tree-depth, and
the modular-width of the input graph.

1 Introduction

Let G be an undirected, simple graph with vertex set V (G) and edge set E(G). The interval I[u, v]
of two vertices u and v of G is the set of vertices of G that are contained in any shortest path
between u and v. In particular, u, v ∈ I[u, v]. For a set S of vertices, let I[S] be the union of
the intervals I[u, v] over all pairs of vertices u and v in S. A set of vertices S is called geodetic
if I[S] contains all vertices of G. In this work we study the following problem (see an exemplary
illustration in Figure 1):

Geodetic Set

Input: A graph G and an integer k.
Question: Does G have a geodetic set of cardinality at most k?

Atici [2] showed that Geodetic Set is NP-complete on general graphs, and it was shown
that the hardness holds even if the graph is planar [8], subcubic [7], chordal, or bipartite chordal
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Figure 1: An exemplary graph. The gray vertices form a minimum geodetic set. The shortest paths
between the top left and the bottom right gray vertex cover all vertices except for the bottom left
vertex. Observe that every geodetic set contains all degree-one vertices.

[12]. Although not stated, W[2]-hardness for the solution size k directly follows from the reduction
for the latter result of Dourado et al. [12]. On the positive side, the problem was shown to be
polynomial-time solvable for cographs, split graphs and unit interval graphs [12]. Also, upper
bounds on the geodetic set size in Cartesian product graphs were studied [6].

For a graph G and k ∈ N, the closely related Geodetic Hull problem asks whether there is a
vertex set S ⊆ V (G) with I |V (G)|[S] = V (G) and |S| ≤ k, where I0[S] = S and Ij [S] = I[Ij−1[S]]
for j > 0. Geodetic Hull is NP-hard on bipartite [1], chordal [4], and P9-free graphs [13]. Recently,
Kanté et al. [18] studied the parameterized complexity of Geodetic Hull: they proved that the
problem is W[2]-hard when parameterized by k, and W[1]-hard but in XP when parameterized by
tree-width.1

Our Contributions. Comparing the algorithmic complexity of Geodetic Hull and Geodetic
Set, one can observe that both problems are trivial on trees (take all leaves into the solution). But
while Geodetic Hull is polynomial-time solvable on graphs of constant tree-width, the complexity
of Geodetic Set on graphs of tree-width two is unknown to the best of our knowledge. Motivated
by this gap, we study the parameterized complexity of Geodetic Set for structural parameters
such as tree-width that measure the tree-likeness of the input graph.

We start off by showing that Geodetic Set is W[1]-hard with respect to tree-width. More
specifically, we show that Geodetic Set is W[1]-hard for feedback vertex number, path-width,
and solution size, all three combined (Section 3), using a parameterized reduction from the W[1]-
hard Grid Tiling problem [21]. Since this reduction implies NP-hardness, this complements
previous results by providing a more fine-grained view on computational tractability in terms of
parameterized complexity instead of studying special graph classes.

We complement the W[1]-hardness by presenting two fixed-parameter tractability results for
Geodetic Set. First, we show that Geodetic Set is fixed-parameter tractable with respect to
the feedback edge number (Section 4). It turns out to be quite effortful to obtain fixed-parameter
tractability, requiring the design and analysis of polynomial-time data reduction rules and branching
before employing Integer Linear Programming (ILP) with a bounded number of variables to
determine the final positions of the solution vertices. To the best of our knowledge, this is the first
usage of ILP when solving Geodetic Set.

Second, we show that Geodetic Set is fixed-parameter tractable with respect to clique-width
combined with diameter (Section 5); note that Geodetic Set is NP-hard even on graphs with
constant diameter [12], and W[1]-hard with respect to clique-width (this follows from our first result).
Our result exploits the fact that we can express Geodetic Set in an MSO1 logic formula, the

1Informally, this means it can be solved in polynomial time for graphs of constant tree-width.
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Figure 2: An overview of our results for Geodetic Set, containing the parameters vertex cover
number (vc), modular-width (mw), tree-depth (td), clique-width (cw), diameter (diam), feedback
edge number (fen), path-width (pw), feedback vertex number (fvn) and tree-width (tw). An edge
between two parameters indicates that the one below is smaller than some function of the other.

length of which is upper-bounded in a function of the diameter of the graph. A direct consequence
of this result is that Geodetic Set is fixed-parameter tractable with respect to tree-depth and
with respect to modular-width.

Figure 2 gives an overview of the parameters for which we obtain positive and negative results,
and presents their interdependence.

2 Preliminaries

For n ∈ N let [n] = {1, 2, . . . , n}. The distance dG(u, v) between two vertices u and v in G is the
length of a shortest path between u and v (also called shortest u–v-path). We drop the subscript ·G
if G is clear from context. Note that w belongs to I[u, v] if and only if dG(u, v) = dG(u,w)+dG(w, v).
The diameter diam(G) of G is the maximum distance between any two vertices of G. A multigraph G
consists of a vertex set and an edge multiset. Note that in a multigraph, we count self-loops twice
for the vertex degree.

A set F ⊆ E(G) is a feedback edge set if G \ F is a forest. The feedback edge number fen(G) is
the size of a smallest such set. Analogously, a set V ′ ⊆ V (G) is a feedback vertex set if G− V ′ is a
forest. The feedback vertex number fvn(G) is the size of a smallest such set.

For a graph G, a tree decomposition is a pair (T,B), where T is a tree and B : V (T )→ 2V (G)

such that (i) for each edge uv ∈ E(G) there exists x ∈ V (T ) with u, v ∈ B(x), and (ii) for
each v ∈ V (G) the set of nodes x ∈ V (T ) with v ∈ B(x) forms a nonempty, connected subtree
in T . The width of (T,B) is maxx∈V (T )(|B(x)| − 1). The tree-width tw(G) of G is the minimum
width of all tree decompositions of G. The path-width pw(G) of G is the minimum width of all tree
decompositions (T,B) of G for which T is a path.

The tree-depth of a connected graph G is defined as follows [22]. Let T be a rooted tree with
vertex set V (G), such that if xy ∈ E(G), then x is either an ancestor or a descendant of y in T .
We say that G is embedded in T . The depth of T is the number of vertices in a longest path in T
from the root to a leaf. The tree-depth td(G) of G is the minimum t such that there is a rooted
tree of depth t in which G is embedded.
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We next define the modular-width of a graph G [16]. A vertex set M ⊆ V (G) is a module if
for all v, w ∈ M it holds that N(v) ∩ (V (G) \M) = N(w) ∩ (V (G) \M). We call a module M
trivial, if |M | ≤ 1 or M = V (G), and we call it strong if for every other module M ′ of G we
have that M ∩M ′ = ∅, or that one is a subset of the other. A graph that only admits trivial
modules is called prime. Every non-singleton graph can be uniquely partitioned into maximal
strong modules P = {M1, . . . ,Mℓ} with ℓ ≥ 2. Recursively partitioning the graphs G[Mi] in this
way until every module is trivial yields a modular decomposition of G. The modular-width is the
largest number of trivial modules in a prime subgraph G[Mi] of the modular decomposition of G.

A parameterized problem is a subset L ⊆ Σ∗ × N over a finite alphabet Σ. Let f : N → N

be a computable function. A problem L is fixed-parameter tractable (in FPT) with respect to k
if (I, k) ∈ L is decidable in time f(k) · |I|O(1) and L is in XP if (I, k) ∈ L is decidable in
time |I|f(k). There is a hierarchy of computational complexity classes for parameterized problems:
FPT ⊆W[1] ⊆W[2] ⊆ · · · ⊆ XP. To show that a parameterized problem L is (presumably) not
in FPT one may use a parameterized reduction from a W[i]-hard problem to L, for any i ≥ 1. A
parameterized reduction from a parameterized problem L to another parameterized problem L′ is
a function that acts as follows: For computable functions f and g, given an instance (I, k) of L,
it computes in f(k) · |I|O(1) time an instance (I ′, k′) of L′ so that (I, k) ∈ L ⇐⇒ (I ′, k′) ∈ L′

and k′ ≤ g(k). For further information on fixed-parameter tractability and parameterized complexity
we refer to Cygan et al. [11].

3 Hardness for Path-width and Feedback Vertex Number

In this section we show that Geodetic Set is W[1]-hard with respect to the feedback vertex
number, the path-width and the solution size, combined. To this end, we present a parameterized
reduction from Grid Tiling, which is W[1]-hard with respect to k [11, 21]:

Grid Tiling

Input: A collection S of k2 sets Si,j ⊆ [m]× [m], i, j ∈ [k] (called tile sets), each of
cardinality exactly n.

Question: Can one choose a tile (xi,j , yi,j) ∈ Si,j for each i, j ∈ [k] such that xi,j = xi,j′

with j′ = (j + 1) mod k and yi,j = yi
′,j with i′ = (i+ 1) mod k?

This distinguishes our reduction from most parameterized reductions to show W[1]-hardness, as
one typically reduces from Clique, or its multicolored variant. Grid Tiling though seemed to be
a much better fit, since the values of the tiles can be expressed by lengths of paths. This is the
central idea for our reduction: We place a connection gadget between each pair of adjacent tile sets.
Placing paths of fitting lengths, the connection gadget ensures that the vertices corresponding to
the tiles agree with each other, that is, the appropriate coordinates of the two tiles are equal.

Remark. Throughout this section we write i′ and j′ as shorthands for (i+ 1) mod k and (j +
1) mod k, respectively. Moreover, we assume that the grid size k is even.

Construction. Let I = (S, k,m, n) be an instance of Grid Tiling. We construct an instance I ′ =
(G, k′) of Geodetic Set as follows: First, we set k′ = k2 + 4. We add the global vertices Ξ =
{α, β, γ, δ} and Ξ′ = {α′, β′, γ′, δ′}, and add four edges αα′, ββ′, γγ′ and δδ′. Next, for each i, j ∈ [k]
we introduce tile vertices Si,j = {si,j1 , . . . , si,jn }. For a tile vertex v we denote by (xv, yv) the
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Figure 3: Left: One copy of a horizontal connection gadget next to Si,j = {s1, . . . , sn} where j
is even, connecting the tile sets Si,j and Si,j′ . Edges with label ℓ in the figure represent paths of
length ℓ. The ellipses mark the connector vertices towards Si,j and Si,j′ . Right: An exemplary
reduction from an instance of Grid Tiling, where k = 2. Between every pair of horizontally, resp.
vertically adjacent tile sets (big circles) there are two copies of horizontal, resp. vertical connection
gadgets. Note that α, β, γ, δ ∈ Ξ are global; every vertex labeled such is the same vertex. The gray
square marks the vertices of Q2,1 (note that β, δ /∈ Q2,1). Note that this illustration wraps around
its boundaries, that is, the edges on the left end connect to the vertices on the right end and the
edges on the top end connect to the vertices on the bottom end.

corresponding tile. Moreover, for each i, j ∈ [k] we introduce two copies of the horizontal and two
copies of the vertical connection gadget.

The construction of a horizontal connection gadget next to tile set Si,j is as follows. Let S = Si,j

and let S′ = Si,j′ be the vertices of the two horizontally adjacent tile sets. We introduce the
vertices a and b called hidden vertices and the vertices a∗ and b∗ called exposed vertices. Next, for
every tile vertex s ∈ S with its corresponding tile (xs, ys), we add a path of length 16m+ 2xs + 1
from s to a, and a path of length 16m− 2xs + 1 from s to b. For every tile vertex s′ ∈ S′ with its
corresponding tile (xs′ , ys′), we add a path of length 16m− 2xs′ + 1 from s′ to a, and a path of
length 16m+ 2xs′ + 1 from s′ to b. We call these paths tile paths towards S, respectively S′. We
call the neighbors of a, respectively b, connector vertices towards S, respectively S′. The exposed
vertices a∗, respectively b∗ are adjacent to all neighbors of a, respectively b. Moreover, each of a∗

and b∗ has one additional neighbor: If j is even, then α is a neighbor of a∗ and β is a neighbor
of b∗. If j is odd, then β is a neighbor of a∗ and α is a neighbor of b∗. See Figure 3 (left) for an
illustration of a horizontal connection gadget next to Si,j for even j.

The construction of a vertical connection gadget next to tile set Si,j is identical to the construction
of a horizontal gadget, except for the following differences:

� the gadget connects tile sets S = Si,j and S′ = Si′,j ;

� the lengths of the tile paths depend on the y-coordinates; and
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� if i is even, then γ is a neighbor of a∗ and δ is a neighbor of b∗, and if i is odd, then δ is a
neighbor of a∗ and γ is a neighbor of b∗.

This concludes the construction. See Figure 3 (right) for an overview.
Let J be the set of all hidden vertices and let J∗ be the set of all exposed vertices. We now

show that this construction has the desired properties for showing W[1]-hardness with respect to
solution size, feedback vertex number and path-width, combined.

Observation 1 The constructed graph G has pw(G) ≤ 16k2 + 2 and fvn(G) ≤ 16k2.

Proof: The graph G′ = G − (J ∪ J∗) consists of paths of length one and subdivisions of stars.
Clearly, fvn(G′) = 0, and since removing the center vertex of a subdivision of a star yields disjoint
paths, pw(G′) = 2. Adding a vertex to a graph increases each of the two parameters by at most
one. Now, as |J ∪ J∗| = 16k2, the claim follows. □

Correctness. Let us first point out that the computational challenge of the constructedGeodetic
Set instance lies in finding vertices to cover all hidden vertices J , as every other vertex is covered
by the four degree-one vertices in Ξ′, which have to be in every solution as they cannot be covered
in any other way.

Observation 2 I[Ξ′] = V (G) \ J .

Proof: For i, j ∈ [k] and for s ∈ Si,j let (xs, ys) ∈ [m]× [m] be the values of the corresponding tile.
We show first that all vertices in horizontal connection gadgets are covered. Suppose that j is even.
For every s ∈ Si,j′ , there are 32 shortest paths of length 3+ 16m+2xs + 16m− 2xs +3 = 32m+6,
each of which is also a shortest s-visiting path. Sixteen of the paths use horizontal connection
gadgets, and sixteen paths use the vertical connection gadgets. Let us list the paths using the
horizontal connection gadgets first. Denote by Xi,j , respectively Xi,j′ , one of the two horizontal
connection gadgets next to Si,j , respectively Si,j′ . Let a∗ and b∗, respectively a′

∗
and b′

∗
, be the two

exposed vertices of Xi,j , respectively Xi,j′ . Note that since j′ is odd, a′
∗
is adjacent to β, while b′

∗

is adjacent to α. We find the following shortest α′–β′-paths via s and the two horizontal connection
gadgets Xi,j and Xi,j′ : (1) one path via a∗, s, and b∗, (2) one path via b′

∗
, s, and a′

∗
, (3) one

path via a∗, s, and a′
∗
, and (4) one path via b′

∗
, s, and b∗. Taking the copies of Xi,j and Xi,j′ , we

find twelve further paths. Hence, overall there are sixteen shortest s-visiting α′–β′-paths that use
horizontal connection gadgets.

The case that j is odd behaves analogously; note that α now is adjacent to the exposed vertex b∗

while β is connected to a∗. Combining the two cases we conclude that the shortest α′–β′-paths
cover all tile vertices as well as all vertices in horizontal connection gadgets, except for the hidden
vertices.

By symmetry the shortest γ′–δ′-paths cover all tile vertices as well as all vertices in vertical
connection gadgets, except for the hidden vertices; thus V (G) \ J ⊆ I[Ξ′].

It remains to be shown that J ∩ I[Ξ′] = ∅. Note that the neighborhood of any hidden vertex is a
subset of the neighborhood of the corresponding exposed vertex. Since each vertex in Ξ is adjacent
to exactly one vertex in Ξ′ and to exposed vertices, I[Ξ′] cannot contain any hidden vertex. □

Then the forward direction becomes straightforward: Our geodetic set V ′ consists of Ξ′ and, for
every tile in the solution of instance I, the corresponding tile vertex. It is easy to see that for every
(copy of a) connection gadget, there are two shortest paths between the chosen tile vertices of any
two adjacent tiles, each covering one of the two hidden vertices in the connection gadget. Compare
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with Figure 3 (hidden vertices are gray). We further derive the following observation, which is also
the reason why the vertices in J are called hidden.

Observation 3 Let u, v ∈ V (G) \ (Ξ ∪ Ξ′). If a shortest u–v-path visits a global vertex, then none
of its inner vertices are hidden.

The backward direction is more involved. We show that every solution of our constructed
instance consists of Ξ′ and exactly one tile vertex of each tile set. For this we make use of two
properties of our construction. First, if two vertices are sufficiently far apart, then there is a shortest
path via some global vertex that connects them.

Lemma 1 For any two vertices u, v ∈ V (G) there is a u–v-path of length at most 36m+ 6 that
visits some global vertex.

Proof: We define ξu ∈ Ξ as follows. If u ∈ J∪J∗∪Ξ∪Ξ′, then let ξu ∈ Ξ be an arbitrary global vertex
such that d(u, ξu) ≤ d(u, ζ) for all ζ ∈ Ξ. Suppose that u is in a (horizontal or vertical) connection
gadget. Then u lies on a path between a tile vertex u′ ∈ Si,j , and a connector vertex u′′ towards Si,j ,
where i, j ∈ [k]. Let ξu ∈ Ξ be a global vertex such that d(u′′, ξu) ≤ d(u′′, ζ), for ζ ∈ Ξ. We define ξv
analogously. If ξu = ξv, then d(u, v) ≤ d(u, ξu)+d(ξu, v) ≤ 16m+2λ+2+2+2λ′+16m ≤ 36m+6,
where λ, λ′ ∈ [m] are either x- or y-values of some tile.

So suppose that ξu ̸= ξv. We will prove that

d(u, ξu) + d(ξu, v) + d(u, ξv) + d(ξv, v) = d(ξu, u) + d(u, ξv) + d(ξv, v) + d(v, ξu)

≤ 2(36m+ 6),

which yields the statement above as d(u, v) ≤ min{d(u, ξu) + d(ξu, v), d(u, ξv) + d(ξv, v)}. In
particular, we show that d(ξu, u) + d(u, ξv) ≤ 36m + 6. If u /∈ J , then d(ξu, u) + d(u, ξv) ≤
d(ξu, u

′) + d(u′, ξv) for some tile vertex u′. Thus we obtain

d(ξu, u) + d(u, ξv) ≤ d(ξu, u
′) + d(u′, ξv) = 2 + 16m+ 2λ+ 16m+ 2λ′ + 2 ≤ 36m+ 4,

where λ, λ′ ∈ [m] are either x- or y-values of some tile. If u ∈ J , then we have

d(ξu, u) + d(u, ξv) = 3 + 1 + 16m+ 2λ+ 16m+ 2λ′ + 2 ≤ 36m+ 6.

Analogously, d(ξv, v) + d(v, ξu) ≤ 36m+ 6, concluding the proof. □

We introduce some additional notation. The square Qi,j of tile set Si,j is the vertex set consisting
of the tile vertices Si,j , the paths between tile vertices and connector vertices towards Si,j , and all
hidden vertices and exposed vertices that are in the connection gadgets next to Si,j . See Figure 3
(right) for an illustration of a square. Note that the squares are pairwise disjoint. We say that two
squares are adjacent if they contain vertices of the same connection gadget. The adjacency Adj(Qi,j)
of a square Qi,j is the union of squares adjacent to Qi,j . The closed adjacency of a square Qi,j is
the vertex set Adj[Qi,j ] = Adj(Qi,j) ∪Qi,j .

We will show that any solution of (G, k′) contains exactly one vertex per square. Our proof has
two parts. Assume that there is a solution V ′ such that there is a square that contains no vertex
from V ′. We call such a square empty. In the first part (Lemma 2), we show that, if there is at least
one empty square, then for one of them, the adjacent squares contain at most eight vertices from
V ′. We then argue that this contradicts the fact that V ′ is geodetic in the second part (Lemma 3).
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The following lemma pertains to the first part. We remark that this may be of independent
interest, as this may turn out useful when proving the correctness of a reduction from Grid Tiling.
For the lemma we use the following notation: For a k × k matrix M with entries mi,j , i, j ∈ [k]
let δMi,j be the sum of the entries that are above, below, to the left, and to the right of mi,j , that is,

δMi,j = mi′,j +mi′′,j +mi,j′ +mi,j′′ , where i
′ = (i+1) mod k, i′′ = (i− 1) mod k, j′ = (j+1) mod k,

and j′′ = (j − 1) mod k.

Lemma 2 Let A ∈ Nk×k be a matrix with even k, such that
∑

i,j∈[k] ai,j = k2. Then, there exist

i, j ∈ [k] such that ai,j = 0 and δAi,j ≤ 8, unless ai,j = 1 for all i, j ∈ [k].

Proof: Let q > 0 be the number of zero entries in A. We show that
∑

i,j∈[k],ai,j=0 δ
A
i,j ≤ 8q. The

lemma then follows by the pigeonhole principle.
Let B,C ∈ Nk×k be matrices such that for every i, j ∈ [k],

bi,j =

{
1 if ai,j ≥ 1

0 otherwise,
ci,j =

{
ai,j − 1 if ai,j ≥ 1

0 otherwise.

Observe that A + B = C and thus δAi,j = δBi,j + δCi,j for every i, j ∈ [k]. We will prove that

(1)
∑

i,j∈[k],ai,j=0 δ
B
i,j ≤ 4q, and (2)

∑
i,j∈[k],ai,j=0 δ

C
i,j ≤ 4q. Note that δBi,j ≤ 4 for every i, j ∈ [k],

as bi,j ≤ 1. This proves (1). For (2), note that
∑

i,j∈[k] ci,j =
∑

i,j∈[k],ai,j≥1(ai,j−1) = k2−(k2−q) =
q since

∑
i,j∈[k] ai,j = k2 and A has k2−q non-zero entries. Since

∑
i,j∈[k],ai,j=0 δ

C
i,j =

∑
i,j∈[k] zi,jci,j

where zi,j ∈ {0, 1, . . . , 4} for every i, j ∈ [k] (every ci,j is adjacent to zi,j ≤ 4 zero entries), we have∑
i,j∈[k],ai,j=0 δ

C
i,j ≤ 4

∑
i,j∈[k] ci,j ≤ 4q. □

We remark that the upper bound is tight: Consider a matrix with 0 and 2 entries arranged in a
chessboard layout.

Lemma 3 A geodetic set V ′ ⊆ V (G) of size at most k′ consists of the four vertices in Ξ′, and
exactly one vertex in each square Qi,j, for each i, j ∈ [k].

Proof: Recall that k′ = k2 + 4. The four vertices in Ξ′ are the only vertices of degree one and are
part of every geodetic set. Further we may assume that V ′ ∩ Ξ = ∅ as I[V ′] = I[V ′ \ Ξ]. So V ′

consists of the four vertices in Ξ′ and a set of at most k2 vertices within the squares, denoted by W .
For contradiction, assume that there is a square Q′ which is empty (that is, Q′ ∩W = ∅). Then,

by Lemma 2, there exists an empty square Q for which |Adj(Q) ∩W | ≤ 8.
Let JQ = J ∩N [Q] be the sixteen hidden vertices that are either in Q or adjacent to vertices

of Q. The next two claims are consequences of Lemma 1 and Observation 3:

(1) no shortest path between a vertex outside of Q and a vertex outside of Adj[Q] can visit
any vertex in JQ, and

(2) W covers at most |Adj(Q) ∩W | ≤ 8 vertices of JQ.

For (1), let u ∈ V (G) \ Q, let v ∈ JQ, and let w ∈ V (G) \ Adj[Q] (possibly v = w). Observe
first that any shortest path that visits v and whose endpoints are not in the connection gadget
containing v visits tile vertices of both incident tiles. Also, the shortest path cannot visit any of
the global vertices Ξ as they provide a short cut around v. Then it is easy to see that any shortest
u–w-path visiting v must at some point go through vertices of some square Q′ ⊆ Adj(Q), then
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visit v, enter Q, and then leave Q again before reaching w. Within Q′, such a path covers a distance
of at least 16m − 2λ + 16m − 2λ′ ≥ 28m for λ, λ′ ∈ [m]. Analogously, it covers a distance of at
least 28m within Q as well. Thus its length is at least 56m, and by Lemma 1 such a path is longer
than diam(G), contradicting the existence of a shortest u-w-path that visits a vertex in JQ.

For (2), suppose that there exist u, u′ ∈ Adj(Q) such that there is a shortest u–u′-path P that
visits v ∈ JQ. It is easy to see that P must go through v′ ̸= v ∈ JQ. Assume without loss of
generality that v appears before v′ in P . In order for P to be a shortest path, it must hold that

d(u, v) + d(v, v′) + d(v′, u′) ≤ d(u, u′) ≤ 36m+ 6,

due to Lemma 1. Since d(v, v′) = 2 + 16m − 2λ + 16m − 2λ′ + 2 for some λ, λ′ ∈ [m], we
have d(v, v′) ≥ 28m+4; thus we can assume that d(u, v)+d(u′, v′) ≤ 8m+2. Then, by construction,
u (respectively u′) lies on a path between a tile vertex and v (respectively v′). By (1), only the
vertices in W ∩Adj(Q) can cover the vertices in JQ. Hence, for every vertex u ∈W ∩Adj(Q) there
is at most one vertex v ∈ JQ that is going to be in I[W ], and the claimed inequality holds.

Since |JQ| = 16, the set V ′ is not geodetic; so there cannot be an empty square in G. There
are k2 squares and |W | = |V ′ \ Ξ′| ≤ k2. So |V ′ ∩Qi,j | = 1 for each i, j ∈ [k]. □

Using Lemma 3, we show that every solution vertex in a square must be a tile vertex.

Lemma 4 A geodetic set V ′ ⊆ V (G) of size at most k′ consists of the four vertices in Ξ′ and
exactly one vertex of Si,j, for each i, j ∈ [k].

Proof: For i, j ∈ [k], let S = Si,j , S′ = Si,j′ , Q = Qi,j , and Q′ = Qi,j′ . Without loss of generality,
assume that j is even (see Figure 3 for an illustration). Let X1 and X2 be the two copies of the
horizontal connection gadget next to tile S, let a1, b1 ∈ V (X1) and a2, b2 ∈ V (X2) be the hidden
vertices, and let a∗1, b

∗
1 ∈ V (X1) and a∗2, b

∗
2 ∈ V (X2) be the exposed vertices. By Lemma 3, V ′

contains exactly one vertex u in Q and exactly one vertex v in Q′. Let us fix these vertices for the
remainder of the proof.

Consider a vertex w ∈ V (G) \ (Q∪Q′). Note that any shortest u–w-path and any shortest v–w-
path going through one of a1, a2, b1, b2 must use tile vertices in S and S′. It is easy to verify that
due to its length, such a path must visit some global vertex, thus it cannot visit any hidden vertex
(Observation 3). It follows that {a1, a2, b1, b2} ⊆ I[u, v].

For the sake of contradiction, suppose that u /∈ S. In particular, we assume without loss of
generality that u ∈ V (X1). Let u

′ ∈ S be the tile vertex such that u lies on the tile path between u′

and a1. Observe that d(u, a1) < d(u, a2). Hence, no shortest u–v-path visits a2 if d(v, a1) ≤ d(v, a2).
It follows that v lies on some tile path between some tile vertex v′ ∈ S′ and a2. Since there are
shortest u–v-paths visiting a1 and a2, we have

d(u, v) = (d(a1, u
′)− d(u′, u)) + d(a1, v

′) + d(v, v′) and

d(u, v) = (d(a2, v
′)− d(v, v′)) + d(a2, u

′) + d(u, u′).

By construction, d(a1, u
′) = d(a2, u

′) = 16m+ 2xu′ + 1 and d(a1, v
′) = d(a2, v

′) = 16m− 2xv′ + 1.
Thus, we obtain d(u, u′) = d(v, v′) and d(u, v) = 32m + 2xu′ − 2xv′ + 2. Note that there is a
u–v-path visiting α that is of length

ℓ = (d(u′, a∗1)− d(u, u′)) + 2 + (d(a∗2, v
′)− d(v′, v)).

Since d(a1, u
′) = 16m + 2xu′ + 1 and d(v′, a1) = 16m − 2xv′ + 1 (by construction), and since

ℓ ≥ d(u, v), we obtain d(u, u′) = d(v, v′) ≤ 1. By the assumption that u /∈ S, we have d(u, u′) > 0.
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It follows that d(u, u′) = d(v, v′) = 1. Finally, observe that the shortest path from u to v that
visits b1 is of length

ℓ′ = d(u, b1) + d(b1, v) = 32m− 2xu′ + 2xv′ + 4.

Since ℓ′ = d(u, v), we obtain 4xu′ − 4xv′ = 2, so one of xu′ , xv′ cannot be integer; a contradiction.
□

Now, given Lemma 4, if there is a solution for our instance of Geodetic Set, then the tiles
corresponding to the chosen tile vertices are a solution for our instance of Grid Tiling. The main
theorem of the section follows:

Theorem 4 Geodetic Set is W[1]-hard with respect to the feedback vertex number, the path-width,
and the solution size, combined.

Proof: Given an instance (S, k,m, n) of Grid Tiling, we construct an instance (G, k′) of
Geodetic Set as shown above. We now prove that (S, k,m, n) is a yes instance if and only
if (G, k′) is a yes-instance.

For the only if direction, let S ′ = {(xi,j , yi,j) ∈ Si,j | i, j ∈ [k]} be a solution for the instance
(S, k,m, n). Then we construct a geodetic set V ′ by adding the vertices in Ξ′ and, for every i, j ∈ [k],
the tile vertex si,j ∈ Si,j , corresponding to (xi,j , yi,j). Clearly, |V ′| = k′ = k2+4. By Observation 2,
all vertices in V (G) \ J are covered. For i, j ∈ [k], let a and b be the hidden vertices of one of the
copies of the horizontal connection gadget next to Si,j . Since xi,j = xi,j′ , the shortest a-visiting si,j–
si,j
′
-paths have length

d(si,j , a, si,j
′
) = 16m+ 2xi,j + 1 + 1 + 16m− 2xi,j′ = 32m+ 2,

and the shortest b-visiting si,j–si,j
′
-paths have length

d(si,j , b, si,j
′
) = 16m− 2xi,j + 1 + 1 + 16m+ 2xi,j′ = 32m+ 2.

It is easy to see that there are no shorter si,j–si,j
′
-paths. So the hidden vertices of the two

copies of the horizontal connection gadget are in I[V ′]. Analogously, since yi,j = yi
′,j , there exist

shortest vi,j–vi
′,j-paths that visit the hidden vertices of the two copies of the vertical connection

gadgets next to Si,j . Thus V ′ is geodetic and of cardinality k′.
For the if direction, let V ′ be a solution for (G, k′). By Lemma 4, V ′ consists only of the vertices

in Ξ′ and one tile vertex si,j for each i, j ∈ [k]. Let (xi,j , yi,j) be the corresponding pair. Note that
the hidden vertices within the copies of Xi,j can only be covered by shortest si,j–si,j

′
-paths. But

in order for these paths to be of equal length, it must hold that xi,j = xi,j′ . Analogously, in order
to cover the hidden vertices within the copies of Y i,j , we must have yi,j = yi

′,j . So choosing the
pair (xi,j , yi,j) for each i, j ∈ [k] yields a solution for the instance (S, k,m, n) of Grid Tiling.

SinceGrid Tiling is W[1]-hard with respect to k, it follows from the reduction and Observation 1
that Geodetic Set is W[1]-hard with respect to k′ + fvn(G) + pw(G). □

4 Fixed-Parameter Tractability for Feedback Edge Number

We now show that Geodetic Set is fixed-parameter tractable for feedback edge number. In fact,
we present a fixed-parameter algorithm for the following, more general variant:

Extended Geodetic Set

Input: A graph G, a vertex set T ⊆ V (G), and an integer k.
Question: Does G have a geodetic set S ⊇ T of cardinality at most k?
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The algorithm works in three steps: We first apply some polynomial-time data reduction rules
(Section 4.1), after which the graph may still be arbitrarily large but is easier to handle due to its
structure. Afterwards, with some branching steps (Section 4.2), we obtain an instance in which a
part of the solution vertices are fixed and can be extended to a minimum geodetic set by adding
vertices on paths of degree-two vertices. We determine where on the paths to place these vertices
using an ILP formulation with O(fen(G)2) variables (Section 4.3), showing that (Extended)
Geodetic Set is fixed-parameter tractable for feedback edge number.

Although feedback edge number is considered one of the largest structural graph parameters,
our algorithm is still technically involved and it has an impractical running time. This hints at
the difficulty of designing efficient algorithms for Geodetic Set. We also remark that some of
the techniques presented may be of independent interest. For example, the presented approach
may also be useful to show fixed-parameter tractability of the closely related Metric Dimension
problem2 for feedback edge number, which was posed as an open problem by Eppstein [14] (so far,
it is only known to be in XP for this parameter [15]).

Throughout this section we assume without loss of generality that G is connected.

4.1 Preprocessing

We next present three data reduction rules and some observations on the instance obtained after
their exhaustive application. We will also introduce the feedback edge graph G̃ in this subsection,
which will be used throughout the presentation of this algorithm.

Our first reduction rule deletes degree-one vertices. This reduction rule is based on the
observation that a geodetic set contains every degree-one vertex.

Reduction Rule 1 If there is a degree-one vertex v ∈ V (G) with N(v) = {u}, then

� decrease k by 1 if u ∈ T ,

� add u to T if u /∈ T , and

� delete v from V (G) (and from T ).

Henceforth we assume that Reduction Rule 1 has been exhaustively applied (which can be done
in linear time). Suppose that fen(G) = 1. Then G is a cycle, and any minimal geodetic set S ⊇ T
is of size at most |T |+ 3. So Extended Geodetic Set can be solved in polynomial time when
fen(G) ≤ 1 (in fact, further analysis yields a linear-time algorithm for fen(G) = 1). We thus assume
that fen(G) ≥ 2.

Now we introduce the feedback edge graph G̃, a multigraph which is obtained from G as follows:
As long as there is a degree-two vertex v with neighbors u,w, we remove v and add an edge
(multiedge) uw. Using the handshake lemma, one can easily obtain the following.

Observation 5 It holds that |V (G̃)| ≤ 2 fen(G)− 2 and |E(G̃)| ≤ 3 fen(G)− 3.

Proof: By definition, |E(G)| ≤ |V (G)|+ fen(G)− 1. It follows that |E(G̃)| ≤ |V (G̃)|+ fen(G)− 1,
since the number of edges decreases by 1 every time we remove a vertex. By the handshake lemma,
2|E(G̃)| =

∑
v∈V (G̃) degG̃(v) ≥ 3|V (G̃)|. Solving the inequalities for |V (G̃)| and |E(G̃)| respectively

yields the sought bounds. □

2Given a graph, Metric Dimension asks for a set S of at most k vertices such that for any pair of vertices u
and v, there is a vertex in S which has distinct distances to u and v.
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v1

v2

v3

v1
v2

v3

Figure 4: An illustration of an input graph G (left) and G̃ after Reduction Rule 1 has been

exhaustively applied (right). Observe that G̃ contains no degree-one or degree-two vertex. For

instance, a thick edge p in G̃ (right) corresponds to a path P of length hp = 3 in G(left). Moreover,
we have Tp = {0, 1} after Reduction Rule 1 has been applied exhaustively.

Observe that each edge p in G̃ is associated with a path P = (p0, p1, . . . , php) in G where all of
its inner vertices are of degree 2. We sometimes refer to the endpoints p0 and php as p← and p→,
respectively. Moreover, let Tp = {i | pi ∈ T} and let p←T = pt

←
p and p→T = pt

→
p , where t←p = minTp

and t→p = maxTp. We illustrate the definitions in Figure 4.

The following reduction rule deals with self-loops in G̃.

Reduction Rule 2 If v ∈ V (G̃) has a self-loop p in G̃, then decrease k as follows:

� If Tp = ∅, then decrease k by (hp mod 2).

� If Tp ̸= ∅ and V (P ) ̸⊆ I[Tp ∪ {v}], then decrease k by |Tp|.

� If Tp ̸= ∅ and V (P ) ⊆ I[Tp ∪ {v}], then decrease k by |Tp| − 1.

Moreover, add v to T and remove V (P ) \ {v}.

Lemma 5 Reduction Rule 2 is correct.

Proof: We reduce the first two cases to the third case with the following observations:

� If Tp = ∅, then (G,T, k) is equivalent to (G,T ′ = T ∪ {p⌊hp/2⌋, p⌈hp/2⌉}, k). Then V (P ) ⊆
I[T ′p ∪ {v}] and |T ′p| − 1 = (hp mod 2).

� If Tp ̸= ∅ and V (P ) ̸⊆ I[Tp ∪ {v}], then it is equivalent either to (G,T ′ = T ∪ {p⌊hp/2⌋}, k) or
to (G,T ′′ = T ∪{p⌈hp/2⌉}, k). Then V (P ) ⊆ I[T ′p∪{v}] or V (P ) ⊆ I[T ′′p ∪{v}] and |T ′p|−1 =
|T ′′p | − 1 = |Tp|.

So assume that Tp ̸= ∅ and V (P ) ⊆ I[Tp ∪ {v}].
Let (G′, T ′, k′) be an Extended Geodetic Set instance as a result of Reduction Rule 2. Note

that G′ = G− (V (P ) \ {v}), T ′ = T ∪ {v}, and k′ = k − |Tp|+ 1. It is easy to see that if S ⊇ T is
geodetic in G and |S| ≤ k, then (S \ V (P ))∪ {v} is a solution of (G′, T ′, k′). Conversely, if S′ ⊇ T ′

is a geodetic set in G′ of size at most k′, then (S′ \ {v}) ∪ Tp is a solution of (G,T, k). □

The next reduction rule ensures that for every p ∈ E(G̃) with Tp ̸= ∅, there is a shortest path
from an endpoint of P to the closest vertex in Tp that is contained inside P . For this we introduce
the following notation. Let R = {←,→}. For r ∈ R, we denote by r ∈ R \ {r} the opposite
direction.
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Reduction Rule 3 Let p ∈ E(G̃) with Tp ̸= ∅, and let r ∈ R. If dP (p
r
T , p

r) > dP (p
r
T , p

r) +
dG(p

r, pr), then add pq to T , where pq is between prT and pr and d(pq, prT ) = ⌊(hp+dG(p
←, p→))/2⌋.

Lemma 6 Reduction Rule 3 is correct.

Proof: Suppose that (G,T, k) is a yes-instance with a solution S ⊇ T . Let P ′ be a subpath of P
with endpoints pq and prT . Note that

dP (p
q, pr) + dG(p

r, pr) + dP (p
r, prT ) = (trP − dP (p

q, prT )) + dG(p
r, pr) + (hp − trP )

= hp + dG(p
r, pr)− d(pq, prT )

= ⌈(hp + dG(p
r, pr))/2⌉ ≥ dP (p

q, prT ).

Thus, S must contain a vertex v ∈ V (P ) \ {prT } to cover P ′. The correctness follows, because
(S \ {v}) ∪ {pq} is also geodetic in G. □

4.2 Guessing

We next extend our current set T of vertices fixed in the solution. First we guess the set of path
endpoints that are in the solution. Next, using another reduction rule, we fix further vertices
that are required to be in the geodetic set of our interest. These vertices possibly depend on the
(previously guessed) endpoints that are in the solution. Finally, we guess how many vertices we need

to add to every path P for p ∈ E(G̃). Then, the exact positions of these vertices are determined
using ILP.

Suppose that (G,T, k) is a yes-instance. We fix a solution S of minimum size that maximizes

the number |S ∩ V (G̃)| of endpoints among all such solutions. Intuitively, our goal is to find S. To

do so, we first guess the set S̃ = S ∩ V (G̃) of endpoints in S; there are at most 2|V (G̃)| ≤ 22 fen(G)−2

possibilities by Observation 5. We extend T by adding all vertices from S̃. So we will henceforth
assume that S∩V (G̃) = T ∩V (G̃). Using another reduction rule, we ensure that for every p ∈ E(G̃),
the vertices between p←T and p→T are covered.

Reduction Rule 4 Let p ∈ E(G̃). If there are t < t′ ∈ Tp such that [t+ 1, t′ − 1] ∩ Tp = ∅ and
dG(p

t, pt
′
) < t′ − t (equivalently, dG(p

←, p→) + hp < 2t′ − 2t), then add p⌊(t+t′)/2⌋ to T .

Lemma 7 Reduction Rule 4 is correct.

Proof: Let S be a geodetic set and let Vp = {pt+1, . . . , pt
′−1}. It suffices to show that S ∩ Vp ̸= ∅

and that S′ = (S \ Vp)∪ {p⌊(t+t′)/2⌋} is geodetic. Suppose that S ∩ Vp = ∅. Then for each v, v′ ∈ S,
no shortest path between v and v′ visits a vertex in Vi. Hence, we have S ∩ Vp ≠ ∅. For the latter

part, it is easy to see that S′ is geodetic because Vp ⊆ I[{pt, p⌊(t+t′)/2⌋, pt
′}]. □

We will prove two lemmata required for the next guessing step and for the subsequent ILP
formulation. First, we show that S contains no vertex on a path P for p ∈ E(G̃) with Tp ̸= ∅.

Lemma 8 Let p ∈ E(G̃) with Tp ̸= ∅. Then, S ∩ V (P ) ⊆ Tp.

Proof: For r ∈ R, suppose that S contains a vertex pi ∈ V (P ) \ Tp that lies between pr and prT .
Since Reduction Rule 3 is applied exhaustively, (S \ {pi}) ∪ {pr} is also a solution of minimum size,

contradicting the maximality of |S ∩ V (G̃)|. Thus, it remains to show that S contains no vertex
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that lies between p←T and p→T in P . Note that after applying Reduction Rule 4, each vertex in P
between p←T and p→T are included in I[Tp]. Due to its minimality, S contains no vertex pi ∈ V (P )\Tp

between p←T and p→T in P . □

We also show that S contains at most two inner vertices of P if Tp = ∅ for p ∈ E(G̃).

Lemma 9 Let p ∈ E(G̃) with Tp = ∅. Then, |S ∩ V (P )| ≤ 2.

Proof: If |S ∩ V (P )| = 3, then (S \ V (P )) ∪ {p←, p⌊hp/2⌋, p→} is also a minimum solution,

contradicting the fact that |S ∩ V (G̃)| is maximized. □

Now we make further guesses. For each edge p ∈ E(G̃), we guess the number np ∈ {0, 1, 2}
of inner vertices in S ∩ V (P ). Note that there are at most 3|E(G̃)| ≤ 33 fen(G)−3 possibilities by
Observation 5. The next step is to determine exactly which vertices to take using ILP.

4.3 Finding a minimum geodetic set via ILP

Let En = {p ∈ E(G̃) | Tp = ∅, np = n} for n ∈ {0, 1, 2} and let E′ = {p ∈ E(G̃) | Tp ̸= ∅}. Further,
let E = E1 ∪E2 ∪E′ = E(G̃) \E0. Note that S contains at least one vertex in V (P ) for every p ∈ E .
For each p ∈ E , we introduce two nonnegative variables x←p , x→p , and let p←S = px

←
p and p→S = php−x→p .

The intended meaning of x←p , respectively x→p is that S contains p←S , respectively p→S . Then the
geodetic set of our interest will be given by X = T ∪

⋃
p∈E1∪E2

{p←S , p→S }. For each p ∈ E we add
the following basic constraints:

x←p > 0, x→p > 0, and x←p + x→p ≤ hp if p ∈ E1 ∪ E2,

x←p + x→p = hp if p ∈ E1,

hp − 2x←p − 2x→p ≤ dG(v
←
p , v→p ) if p ∈ E2,

x←p = p←T and x→p = hp − p→T if p ∈ E′.

(1)

Let V←p = {p1, . . . , px
←
p −1} and V→p = {php−x→i +1, . . . , php−1} for each p ∈ E . We show that

Constraint (1) guarantees that the vertices between p←S and p→S are covered if p ̸∈ E0.

Lemma 10 If Constraint (1) is fulfilled, then Qp = V (P ) \ ({p←, p→} ∪ V←p ∪ V→p ) ⊆ I[S] holds
for each p ∈ E.
Proof: If p ∈ E1, then we have Qp = {px

←
p } = {px

→
p } and hence Qp ⊆ I[S]. If p ∈ E2, then we

have Qp = {px
←
p , px

←
p +1, . . . , px

→
p }. It follows from Constraint (1) that dP (p

←
S , p→S ) ≤ dP (p

←
S , p←)

+ dG(p
←, p→) + dP (p

→, p→S ). This implies that Qp ⊆ I[p←S , p→S ] ⊆ I[S]. Finally, if p ∈ E′, then all
vertices in Qp are covered as shown in Lemma 8. □

It remains to work out the constraints to cover (i) V (G̃) \ T , (ii) the inner vertices of P for
p ∈ E0, and (iii) V←p ∪ V→p for p ∈ E . First, we describe linear constraints to check whether an

endpoint of V (G̃) is visited by a shortest path starting from its inner path vertex. The other
endpoint of the path then is either in the same path (Lemma 12) or in a different path (Lemma 11).

Lemma 11 Let p ≠ q ∈ E(G̃) and r, s ∈ R (recall that R = {←,→}). Then, there is a shortest
path between prS and qsS visiting pr and qs if and only if the following hold:

xr
p + dG(p

r, qs) + xs
q ≤ xr

p + dG(p
r, qs) + hq − xs

q,

xr
p + dG(p

r, qs) + xs
q ≤ hp − xr

p + dG(p
r, qs) + xs

q,

xr
p + dG(p

r, qs) + xs
q ≤ hp − xr

p + dG(p
r, qs) + hq − xs

q.

(2)
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Proof: The length of the shortest prS–q
s
S-path visiting pr and qr is xr

p + dG(p
r, qs) + xs

q. This path
is shortest when it is (not necessarily strictly) shorter than prS–q

s
S-paths visiting pr or qs. □

Lemma 12 Let p ∈ E(G̃). Then, there is a shortest path between p←S and p→S visiting p← and p→

if and only if the following holds:

x←p + dG(p
←, p→) + x→p ≤ hp − x←p − x→p . (3)

Proof: The length of the shortest p←S –p→S -path visiting p← and p→ is x←p + dG(p
r, qs) + x←q . This

path is shortest when it is (not necessarily strictly) shorter than any p←S –p→S -path visiting only
inner vertices of P , whose length is hp − x←p − x→p . □

To cover the remaining vertices, observe the following.

Observation 6 The following hold.

(i) For every v ∈ V (G̃) \ T , v is covered if and only if there exist (p, r) ̸= (q, s) ∈ E × R
such that a shortest pr–qs-path visits v and a shortest prS–q

s
S-path visits pr and qs (that is,

d(pr, v) + d(v, qs) = d(pr, qs)).

(ii) For every p ∈ E0 where P has at least one inner vertex, the inner vertices are covered if
and only if there exist (p, r) ̸= (q, s) ∈ E × R and a shortest prS–q

s
S-path uses P (that is,

d(pr, ℓ←) + hℓ + d(ℓ→, qs) = d(pr, qs)).

(iii) For each p ∈ E(G̃) and r ∈ R, the vertices in V r
p are covered if it holds that xr

p ≤ 1 (that is,
V r
p = ∅) or there exists (q, s) ∈ E ×R such that a shortest prS–q

s
S-path visits pr.

For each of the cases (i)–(iii) and each of the parts to cover, the algorithm guesses (p, r) ∈ E ×R
(and (q, s) ∈ E×R); recall that |E| ≤ |E(G̃)| ≤ 3 fen(G)−3 and |V (G̃)| ≤ 2 fen(G)−2 and |R| = 2, so
there are at most fen(G)O(fen(G)) possibilities. For each guess, our algorithm adds the corresponding
constraints according to Constraint (2) or Constraint (3) and checks feasibility with the now
completed ILP formulation. We show that this approach is correct.

Theorem 7 Geodetic Set can be solved in O∗(fen(G)O(fen(G))) time.3

Proof: We prove that there is a geodetic set S ⊇ T satisfying Lemmata 8 and 9 if and only if one
of our ILP instances is a yes-instance. The forward direction is clearly correct. The correctness of
the other direction follows from Observation 6.

Note that we construct fen(G)O(fen(G)) instances of ILP. Each ILP instance uses O(fen(G))
variables, so solving it takes O∗(fen(G)O(fen(G))) time [20]. This results in an algorithm whose
running time is O∗(fen(G)O(fen(G))). □

5 Fixed-Parameter Tractability for Clique-Width with Di-
ameter

In this section we obtain fixed-parameter tractability results for clique-width combined with
diameter, and for tree-depth. Our algorithm is based on a theorem by Courcelle et al. [10]: If a
graph property π can be expressed as a formula φ in MSO1 logic, then whether a graph G has π
can be determined in O(f(cw(G) + |φ|) · (|V (G)|+ |E(G)|)) time for some function f .

3the O∗(·) notation hides factors that are polynomial in the input size
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Theorem 8 Geodetic Set is fixed-parameter tractable with respect to the clique-width and the
diameter of the input graph, combined.

Proof: We describe how to express Geodetic Set in MSO1 logic. We define

φ = ∃S (∀v [∃u,w (u ∈ S ∧ w ∈ S ∧Visit(u, v, w))]) ,

where Visit(u, v, w) is true if and only if there is a shortest path u–w visiting v. For the construction
of Visit(u, v, w) let us first define a formula Path(v1, . . . , vi) which evaluates to true if and only if
(v1, . . . , vi) is a path:

Path(v1, . . . , vδ) =
∧

j∈[i−1]

vjvj+1 ∈ E(G).

We then define Disti(u,w) which is true if and only if dG(u,w) = i.

Disti(u,w) = ∃v2, . . . , vi−1 (Path(u, v2, . . . , vi−1, w))

∧
∧

j∈[i−1]

∄v2, . . . , vj−1(Path(u, v2, . . . , vj−1, w)).

Finally, we define Visit(u, v, w):

Visit(u, v, w) =
∨

i∈[diam(G)]

Disti(u,w) ∧

 ∨
j∈[i−1]

Distj(u, v) ∧Distj−i(v, w)

 .

Note that |φ| ∈ diam(G)O(1). Thus, fixed-parameter tractability for cw(G) + diam(G) follows from
Courcelle’s theorem. □

Note that cw(G) ≤ 2 and diam(G) ≤ 2 for any cograph G. Thus, our result extends polynomial-
time solvability on cographs proven by Dourado et al. [12].

We also obtain fixed-parameter tractability for tree-depth as well as for modular-width from
Theorem 8. The tree-depth of a graph G can be roughly approximated by log h ≤ td(G) ≤ h, where h
is the height of a depth-first search tree of G [22]. Hence, the length of all paths in G, specifically
the diameter of G, is at most 2td(G). Moreover, cw(G) ≤ 3 · 2tw(G)−1 [9] and tw(G) ≤ td(G)− 1.
Similarly, cw(G) ≤ mw(G) (by definition) and diam(G) ≤ max{2,mw(G)} [19]. Consequently, we
obtain the following.

Corollary 9 Geodetic Set is fixed-parameter tractable with respect to tree-depth and with respect
to modular-width.

6 Conclusion

We initiated a parameterized complexity study of Geodetic Set for parameters measuring
tree-likeness. We conclude this work by suggesting some future research directions. None of the
fixed-parameter algorithms presented in this work are practical. Are there more efficient fixed-
parameter algorithms with respect to feedback edge number, tree-depth or modular-width? Further,
while we can quite surely exclude fixed-parameter tractability for feedback vertex number and path-
width, it is still open whether Geodetic Set is in XP with any (combination) of these parameters.
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Recall that the related Geodetic Hull problem is in XP with respect to tree-width [18], but
for Geodetic Set, even the complexity on series-parallel graphs (which have tree-width two) is
unknown.

Going to related problems and parameters, it is open whether Metric Dimension is fixed-
parameter tractable with respect to the feedback edge number [14]. This is especially interesting
since the problem behaves similarly to Geodetic Set in terms of complexity: Metric Dimension
is fixed-parameter tractable with respect to tree-depth [23] and with respect to modular-width [3],
but W[1]-hard with respect to path-width [5] and W[2]-hard with respect to the solution size [17].
We are optimistic that the method presented in Section 4 can be used to answer this question
positively, especially since Epstein et al. [15] showed that the number of solution vertices on a path
of degree-two vertices (cf. Lemma 9) is bounded by a constant.
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[1] Júlio Araújo, Grégory Morel, Leonardo Sampaio, Ronan Pardo Soares, and Valentin Weber.
Hull number: P5-free graphs and reduction rules. Discrete Applied Mathematics, 210:171–175,
2016. doi:10.1016/j.dam.2015.03.019.

[2] Mustafa Atici. Computational complexity of geodetic set. International Journal of Computer
Mathematics, 79(5):587–591, 2002. doi:10.1080/00207160210954.
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