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Abstract. A star-simple drawing of a graph is a drawing in which adjacent edges
do not cross. In contrast, there is no restriction on the number of crossings between
two independent edges. We forbid empty lenses, i.e., every lens is required to enclose
a vertex, and show that with this restriction 3 · (n − 4)! is an upper bound on the
number of crossings between two edges of a star-simple drawing of Kn. It follows that
n! bounds the total number of crossings in the drawing. This is the first finite upper
bound on the number of crossings in star-simple drawings of the complete graph Kn

with no empty lens. For a lower bound we construct a star-simple drawing of Kn with
no empty lens in which a pair of edges contributes 5n/2−2 crossings.

1 Introduction

A drawing of a graph G is a representation of G in the plane where vertices are represented by
pairwise distinct points, and edges are represented by Jordan arcs whose endpoints correspond to
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the vertices of the edge. Additionally, edges contain no other vertices, every common point of two
edges is either a proper (transversal) crossing or a common endpoint, the number of crossings is
finite, and no three edges cross at a single point. A simple drawing is a drawing in which adjacent
edges do not cross, and independent edges cross at most once.

We study a broader class of drawings, which we call star-simple drawings, where adjacent edges
do not cross, but independent edges may cross any number of times; see Figure 1 for illustration. In
such drawings, for every vertex v the induced substar centered at v is simple, that is, the drawing
restricted to the edges incident to v forms a plane drawing. In the literature, these drawings
also appear under the name semi-simple [1, 2] (with and without dash), and the condition that
adjacent edges do not cross appears as Rule + [12] or star condition [7]. We advocate using the
term star-simple for these drawings because it is more descriptive.

(a) simple (b) star-simple but not simple (c) not star-simple

Figure 1: Three types of drawings of K6. A nonempty lens is shaded in (b).

We are interested in bounding the number of crossings in star-simple drawings. In contrast to
simple drawings, star-simple drawings can have regions that are 2-gons, bounded by (continuous
parts of) two edges. We call such a region a lens; see Figure 1b. In the literature, lenses are also
called bigons or digons. A lens is empty if it has no vertex in its interior. If empty lenses are allowed,
the number of crossings in star-simple drawings of graphs with at least two independent edges is
unbounded because two edges can be “twisted” arbitrarily, as illustrated in Figure 2a. Therefore
we restrict our attention to star-simple drawings with no empty lens. Still, this restriction does not
suffice to guarantee a bounded number of crossings because an edge can “spiral” through another
edge, as illustrated in Figure 2b. However, we will show that star-simple drawings of the complete
graph Kn with no empty lens have a bounded number of crossings.

(a) twisting (b) spiraling

Figure 2: Edge pairs with an unbounded number of crossings.

It is well known that for every graph G, any drawing of G that minimizes the number of
crossings is simple: if two edges form a lens, they can be locally redrawn to decrease the total
number of crossings. This redrawing can change the homotopy type of the affected edge, with
respect to the set of vertices. However, if a lens formed by the two edges is empty, the redrawing
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keeps the homotopy types of the edges unchanged. This motivates the following definition.

A drawing D of a graph is called reduced if the number of crossings in D is minimum in its
homotopy class; that is, it is not possible to decrease the number of crossings by a continuous
deformation (isotopy) of the edges while avoiding passing over vertices. By the previous argument,
a reduced drawing has no empty lens. The converse is also true: a drawing with no empty lens is
reduced [5, Lemma 3.1].

Results and related work. Empty lenses play a crucial role in the context of crossing lemmas
for multigraphs see e.g. [6, 13]. This is because a group of parallel edges can be drawn without
a single crossing. Hence, for general multigraphs there is no hope to get a lower bound on the
number of crossings as a function of the number of edges. However, if empty lenses are forbidden,
we cannot draw arbitrarily many parallel edges.

Star-simple drawings have also been considered in the context of crossing minimization. Balko et
al. [2] study the monotone star-simple odd crossing number (denoted by mon-ocr+ in Schaefer [16]).
This is the smallest number of pairs of edges that cross an odd number of times in a monotone
star-simple drawing of G. They show that in the case of Kn this variant of the crossing number
equals the Hill number H(n), that is, the conjectured minimum number of crossings in any drawing
of Kn.

Kynčl [8, Section 5 “Picture hanging without crossings”] proposed a construction of two edges
in a graph on n vertices with an exponential number (2n−4) of crossings and no empty lens; see
Figure 3. This configuration can be completed to a star-simple drawing of Kn, cf. [14]. For n = 6
it is possible to have one more crossing while maintaining the property that the drawing can be
completed to a star-simple drawing of K6; see Figure 4. Repeated application of the doubling
construction of Figure 3 leads to two edges with 2n−4 + 2n−6 crossings in a graph on n vertices.
This configuration can be completed to a star-simple drawing of Kn. In Section 4 we introduce
generalizations of the doubling technique. Using this technique we can construct a pair of edges
with 5n/2−2 crossings such that n − 4 additional vertices are enough to hit all the lenses formed
by the two edges, i.e., to make it a drawing with no empty lens. In addition we show that this
drawing of two edges can be extended to a star-simple drawing of Kn.

Whereas results on the lower bound were known, the question if there exists an upper bound
on the maximum crossing number in these drawings has still been open. In this work, we will give
an upper bound of 3(n− 4)! for the maximum crossing number of star-simple drawings of Kn with
no empty lens and therefore answer this question positively.

Figure 3: The doubling construction yields a number of crossings which is exponential in the
number of vertices which hit all lenses.
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(a) 5 crossings (b) star-simple completion (c) the stars of the drawing

Figure 4: A star-simple drawing of K6 with a pair of edges crossing 5 times.

2 Preliminaries

In this section we first introduce some notation and then discuss two types of configurations
(deadlocks and spirals) that cannot occur in reduced star-simple drawings of Kn.

Curves and edges. We use the term curve as a synonym for Jordan arc, that is, the image
γ = Im(fγ) of the closed unit interval under an injective continuous map fγ : [0, 1] → R2. The
points fγ(0) and fγ(1) are the endpoints of γ. For a closed curve the two endpoints coincide
and the corresponding map is injective on [0, 1) only. A curve γ1 is a subcurve of a curve γ2 if
γ1 ⊆ γ2. Two curves overlap if they have a common subcurve; otherwise they are nonoverlapping.
Sometimes we consider curves as directed objects and refer to them as a curve from one endpoint
to the other.

An edge in a drawing is represented by a curve. In a slight abuse of notation we use the term
edge to refer to both the edge of an abstract graph and the curve that represents this edge in the
drawing under consideration. In that sense, an edge is a curve. Whenever we use the term curve
explicitly, these objects may or may not be part of the graph or drawing under consideration.

Arrangements and lenses. Let Γ be a set of curves such that any pair of curves of Γ has a
finite set of intersection points. The arrangement A(Γ) induced by Γ is the partition of R2 into
vertices (endpoints, crossings, and touchings of curves), edges (maximal vertex-free components of
curves), and faces (maximal connected subsets of the complement R2\⋃γ∈Γ γ). Two arrangements
are isomorphic if there is an orientation-preserving homeomorphism of the plane transforming the
curves of one arrangement into the curves of the other. Such a homeomorphism bijectively maps
vertices to vertices, edges to edges, and faces to faces, so that incidences and the circular order (of
edges around vertices and faces) are preserved.

A lens in an arrangement A(Γ) is an open region bounded by a closed curve that is the union
of two subcurves δ1 ⊆ γ1 ∈ Γ and δ2 ⊆ γ2 ∈ Γ such that δ1 and δ2 are internally disjoint and have
the same endpoints. A lens L is minimal if no lens induced by the same pair of curves is strictly
contained in L.

Let Γ be a set of curves corresponding to the set of edges of a drawing of a graph G. Every lens
of the induced arrangement contains a minimal lens that is induced by the same pair of curves. A
lens is empty if it does not contain a vertex of G.
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Deadlocks. Let us study the arrangement A(e, e′) induced by two curves e and e′ that are
independent (that is, they do not share an endpoint). In any such arrangement each endpoint of
e and e′ lies on the boundary of exactly one face, so we say that it belongs to this face. We start
by observing that for two independent edges in a star-simple drawing of the complete graph, all
endpoints of the edges belong to the same face of the induced arrangement. This fact was used
earlier by Aichholzer et al. [1] and by Kynčl [9, p. 18].

Lemma 1 ([1, 9]) Let e and e′ be independent edges in a star-simple drawing of the complete
graph. Then the four vertices of e and e′ belong to the same face of A(e, e′).

Proof: Let u and v be endpoints of the two edges belonging to different faces. If u ∈ e and v ∈ e′,
then the edge u, v of Kn has to violate the star-simplicity, see Figure 5a. If u and v belong to e,
then fix w ∈ e′. Now, either u,w or v, w is a pair belonging to different faces, whence again we are
in the first case. □

A deadlock is a pair e, e′ of independent curves for which not all vertices belong to the same face
of the arrangement A(e, e′) induced by e and e′, Figure 5a shows two deadlocks. From Lemma 1
we know that deadlock configurations do not occur in star-simple drawings of complete graphs.

Spirals. Now suppose that D is a star-simple drawing of a complete graph with no empty lens.
In this case we can argue that e and e′ do not form a configuration as the black edge e and the red
edge e′ in Figure 5b. Indeed, this configuration has an inner lens L (shaded green in the figure)
and by assumption this lens is non-empty, that is, L contains a vertex x. Let u be a vertex of e.
The edge xu (the green edge in the figure) must not cross e, hence it follows the “tunnel” formed
by e. This yields a deadlock configuration of the edges xu and e′. Also note that if in Figure 5b
we connect x to a vertex of e′ with a curve γ that does not cross e′, then γ necessarily forms a
deadlock with e.

e

e′

e

e′

(a) deadlocks

x

u

e

e′

(b) spiral

Figure 5: Configurations that do not appear in star-simple drawings of complete graphs with no
empty lens.

We use this intuition to formally define spirals. A curve γ1 forms a spiral with a curve γ2 if
the curves γ1 and γ2 form a lens L such that every curve that connects some point in the interior
of L to some endpoint of γ1 without crossing γ1 forms a deadlock with γ2. Two curves γ1 and γ2
form a spiral if γ1 forms a spiral with γ2 or γ2 forms a spiral with γ1 (or both).

Lemma 2 In a star-simple drawing of a complete graph with no empty lens no pair of edges forms
a spiral.
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Proof: Consider a pair e, e′ of edges in a star-simple drawing D of a complete graph with no
empty lens, and suppose for the sake of a contradiction that e and e′ form a spiral. Without loss
of generality, suppose that e forms a spiral with e′. Then by definition e and e′ form a lens L
such that every curve that connects some point in the interior of L to some endpoint of e without
crossing e forms a deadlock with e′. Let u be an endpoint of e. As D has no empty lens, there is
a vertex v of D inside L. The edge uv in D connects v ∈ L to u and, therefore, forms a deadlock
with e′. This contradicts Lemma 1, which states that the edges uv and e′ of D do not form a
deadlock. □

Unlocked pairs and loose meanders. A pair of curves that does not form a deadlock is called
an unlocked pair of curves. In enumerative combinatorics unlocked pairs are also studied as open
meanders, see sequence A005316 in The On-Line Encyclopedia of Integer Sequences, and it is a
major open problem to find a precise formula or tight asymptotics [3, 10, 11, 15]. An unlocked
pair is a loose meander if it does not form a spiral. It is convenient to think of an unlocked pair
as given in a standard representation: All the vertices of the two curves e and e′ are on the outer
face, the curve e′ is horizontal, and the other curve e forms a wiggling “meander” curve such that
all crossings of e with the line supporting e′ lie within e′.

By Lemma 1 and Lemma 2 every pair of edges in a reduced star-simple drawing of Kn, i.e., in
a star-simple drawing with no empty lens, forms a loose meander. It is an open question whether
there are loose meanders that cannot be completed to a star-simple drawing of Kn.

Exit-curves. Consider an unlocked pair e, e′ of curves in standard representation. Let L be a
minimal lens in A(e, e′), and let p be a point in the interior of L. An exit-curve for p along e
through e′ is a curve γ between p and some point q in the outer face of A(e, e′) such that γ is
disjoint from e and γ has the minimum number of crossings with e′ (among all curves between p
and q that are disjoint from e), see Figure 6.

We use exit-curves to model loose meanders that arise from a star-simple drawing of Kn with no
empty lens. The point p models a vertex in L (which must exist), and the exit-curve for p along e
models an edge between p and an endpoint of e (which must be drawn without crossing e). The
following property of exit-curves, which we prove later in Section 3, turns out to be very useful.

Lemma 3 Let e, e′ be a loose meander, and let p be a point in the interior of a minimal lens
in A(e, e′). Then every exit-curve for p along e through e′ forms a loose meander with e′.

3 Crossings of pairs of edges

In this section we derive an upper bound on the number of crossings of two edges in a star-simple
drawing of Kn with no empty lens. Actually, we prove a more general statement that bounds the
number of crossings of a loose meander in such a drawing.

Theorem 4 Let C(k) denote the maximum number of crossings in a loose meander where all
lenses can be hit by k points. Then C(k) ≤ e · k!, where e ≈ 2.718 is Euler’s number.

Proof: Let e, e′ be a loose meander in standard representation, and let all lenses of A(e, e′) be hit
by the points p1, . . . , pk. For each i = 1, . . . , k, select an exit-curve ei for pi along e through e′.
See Figure 6 for an example of an exit-curve. By Lemma 3 we know that ei, e

′ is a loose meander,
for every i ∈ {1, . . . , k}. In addition, we claim the following two properties:

http://oeis.org/A005316.
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(P1) All lenses of A(ei, e
′) are hit by the k − 1 points p1, . . . , pi−1, pi+1, . . . , pk, for each i ∈

{1, . . . , k}.

(P2) Between any two crossings of e and e′ from left to right, that is, in the order along e′, there
is at least one crossing of e′ with one of the exit-curves ei.

pi

ei

e

u
e′

Figure 6: A loose meander e, e′ with a point pi and an exit-curve ei for pi.

Before proving these two properties, we show that they imply the statement of the theorem.
More precisely, we prove by induction on k that

C(k) ≤ k! ·
k∑

s=0

1

s!
.

In the base case k = 0 we have C(0) = 1 = 0!. For general k > 0, from (P1) we see that the
number Xi of crossings between ei and e′ is upper bounded by C(k − 1). From (P2) we obtain
that C(k) ≤ 1 +

∑
i Xi. Combining these and using the inductive hypothesis we get

C(k) ≤ k · C(k − 1) + 1 ≤ k · (k − 1)! ·
k−1∑
s=0

1

s!
+ 1 = k! ·

k∑
s=0

1

s!
< k! · e. □

Bags and gaps. For the proof of the two claims we need some notation. Let ξ1, ξ2, . . . , ξN be
the crossings of e and e′ indexed according to the left to right order along the horizontal curve e′.
Let gi and hi be the subcurves of e′ and e, respectively, between crossings ξi and ξi+1. Observe
that gi ∪ hi forms a closed Jordan curve. The bounded region enclosed by gi ∪ hi is the bag Bi

and gi is the gap of the bag Bi, see Figure 7. A bag Bi where hi does not cross e
′ corresponds to

a minimal lens in A(e, e′) and vice versa. The following observation is crucial.

Lemma 5 For two bags Bi and Bj the open interiors are either disjoint or one is contained in
the other.

Proof: If i = j, then the statement holds trivially. Hence suppose that i ̸= j. Assume that there
exists a point p in the open interior of Bi ∩Bj . We have to show that Bi ⊆ Bj or Bj ⊆ Bi. Let γ
be a curve from p to some point in the exterior face of the arrangement A(e, e′) with γ ∩ e = ∅.
(Such a curve exists because e is a curve, which has no self-intersections by definition, and so R2 \e
is connected.) Moreover, we may take γ to be a combinatorially shortest such curve, in the sense
that it intersects every edge of A(e, e′) in at most one point, see Figure 7a for an example.
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ξ1 ξ2 ξ3 ξ4 ξ5 ξ6

e′

e

B1

B5

γ

(a) loose meander and its bags

B1 \B5

g1 \ e g5 \ e

γ

(b) allowed route to the outer face after leaving B5

B1

g1

h1

B2

g2

h2

B3

g3

h3 B4

g4

h4

B5

g5

h5

(c) all bags of loose meander

B3

B1

B5

B2 B4

(d) containment order of loose meander

Figure 7: A loose meander and its bags

Every bag Bx is bounded by a closed Jordan curve gx ∪ hx, where hx ⊆ e. Therefore, in order
to leave Bi and Bj , the curve γ must cross the gaps gi and gj , respectively. Moreover, by the
shortness assumption on γ, once the curve exits a bag it cannot re-enter it. As (gi \e)∩(gj \e) = ∅,
the curve γ leaves one bag strictly before the other. Without loss of generality assume that γ
leaves first Bi and then Bj . The open interior of Bi is disjoint from e, hence hj is outside of it.
Since γ leaves Bi only once, by crossing gi we also have that gj is outside the open interior of Bi,
see Figure 7b. Hence, the closed curve gj ∪ hj and the open interior of Bi are disjoint. Since both
contain p in the interior we have Bi ⊂ Bj . □

Lemma 5 implies that the containment order on the bags is a downwards branching forest. The
minimal elements in the containment order are the minimal lenses in A(e, e′). Now we are ready
to prove Lemma 3, which was stated earlier in Section 2.

Lemma 3 Let e, e′ be a loose meander, and let p be a point in the interior of a minimal lens
in A(e, e′). Then every exit-curve for p along e through e′ forms a loose meander with e′.

Proof: Let L◦ be a minimal lens in A(e, e′) and let p be a point in L◦. Let γ be an exit-curve
for p along e through e′. The second endpoint of γ is a point q in the outer face of A(e, e′).
Let L◦ = Bi1 ⊂ Bi2 ⊂ . . . ⊂ Bit be the maximal chain of bags with minimal element L◦.

In order to get from p to q, the curve γ must leave each of the bags Bi1 , . . . , Bit . As γ is disjoint
from e by definition, it can only leave a bag through its gap. Therefore, the curve γ crosses e′ at
the gaps gi1 , . . . , git , in this order. Moreover, as γ minimizes the number of crossings with e′, it
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crosses each of these gaps exactly once. In other words, for every exit-curve the sequence of faces
in the arrangement A(e, e′) that it traverses is uniquely determined. As a consequence also the
arrangement A(γ, e′) is uniquely determined up to isomorphism.

We have to show that γ, e′ is a loose meander. First we argue that γ, e′ is an unlocked pair.
Since e, e′ is a loose meander e does not form a spiral with e′. Hence, there exists some curve γ′

from a point p′ ∈ L◦ to an endpoint of e such that γ′ does not cross e and γ′, e′ is an unlocked pair.
Among all eligible curves we select γ′ to have a minimum number of crossings with e′. As γ′ does
not cross e, it also (like γ) crosses the gaps gi1 , . . . , git in this order. However, it is not clear a priori
that the curve γ′ crosses each of these gaps only once and that it does not cross any other gaps.
But we claim that this is the case, and so γ′ has the same number, order, and type of crossings
with e′ as γ.

In order to prove the claim suppose for the sake of a contradiction that γ′ has more crossings
with e′ than γ. As a consequence of the forest structure of the bag containment order, the curve γ′

crosses every gap in the sequence gi1 , . . . , git an odd number of times and every other gap an even
number of times. Since γ′ has more crossings with e′ than γ there is some gap g which is crossed
at least two times by γ′. In the next three paragraphs we argue in detail that there is a detour
of γ′ with ends at consecutive crossings on g. Such a detour can be shortcut to obtain a curve γ′′

which can replace γ′ and has fewer crossings with e′. This contradicts the choice of γ′.
Consider first the case that γ′ crosses a gap gik , for some k ∈ {1, . . . , t}, for an odd number of

times that is at least three. Order the crossings c1, . . . , cx of γ′ with gik as they appear along γ′,
when tracing the curve starting from p′. A crossing cj , for j odd, corresponds to a point where γ′

leaves the bag Bik . Conversely, for j even, a crossing cj corresponds to a point where γ′ enters the
bag Bik . So the subcurve of γ′ between c2i and c2i+1 together with the subcurve of gik between c2i
and c2i+1 forms a closed Jordan curve whose closed bounded region B′

i is contained in Bik . Given
that γ′ is a curve (and therefore does not cross itself), any two such regions B′

i and B′
j are either

disjoint or one contains the other. As γ′, e′ form an unlocked pair, no endpoint of γ′ lies in any of
the regions B′

i since they form lenses. Hence, the first crossing c1, that leaves Bik by definition,
cannot lie in any of the regions B′

i. It follows that there exists a region B′
i so that c2i and c2i+1

are consecutive crossings of γ′ and gik not only along γ′ but also along gik .

Let f be a point on γ′ just (sufficiently close) before c2i, and let ℓ be a point on γ′ just
after c2i+1. We modify γ′ by replacing the subcurve γ′

fℓ from f to ℓ by a new curve δ from f to ℓ
that (sufficiently closely) follows gik so that δ is disjoint from e′ and from γ′ \ γ′

fℓ. We claim that
the resulting curve γ′′ = (γ′ \ γ′

fℓ)∪ δ forms an unlocked pair with e′. To see this, observe that the
arrangements A(γ′, e′) and A(γ′′, e′) differ only by the closed Jordan curve γfℓ∪δ, and the bounded
side of this curve does not contain any endpoint of the edges e′ and γ′ (which has the same endpoints
as γ′′). Therefore, given that γ′, e′ is an unlocked pair, the same holds for γ′′, e′. However, the
curve γ′′ has fewer crossings with e′, in contradiction to the minimality in the definition of γ′.

The case where γ′ crosses a gap that is not among gi1 , . . . , git an even number of times can be
handled analogously. The only difference is in the parity of the crossings ci between γ′ and gik
and that the bag Bik does not contain an endpoint of γ′. In conclusion we have shown that the
arrangements A(γ′, e′) and A(γ, e′) are isomorphic. In particular, the two curves γ and e′ form an
unlocked pair, as claimed.

To show that γ, e′ is a loose meander it remains to show that γ does not form a spiral with e′.
So consider a minimal lens L in A(γ, e′). It suffices to show that there exists some curve δ from
some point d ∈ L to an endpoint of γ so that δ does not cross γ and δ, e′ is an unlocked pair. To
show this we argue as follows.

First, we claim that there exists a minimal lens L′ formed by e and e′ with L′ ⊂ L. Assuming
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this holds, we select d ∈ L′ arbitrarily and let δ be an exit-curve for d along e through e′. See
Figure 8 for illustration. By the first part of this proof we know that δ, e′ is an unlocked pair.
Moreover, as both δ and γ are exit-curves along e through e′, we can select δ so that it does not
cross γ. (Due to the forest structure of the bag containment order, if δ should reach a bag visited
by γ, then it can simply follow γ from this point onward.) So we have found a curve δ to certify
that γ does not form a spiral with e′.

In order to complete the proof, it remains to establish the claim about the existence of a
lens L′ ⊂ L formed by e and e′. First note that e∩L ̸= ∅ because γ aims to minimize the number
of crossings with e′ by definition. If e was disjoint from L, then we could remove the two crossings
between γ and e′ that form L and route γ along e′ instead. Summing up the arguments and
definitions given before: (1) e does not cross γ, (2) no endpoint of e is inside L, and (3) e does
not cross itself. It follows that there is a lens formed by e and e′ inside L, and this lens in turn
contains a minimal lens L′ formed by e and e′. □

L
L′

e

γ

δ

p

d

q

e′

Figure 8: An exit-curve γ (green) for p along e through e′ that forms a lens L with e′ and an
exit-curve δ (blue) for d along e through e′ that forms a lens L′ ⊂ L with e′.

As a next step, we reformulate and prove the second claim (P2).

Lemma 6 For each pair ξi, ξi+1 of consecutive crossings along e′ there is a lens L such that the
exit path ej of a point pj ∈ L crosses e′ between ξi and ξi+1.

Proof: The subcurve of e′ between ξi and ξi+1 forms the gap gi of the bag Bi. Let L be any of
the minimal elements below Bi in the containment order of bags, that is, L ⊆ Bi is a minimal
lens formed by e and e′. By assumption, there exists a point pj ∈ L ⊆ Bi. It follows that the
exit-curve ej of pj crosses gi, that is, the curve ej crosses e′ between ξi and ξi+1. □

It remains to prove (P1). Recall that (P1) states that all lenses formed by ei and e′ are hit by
the k − 1 points p1, . . . , pi−1, pi+1, . . . , pk.

Proof of (P1): We know by Lemma 3 that ei, e
′ is an unlocked pair, that is, the endpoints of ei

and e′ belong to the same face of the arrangement A(ei, e
′), which is the outer face. In particular,

the endpoint pi of ei belongs to the outer face (and is not in any lens) of A(ei, e
′). Since by the

proof of Lemma 3 every lens of A(ei, e
′) contains a lens of A(e, e′), it also contains one of the

points p1, . . . , pk that hit all lenses of A(e, e′) by assumption. Altogether, all lenses of A(ei, e
′) are

hit by the k − 1 points p1, . . . , pi−1, pi+1, . . . , pk. □
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4 Lower Bound

In this section we discuss constructions for loose meanders with many crossings. In the introduction
we explained the doubling construction which when initialized with a simple crossing yields a loose
meander with k minimal lenses and 2k crossings with the horizontal edge, see Figure 3. The
doubling technique initialized with the loose meander from Figure 4a yields a loose meander with
k minimal lenses and 2k + 2k−2 crossings.

We now define a product operation for loose meanders. Let M1,M2 be loose meanders such
that Mi has ki minimal lenses and ci crossings. Then the product M1 ⊗ M2 is a loose meander
with k1 + k2 minimal lenses and c1 · c2 crossings. We note in passing that the product can be
defined in the more general context of open meanders.

Let M1 be drawn such that all the crossings are in the interval (0, 1) of the x-axis. Draw M2

with a pen of thickness 1, the meander edge will appear as a tube of width 1 in the drawing. Now
cut the meander-edge M1 open along the x-axis. We call the resulting drawings Ha and Hb where
Ha denotes the part of M1 above the x-axis and Hb the one below. We place Ha before the first
crossing of M2 with the x-axis and Hb after the last crossing. It may be necessary to rotate one of
Ha or Hb by 180◦ to make their left sides be on the left side of the tube formed by M2. Then we
draw a bundle of c1 parallel curves in the M2-tube such that each curve connects the two copies
of a crossing point of M1. Figure 9 illustrates the construction. The orientation of M1 ⊗ M2 is
inherited from M1, that is, the starting point of the oriented meander-edge of M1 is the starting
point for the meander-edge of the product.

From the construction it is obvious that the product M1 ⊗M2 has k1 + k2 minimal lenses and
c1 · c2 crossings. Less obvious is that the product is indeed a loose meander, that is, it has no
deadlock and no spiral.

Proposition 7 The product M1⊗M2 of two loose meanders has no deadlock and forms no spiral,
that is, it is a loose meander.

Proof: Let ei be the meander-edge of Mi. Since M1 and M2 form no deadlock the end-points
of e1 and e2 are accessible from the outside in M1 and M2. This accessibility is inherited by the
endpoints of the meander-edge e1 ⊗ e2 of the product.

Let e, e′ be a loose meander and v be a vertex in one of its minimal lenses. Recall that the
exit-path of v is a curve γv connecting v to the outside such that γv avoids e and has as few
crossings with e′ as possible. Edge e has no spiral around v if and only if the exit-path γv has no
deadlock with e′.

Now consider a lens-vertex v of the product M1 ⊗ M2. The lens of v can clearly be assigned
to M1 or M2. Let v belong to a lens of M1 and note that v belongs to one of Ha or Hb. Let γv
be an exit-curve of v in M1. The corresponding exit-curve γ′

v of v in the product is the stretched
and bent version of γv. For s ∈ {a, b}, if v ∈ Hs, then γv has no arc in Hs enclosing v, as such an
arc would create a deadlock. In Hs the arcs of γv and γ′

v are identical, hence γ′
v has no arc in Hs

enclosing v, that is, γ′
v has no deadlock and M1 ⊗M2 has no spiral around v.

Now let v belong to a lens of M2. Consider the exit-path γv in the drawing of M2 where e2
is drawn with the thickness of the tube. After placing the stretched M1 in the tube the path
γv remains an exit-path for v in the product. The path γv still has no deadlock with e′ whence
M1 ⊗M2 has no spiral around v. □

We remark that the set of meanders forms a monoid with the product operation, that is, the
product is associative and has a neutral element, the simple crossing. The product fails to be
commutative.
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Figure 9: The product M1 ⊗M2 of two loose meanders.

Let M be the loose meander with 5 crossings and 2 lenses depicted in Figure 4a. Repeat-
edly taking products with M we obtain loose meanders M⊗k with 5k crossings and 2k lenses as
illustrated in Figure 10. We summarize:

Corollary 8 There are loose meanders with 2k minimal lenses and 5k crossings.

It has been shown in fifth author’s PhD thesis [14] that the edge pair e, e′ of the loose meander
obtained by iterated doubling initialized with a simple crossing can be completed to a star-simple
drawing of Kn. An obvious question is whether loose meanders with 2k lenses and 5k crossings can
also be integrated in a star-simple drawing of K2k+4. It turns out that the product construction
is compatible with completability.

Let M be a loose meander formed by the edge pair (e, e′). A completion of M is a star-simple
drawing of Kn with no empty lens that contains M , i.e. the two edges e and e′, and moreover,
every crossing of an edge e′′ of the drawing with the horizontal line supporting e′ is a crossing of
e′′ and e′. A loose meander (e, e′) is completable if a completion of (e, e′) exists.

Theorem 9 Let M1 and M2 be completable loose meanders. Then also M1 ⊗M2 is a completable
loose meander.
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M1

⊗

M2

⊗M2 ⊗M2

⊗M
2

Figure 10: The exponentiation of the drawing with five crossings and two lens vertices yields an
exponential number of crossings with base

√
5.
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Proof: We will produce a drawing of the complete graph containing M1 ⊗ M2. The drawing is
constructed in three steps. Note that we will use a drawing of K8 deferring from the one given in
Figure 4. The chosen complete drawing has the advantage that the end vertices of the straight-line
edge are embedded in the outer face.

Let M1 = (e1, e
′) have k minimal lenses and let u0, u1 and w0, w1 be the vertices of e1

and e′, respectively. Let D1 be a completion of M1. The vertex set of D1 shall be V1 =
{v1, . . . , vk, u0, u1, w0, w1}. Now delete the edge e′ from D1 and for i = 0, 1 split wi into w′

i

and w′′
i so that edges approaching wi from the upper halfspace end at w′

i and edges approaching
wi from the lower halfspace end at w′′

i . Now move w′
0 and w′

1 into the upper halfspace and w′′
0 , w

′′
1

into the lower halfspace, respectively. This yields a drawing D∗
1 . We now consider the ‘product’ of

D∗
1 with M2 = (e2, e

′): Cut D∗
1 along the segment which used to be e′. Let Da and Db be the parts

above and below the segment, respectively. For later use we let Va and Vb be the vertices that
belong to Da and Db, respectively. Place Da and Db with appropriate orientation at the beginning
and the ending of the M2-tube obtained by thickening e2 and draw a bundle of parallel curves
in the M2-tube such that each curve connects the two copies of a crossing point of D∗

1 . Let D2
1

denote the subdrawing of D∗
1 obtained by deleting w′

0, w
′
1, w

′′
0 , w

′′
1 and the incident edges. Now D2

1

is a drawing of Kk+2, see Figure 11. Before continuing we note that the drawing D2
1 is isomorphic

to a subdrawing of D∗
1 and, therefore, star-simple. For each vertex v of D2

1 we now define a hose.
If (v, w′

0) is an edge of D∗
1 the hose hv of v is a narrow corridor that follows the edge (v, w′

0) to
connect v with the outer face of D2

1, otherwise the hose hv follows (v, w′′
0 ). Since in D1 the star

of w0 has no crossings we can adapt the widths of the hoses so that they are pairwise disjoint.

Now consider a completion D2 of M2. Let M2 have ℓ minimal lenses and let x0, x1 and w0, w1

be the vertices of the meander edges e2 and e′, respectively (since w0, w1 do not appear in D2
1 we

can use them again). The vertex set of D2 shall be V2 = {y1, . . . , yℓ, x0, x1, w0, w1}. Consider the
subdrawing D∗

2 of D2 induced by the vertices V2 \{x0, x1, w0, w1}. In this drawing we can integrate
a copy of D2

1 along the curve that used to represent e2, like the gray tube in Figure 13. We assume
that Da is at the end of the e-tube which corresponds to x0 while Db is at the end corresponding to
x1. The next task is to introduce edges connecting vertices of D∗

2 with vertices of D2
1. We assume

that there is a box Ba such that the hoses of vertices in Va all end on one side of Ba. For each
vertex yi of D∗

2 we draw a bundle of |Va| essentially parallel curves from yi to the other side of
the box Ba. By drawing the bundle of yi along the curve of the edge (yi, x0) of D2 we can make
sure that the bundles inherit the disjointness from the star of x0 in D2. For each v of Da route as
many internally disjoint curves starting at v in the hose hv to Ba as there are bundles attached to
Ba. Finally, complete the partially drawn edges which end on the two sides of Ba by connecting
them in a crossing minimal way so that each v ∈ Va gets an edge to each yi. Figure 12 shows an
example of the connections within a box. Note that a crossing pair of edges corresponds to distinct
bundles on both sides of the box so that we only introduce crossings which are unproblematic for
a star-simple drawing.

Vertices of Db are connected to the yi in a similar way. This time we route a bundle of size |Vb|
from yi along the curve of the former edge (yi, x1) to a box Bb. Let D′ be the drawing obtained in
this step. Figure 13 shows an example of a combined drawing D′.

It remains to add the horizontal edge e′ = (w0, w1) to the drawing and connect the two vertices
with all the vertices of D′. By looking at the edge (yi, w0) in D2 we see that from yi we can draw a
curve to the outer face that avoids crossings with edges from the star of yi. For a vertex v ∈ Va∪Vb

we also find such a curve. For v ∈ Va, draw the curve leftmost in the hose of v and continue trough
Ba so that it ends left of all the existing bundles. This can be done for all the vertices of Va such
that their curves are disjoint and form a new bundle on the other side of Ba. From there the
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M1 connection of inner vertices

⊗

M2

Figure 11: Illustration of completion of the inner meanders derived by M1
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Figure 12: Connecting the partial edges in a box Ba.

Figure 13: Connection of the M1 vertices to the M2 lens vertices
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bundle can follow the curve that represents the edge (x0, w0) of D2 to the outer face.
Each of the curves that lead from vertices of D′ to the outer face can be used to obtain two

edges, one that connects to w0 and one that connects to w1. All these edges can be realized so
that the stars of w0 and w1 are simple. Figure 14 shows an example. This completes the proof of
Theorem 9. □

5 Crossings in complete drawings and open questions

In Section 3 we gave an upper bound on the number of crossings of a loose meander. Accounting
for the four endpoints of the two edges of the loose meander we have k ≤ n − 4 in Theorem 4.
Therefore, we obtain that 3(n−4)! is an upper bound on the number of crossings of a pair of edges
in a star-simple drawing of Kn without empty lens. This directly implies that the drawing of Kn

has at most n! crossings.
In Section 4 we introduced the product of loose meanders. Based on the product we could

construct star-simple drawings with exponentially many crossings between a pair of edges with the
basis of the exponential function being

√
5.

Figure 15 shows a loose meander with 4 minimal lenses and 27 crossings. It was obtained
using a corrected version of the algorithm described in [1, 4]. Using products we get a family of
loose meanders with 4k minimal lenses and 27k/4 crossings. We have convinced ourselves that the
example and therefore the corresponding family can be completed. By Theorem 9, this raises the
basis of the exponential function from 51/2 ∼ 2.236 to 271/4 ∼ 2.28.
We leave the following problems:

� How many crossings can a star-simple drawing of Kn have? In particular is the growth singly
exponential or larger?

� How many crossings can a loose meander with k lenses have? If the growth is singly expo-
nential, what is the basis?

� Is every loose meander completable to a star-simple drawing of a complete graph without
empty lens?
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Figure 14: Connection of the vertices of e′ to the vertices of M1 and M2.

Figure 15: Meander with 4 lenses and 27 crossings.
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