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Abstract. We consider the construction of a polygon P with n vertices whose
turning angles at the vertices are given by a sequence A = (α0, . . . , αn−1), αi ∈ (−π, π),
for i ∈ {0, . . . , n − 1}. The problem of realizing A by a polygon can be seen as that
of constructing a straight-line drawing of a graph with prescribed angles at vertices,
and hence, it is a special case of the well studied problem of constructing an angle
graph. In 2D, we characterize sequences A for which every generic polygon P ⊂ R2

realizing A has at least c crossings, for every c ∈ N, and describe an efficient algorithm
that constructs, for a given sequence A, a generic polygon P ⊂ R2 that realizes A
with the minimum number of crossings. In 3D, we describe an efficient algorithm that
tests whether a given sequence A can be realized by a (not necessarily generic) polygon
P ⊂ R3, and for every realizable sequence the algorithm finds a realization.

1 Introduction

Straight-line realizations of graphs with given metric properties have been one of the earliest
applications of graph theory. Rigidity theory, for example, studies realizations of graphs with
prescribed edge lengths, but also considers a mixed model where the edges have prescribed lengths
or directions [4, 13, 14, 15, 22]. In this paper, we extend research on the so-called angle graphs,
introduced by Vijayan [28] in the 1980s, which are geometric graphs with prescribed angles between
adjacent edges. Angle graphs found applications in mesh flattening [30], and computation of
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conformal transformations [8, 23] with applications in the theory of minimal surfaces and fluid
dynamics.

Viyajan [28] characterized planar angle graphs under various constraints, including the case
when the graph is a cycle [28, Theorem 2] and when the graph is 2-connected [28, Theorem 3].
In both cases, the characterization leads to an efficient algorithm to find a planar straight-line
drawing or report that none exists. Di Battista and Vismara [6] showed that for 3-connected angle
graphs (e.g., a triangulation), planarity testing reduces to solving a system of linear equations and
inequalities in linear time. Garg [10] proved that planarity testing for angle graphs is NP-hard,
disproving a conjecture by Viyajan. Bekos et al. [2] showed that the problem remains NP-hard
even if all angles are multiples of π/4.

The problem of computing (straight-line) realizations of angle graphs can be seen as the prob-
lem of reconstructing a drawing of a graph from some given partial information. The research
problems to decide if the given data uniquely determine the realization or its parameters of in-
terest are already interesting for cycles, and were previously considered in the areas of conformal
transformations [23] and visibility graphs [7].

In 2D, we are concerned with realizations of angle cycles as polygons minimizing the number
of crossings which, as we shall see, depends only on the sum of the turning angles. It follows from
the seminal work of Tutte [27] and Thomassen [26] that every positive instance of a 3-connected
planar angle graph admits a crossing-free realization if the prescribed angles yield convex faces.
Convexity will also play a crucial role in our proofs.

In 3D, we would like to determine whether a given angle cycle can be realized by a polygon.
Somewhat counter-intuitively, self-intersections cannot always be avoided in a polygon realizing
the given angle cycle in 3D; we present examples below. Di Battista et al. [5] characterized
oriented polygons that can be realized in R3 without self-intersections with axis-parallel edges of
given directions. Patrignani [21] showed that recognizing crossing-free realizability is NP-hard for
graphs of maximum degree 6 in this setting.

Throughout the paper we assume arithmetic modulo n on the indices, and use ⟨., .⟩ to denote
inner products.

Angle Sequences in 2D. In the plane, an angle sequence A is a sequence (α0, . . . , αn−1) of real
numbers such that αi ∈ (−π, π) for all i ∈ {0, . . . , n − 1}. Let P ⊂ R2 be an oriented polygon
with n vertices v0, . . . , vn−1 that appear in the given order along P , which is consistent with the
given orientation of P . The turning angle of P at vi is the angle in (−π, π) between the vector
vi − vi−1 and vi+1 − vi. The sign of the angle is positive if a rotation of the plane that maps the
vector vi−vi−1 to the positive direction of the x-axis, makes the y-coordinate of vi+1−vi positive.
Otherwise, the angle is nonpositive; see Figure 1.

The oriented polygon P realizes the angle sequence A if the turning angle of P at vi is equal
to αi, for i = 0, . . . , n− 1. A polygon P ⊂ R2 is generic if all its self-intersections are transversal
(that is, proper self-crossings of the polygon), vertices of P are distinct points, and no vertex of P
is contained in a relative interior of an edge of P . Following the terminology of Viyajan [28], an
angle sequence A = (α0, . . . , αn−1) is consistent if there exists a generic polygon P with n vertices
realizing A. For a polygon P that realizes an angle sequence A = (α0, . . . , αn−1) in the plane,

the total curvature of P is TC(P ) =
∑n−1

i=0 αi, and the turning number (also known as rotation
number) of P is tn(P ) = TC(P )/(2π), where tn(P ) ∈ Z [25]. Therefore a necessary condition

for the consistency of an angle sequence is that
∑n−1

i=0 αi ≡ 0 (mod 2π). This condition is also

sufficient except for the case when
∑n−1

i=0 αi = 0. We give a sufficient condition in all cases in the
next paragraph to complete the characterization of consistent angle sequences.
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αi < 0 αi > 0

vi vi

Figure 1: A negative, or right, (on the left) and a positive, or left, (on the right) turning angle αi

at the vertex vi of an oriented polygon.

Let βi =
∑i

j=0 αj mod 2π, and let ui ∈ R2 be the unit vector (cosβi, sinβi) for i = 0, . . . , n−1.

As observed by Garg [10, Section 6], A is consistent if and only if
∑n−1

i=0 αi ≡ 0 (mod 2π) and 0
is a strictly positive convex combination of vectors ui, that is, there exist scalars λ0, . . . , λn−1 > 0
such that

∑n−1
i=0 λui = 0 and

∑n−1
i=0 λi = 1. We use this characterization, in the proof of Theorem 1

stated below.
The crossing number, denoted by cr(P ), of a generic polygon is the number of self-crossings of

P . The crossing number of a consistent angle sequence A is the minimum integer c, denoted by
cr(A), such that there exists a generic polygon P ∈ R2 realizing A with cr(P ) = c. Our first main
results is the following theorem.

Theorem 1 For a consistent angle sequence A = (α0, . . . , αn−1) in the plane, we have

cr(A) =

{
1 if

∑n−1
i=0 αi = 0,

|k| − 1 if
∑n−1

i=0 αi = 2kπ and k ̸= 0.

The proof of Theorem 1 can be easily converted into a weakly linear-time algorithm 1 that
constructs, for a given consistent sequence A, a generic polygon P ⊂ R2 that realizes A with the
minimum number of crossings.

Angle sequences in 3D and spherical polygonal linkages. In Rd, d ≥ 3, the sign of a
turning angle no longer plays a role: The turning angle of an oriented polygon P at vi is in (0, π),
and an angle sequence A = (α0, . . . , αn−1) is in (0, π)n. The unit-length direction vectors of the
edges of P determine a spherical polygon P ′ in Sd−1. Note that the turning angles of P correspond
to the spherical lengths of the segments of P ′. It is not hard to see that this observation reduces
the problem of realizability of A by a polygon in Rd to the problem of realizability of A by a
spherical polygon in Sd−1, in the sense defined below, that additionally contains the origin 0 in
the interior of its convex hull.

Let S2 ⊂ R3 denote the unit 2-sphere. A great circle C ⊂ S2 is the intersection of S2 with a
2-dimensional hyperplane in R3 containing 0. A spherical line segment is a connected subset of
a great circle that does not contain a pair of antipodal points of S2. The length of a spherical
line segment ab equals the measure of the central angle subtended by ab. A spherical polygon
P ⊂ S2 is a closed curve consisting of finitely many spherical segments; and a spherical polygon
P = (u0, . . . ,un−1), ui ∈ S2, realizes an angle sequence A = (α0, . . . , αn−1) if the spherical segment

1The adverb “weakly” means that every arithmetic operation is assumed to run in O(1) time.
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(ui−1,ui) has (spherical) length αi, for i = 0, . . . , n−1. As usual, the turning angle of P at ui is the
angle in [0, π] between the tangents to S2 at ui that are co-planar with the great circles containing
(ui,ui+1) and (ui,ui−1). Unlike for polygons in R2 and R3, we do not put any constraints on
turning angles of spherical polygons (i.e., angles 0 and π are allowed).

Regarding realizations of A by spherical polygons, we prove the following.

Theorem 2 Let A = (α0, . . . , αn−1), n ≥ 3, be an angle sequence. There exists a polygon P ⊂ R3

realizing A if and only if
∑n−1

i=0 αi ≥ 2π and there exists a spherical polygon P ′ ⊂ S2 realizing A.
Furthermore, P can be constructed efficiently if P ′ is given.

Theorem 3 There exists a constructive weakly polynomial-time algorithm to test whether a given
angle sequence A = (α0, . . . , αn−1) can be realized by a spherical polygon P ′ ⊂ S2.

A simple exponential-time algorithm for realizability of angle sequences by spherical polygons
follows from a known characterization [3, Theorem 2.5], which also implies that the order of angles
in A does not matter for the spherical realizability. The topology of the configuration spaces
of spherical polygonal linkages have also been studied [16]. Independently, Streinu et al. [20, 24]

showed that the configuration space of noncrossing spherical linkages is connected if
∑n−1

i=0 αi ≤ 2π.
However, these results do not seem to help prove Theorem 3.

The combination of Theorems 2 and 3 yields our second main result.

Theorem 4 There exists a constructive weakly polynomial-time algorithm to test whether a given
angle sequence A = (α0, . . . , αn−1) can be realized by a polygon P ⊂ R3.

Our methods directly generalize from R3 to Rd for any integer d ≥ 3. It turns out that higher
dimensions do not translate to more realizable angle sequences. In particular, an angle sequence
is realizable by a polygon in Rd, d ≥ 3, if and only if it is realizable in R3. We restrict ourselves to
2D and 3D in this paper.

Organization. We prove Theorem 1 in Section 2 and Theorems 2, 3, and 4 in Section 3. We show
in Section 4 that self-intersections are unavoidable in 3D if all realizations of an angle sequence are
2-dimensional. We finish with concluding remarks in Section 5.

2 Crossing Minimization in the Plane

The first part of the following lemma gives a folklore necessary condition for the consistency of an
angle sequence A in the plane. The condition is also sufficient except when k = 0. The second
part follows from a result of Grünbaum and Shepard [11, Theorem 6], using a decomposition due
to Wiener [29]. We provide a proof for the sake of completeness.

Lemma 1 If an angle sequence A = (α0, . . . , αn−1) is consistent, then
∑n−1

i=0 αi = 2kπ for some
k ∈ Z, and cr(A) ≥ |k| − 1.

Proof: Since A is consistent,
∑n−1

i=0 αi = 2kπ for some k ∈ Z, where k = tn(P ) is the turning
number of any generic realization P of the angle sequence A. We prove by induction on cr(A) that
cr(A) ≥ |k| − 1.
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P

P ′

P ′′

α

−α

Figure 2: Splitting an oriented closed polygon P at a self-crossing point into 2 oriented closed
polygons P ′ and P ′′ such that tn(P ) = tn(P ′) + tn(P ′′).

c

P ′
P ′′

P

α0

α1

α2

α3

α4

α3

α2

α4

2π − α0 − α1

Figure 3: Constructing a polygon P with |tn(P )| − 1 crossings.

In the base case, we have cr(A) = 0. Let P be a generic realization of A such that cr(P ) = 0.
Then P is a simple polygon with n vertices. The internal angles of a simple n-gon sum up to
(n− 2)π. The internal angle of P at vertex vi is π− αi or π+ αi, depending on the orientation of

P . Thus (n − 2)π =
∑n−1

i=0 (π − αi) = (n − 2k)π or (n − 2)π =
∑n−1

i=0 (π + αi) = (n + 2k)π. Both

cases yield |
∑n−1

i=0 αi| = 2π, hence |tn(P )| = k = 1 and the claim follows.

In the inductive step, we have cr(A) ≥ 1. Let P be a generic realization of A such that
cr(A) = cr(P ).

Refer to Figure 2. By splitting P at a self-crossing, we obtain a pair of closed polygons P ′ and
P ′′ such that tn(P ) = tn(P ′)+ tn(P ′′). Since cr(P ′) < cr(P ) and cr(P ′′) < cr(P ), induction yields
cr(P ) = 1 + cr(P ′) + cr(P ′′) ≥ 1 + |tn(P ′)| − 1 + |tn(P ′′)| − 1 ≥ |tn(P )| − 1, as required. □

The following lemma shows that the lower bound in Lemma 1 is tight when αi > 0 for all
i ∈ {0, . . . , n− 1}.

Lemma 2 If A = (α0, . . . , αn−1) is an angle sequence such that
∑n−1

i=0 αi = 2kπ, k ̸= 0, and
αi > 0, for all i ∈ {0, 1, . . . , n− 1}, then cr(A) ≤ |k| − 1.

Proof: Refer to Figure 3. In three steps, we construct a polygon P realizing A with |tn(P )| − 1
self-crossings thereby proving cr(A) ≤ |k| − 1 = |tn(P )| − 1. In the first step, we construct an
oriented self-crossing-free polygonal line P ′ with n+2 vertices, whose first and last (directed) edges
are parallel to the positive x-axis, and whose internal vertices have turning angles α0, . . . , αn−1 in
this order. The first and last edge are parallel due to

∑n−1
i=0 αi = 2kπ.

We construct P ′ incrementally: The first edge has unit length starting from the origin; and
every successive edge lies on a ray emanating from the endpoint of the previous edge. If the ray
intersects neither the x-axis nor previous edges, then let the next edge have unit length, otherwise
its length is chosen to avoid any such intersection.
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Let S′ be the last (directed) edge of P ′, and let ℓ be the (horizontal) supporting line of S′.
Since αi > 0, for all i, the nonhorizontal portions of P ′ can be partitioned into 2k maximal y-
monotone paths: k increasing and k decreasing paths. By construction, these paths are pairwise
noncrossing, their y-extents, that is, the projections to the y-axis, are pairwise nested intervals,
where each interval contains subsequent intervals. Consequently, ℓ intersects all 2k y-monotone
paths. In particular, it crosses k increasing paths to the right of S′, and meets all k decreasing
path at or to the left of S′.

In the second step, extend S′ to the right until its rightmost intersection point c with a y-
monotone increasing path of P ′; and denote by P ′′ the resulting closed polygon composed of the
part of P ′ from c to c via the extended segment S′. Note that P ′′ has k − 1 self-intersections, as
the extension of S′ crosses P ′ in k − 1 points.

Finally, we construct P realizing A from P ′′ by a modification of P ′′ in a small neighborhood
of c without creating additional self-crossings. Since one of the edges of P ′′ that is incident to c
is horizontal and the other one has the slope of an edge of P ′ containing c, we can replace the
neighborhood of c with a sufficiently small scaled copy of the initial portion of P ′ between the first
vertex of P ′ and c. Note that the initial portion of P ′ can be partitioned into the initial horizontal
segment and a y-monotone path. Hence, we can carry out the final step without creating any
additional crossings. □

To prove the upper bound in Theorem 1, it remains to consider the case that A = (α0, . . . , αn−1)
contains both positive and negative angles. The crucial notion in the proof is that of an (essential)
sign change of A which we define next.

Let βi =
∑i

j=0 αj mod 2π for i = 0, . . . , n−1. Let vi ∈ R2 denote the unit vector (cosβi, sinβi).
Hence, vi is the direction vector of the (i+ 1)-st edge of an oriented polygon P realizing A if the
direction vector of the first edge of P is (1, 0) ∈ R2. By Garg’s observation [10, Section 6], the
consistency of A implies that 0 is a strictly positive convex combination of vectors vi, that is, there
exist scalars λ0, . . . , λn−1 > 0 such that

∑n−1
i=0 λvi = 0 and

∑n−1
i=0 λi = 1.

The sign change of A is an index i ∈ {0, . . . , n−1} such that αi ·αi+1 < 0, where arithmetic on
the indices is taken modulo n. Let sc(A) denote the number of sign changes of A. Note that the
number of sign changes of A is even. A sign change i ∈ {0, . . . , n−1} of a consistent angle sequence
A is essential if 0 is not a strictly positive convex combination of {v0, . . . ,vi−1,vi+1, . . . ,vn−1}.

Lemma 3 If A = (α0, . . . , αn−1) is a consistent angle sequence, where
∑n−1

i=0 αi = 2kπ, k ∈ Z,
and all sign changes are essential, then cr(A) ≤

∣∣|k| − 1
∣∣.

Proof: We distinguish between two cases depending on whether
∑n−1

i=0 αi = 0.

Case 1:
∑n−1

i=0 αi = 0. Since
∑n−1

i=0 αi = 0, we have sc(A) ≥ 2. Since all sign changes are essential,
for any two distinct sign changes i ̸= j, we have vi ̸= vj , therefore counting different vectors vi,
where i is a sign change, is equivalent to counting essential sign changes.

We show next that sc(A) = 2. Suppose, to the contrary, that sc(A) > 2. Since the number
of sign changes in a cyclic sequence of signs is even, we have sc(A) ≥ 4. We observe that if vi

corresponds to an essential sign change i, then there exists an open halfplane Hi bounded by a
line through the origin that such that Hi ∩ {v0, . . . ,vn−1} = {vi}. Let i, j, i′, and j′ be distinct
essential sign changes such that vi, vj , vi′ , and vi′ are in cyclic order around the origin. Since
Hi and Hi′ contains neither vj nor vj′ , then Hi and Hi′ are disjoint, lying on opposite sides of a
line, which necessarily contains both vj and vj′ . In particular, we have vb = −vd. Analogously,
we can show that va = vd. Since j is a sign change, either Hi or Hi′ contains both vj−1 and
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vj+1. Thus there exists a fifth vector vk, which implies that one of i, i′, j, and j′ is not essential
(contradiction).

Assume w.l.o.g. that the only two sign changes are j and n−1, for some j ∈ {0, . . . , n−2}. We
claim that vj ̸= −vn−1. Suppose, to the contrary, that vj = −vn−1. Since both sign changes are
essential, all vectors vi, other than vj and vn−1, are outside of Hj ∪Hn−1. If Hj ∩Hn−1 ̸= ∅, then
these vectors are in an open half-plane bounded by the line through vj and −vn−1. However, then
0 is not a strict convex combination of the vectors v0, . . . ,vn−1, contradicting the consistency of
A. Hence, we may assume that Hj and Hn−1 are disjoint, and they lie on opposite sides of a line
through the origin. Due to the consistency of A, there exists a pair {i, i′} such that vi = −vi′ .
However, j and n − 1 are the only sign changes by the assumption, and thus, there exists a fifth
index ℓ such that vℓ ̸= ±vi (contradiction).

λn−1vn−1

λjvj λ0v0 vn−1vj

v0
vj−1

λj−1vj−1

λj+1vj+1

λn−2vn−2

Figure 4: The case of exactly two sign changes j and n − 1, both of which are essential, when∑n−1
i=0 αi = 0. Both missing parts of the polygon on the left are convex chains.

We may assume that vj and vn−1 are not collinear, and that the remaining vectors vi belong
to the closed convex cone bounded by −vj and −vn−1; refer to Figure 4. Thus, we may assume
that (i) βn−1 = 0, (ii) the sign changes of A are j and n − 1, and (iii) 0 < β0 < . . . < βj and
βj > βj+1 > . . . > βn−1 = 0. Now, realizing A by a generic polygon with exactly one crossing
between the line segments in the direction of vj and vn−1 is a simple exercise.

Case 2:
∑n−1

i=0 αi ̸= 0. We show that, unlike in the first case, none of the sign changes of
A can be essential. Indeed, suppose j is an essential sign change, and let A′ = (α′

0, . . . , α
′
n−2) =

(α0, . . . , αj−1, αj+αj+1, . . . , αn−1) and β
′
i =

∑i
j=0 α

′
j mod 2π. Consider the unit vectors v′

0, . . . ,v
′
n−2,

where v′
i = (cosβ′

i, sinβ
′
i). Since j is an essential sign change, there exists a nonzero vector v such

that
〈
v,vj

〉
> 0 and

〈
v,v′

i

〉
≤ 0 for all i. Hence, by symmetry, we may assume that 0 ≤ β′

i ≤ π,

for all i. Since j is a sign change, we have −π < α′
i < π for all i, consequently β′

j =
∑j

i=0 α
′
i

mod 2π =
∑j

i=0 α
′
i, which in turn implies, by Lemma 1, that 0 = β′

n−2 =
∑n−2

i=0 α
′
i =

∑n−1
i=0 αi

(contradiction).
We have shown that A has no sign changes. By Lemma 2, we have cr(A) ≤ |k| − 1, which

concludes the proof. □

Theorem 1 For a consistent angle sequence A = (α0, . . . , αn−1) in the plane, we have

cr(A) =

{
1 if

∑n−1
i=0 αi = 0,

|k| − 1 if
∑n−1

i=0 αi = 2kπ and k ̸= 0.

Proof: The claimed lower bound cr(A) ≥
∣∣|k|−1

∣∣ on the crossing number of A follows by Lemma 1,
in the case when k ̸= 0, and by the result of Viyajan [28, Theorem 2] in the case when k = 0. It
remains to prove the upper bound cr(A) ≤

∣∣|k| − 1
∣∣.

We proceed by induction on n. In the base case, we have n = 3. Then P is a triangle,∑2
i=0 αi = ±2π, and cr(A) = 0, as required. In the inductive step, assume n ≥ 4, and that the
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claim holds for all shorter angle sequences. Let A = (α0, . . . , αn−1) be an angle sequence with∑n−1
i=0 αi = 2kπ.
If A has no sign changes or if all sign changes are essential, then Lemma 2 or Lemma 3 completes

the proof. Otherwise, there is at least one nonessential sign change. Let s ∈ {0, . . . , n − 1} be a
nonessential sign change and let A′ = (α′

0, . . . , α
′
n−2) = (α0, . . . , αs−1, αs + αs+1, . . . , αn−1). Note

that
∑n−2

i=0 α
′
i = 2kπ. We eliminate αs + αs+1 from A′ if it is equal to 0. Since the sign change s

is nonessential, 0 is a strictly positive convex combination of {β′
0, . . . , β

′
n−2}, where β′

i =
∑i

j=0 α
′
j

mod 2π for i = 0, . . . , n−2. Indeed, this follows from the fact that β′
i = βi, for i < s, and β′

i = βi+1,
for i ≥ s.

By the induction hypothesis, we obtain a realization of A′ as a generic polygon P ′ with
∣∣|k|−1

∣∣
crossings. Let v be a vertex of P ′ corresponding to αs + αs+1, which is incident to sides S′

s−1 and
S′
s of P ′ parallel to vectors vs−1 = v′

s−1 and vs+1 = v′
s. We construct a generic polygon realizing

A by modifying P in a small neighborhood of v without introducing crossings, similarly to the
method developed by Guibas et al. [12] as follows. If αs + αs+1 = 0, then αs + αs+1 is eliminated
from the sequence A′. We define v as a vertex corresponding to αs+2 in this case.

λ′s−1v
′
s−1

λ′sv
′
s

λs+1vs+1

αs

αs+1

αs + αs+1
v

S′s−1
S′s

v = a
Ssλs−1vs−1

b

c

∆

Figure 5: Re-introducing the s-th vertex to the polygon P ′ realizing A′ in order to obtain a polygon
P realizing A when αs + αs+1 ̸= 0.

First, we consider the case that αs+αs+1 ̸= 0. Assume w.l.o.g. that αs and αs+αs+1 have the

same sign; refer to Figure 5. Then there exists a triangle ∆ = ∆(abc) such that a⃗b, b⃗c, and c⃗a are
positive multiples of vs−1 = v′

s−1, vs, and −vs+1 = −v′
s, respectively. By a suitable translation,

we may assume that a = v; and by a suitable scaling, we may assume that ∆ is disjoint from all
sides of P ′ other than S′

s−1 and S′
s. Then we construct P from P ′ as follows. We extend S′

s−1

beyond v = a with segment ab, insert a new side bc, and shorten S′
s by removing segment ac = vc.

λ′s−1v
′
s−1

λ′sv
′
s

v

λs−1vs−1
αs+2

αs+2

αs+1

αs ∆

v = a

b

c

d

λs+2vs+2

Figure 6: Re-introducing the s-th and (s+ 1)-st vertex to the polygon P ′ realizing A′ in order to
obtain a polygon P realizing A when αs + αs+1 = 0.

It remains to consider the case that αs +αs+1 = 0. Assume w.l.o.g. that αs and αs+2 have the

same sign; refer to Figure 6. Then there exists a trapezoid ∆ = ∆(abcd) such that a⃗b, b⃗c, c⃗d, and

d⃗a are positive multiples of −vs−1 = −v′
s−1, vs, vs+1 = v′

s−1, and −vs+2 = −v′
s, respectively. By
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a suitable translation, we may assume that a = v; and by a suitable scaling, we may assume that
∆ is disjoint from all sides of P ′ other than S′

s−1 and S′
s. Then we construct P from P ′ as follows.

We shorten S′
s−1 by removing segment ab = vb, insert two new sides bc and cd, and shorten S′

s by
removing segment da = dv. □

3 Realizing Angle Sequences in 3D

In this section, we describe a polynomial-time algorithm to decide whether an angle sequence
A = (α0, . . . αn−1) ∈ (0, π)n can be realized as a polygon in R3.

We note that this problem is equivalent to solving a system of polynomial equations, where 3n
variables describe the coordinates of the n vertices of P , and each of n equations is obtained by
the cosine theorem applied for a vertex and two incident edges of P . However, it is unclear how
to solve such a system efficiently.

By Fenchel’s theorem in differential geometry [9], the total curvature of a smooth curve in Rd is
at least 2π, and the curves with the total curvature equal to 2π must be plane. Fenchel’s theorem
has been adapted to closed polygons [25, Theorem 2.4], and it gives the necessary condition

n−1∑
i=0

αi ≥ 2π, (1)

for an angle sequence A to have a realization in Rd, for all d ≥ 2. Furthermore, if
∑n−1

i=0 αi ≥ 2π,
then any realization lies in a plane (an affine subspace of Rd).

It is easy to find an angle sequence A that satisfies (1) but does not correspond to a spherical
polygon P ′. Consider, for example, A = (π − ε, π − ε, π − ε, ε), for some small ε > 0. Points in
S2 at (spherical) distance π − ε are nearly antipodal. Hence, the endpoints of a polygonal chain
(π− ε, π− ε, π− ε) are nearly antipodal as well, and cannot be connected by an edge of (spherical)
length ε. Thus, a spherical polygon cannot realize A.

We show that a condition slightly stronger than (1) is both necessary and sufficient, hence it
characterizes realizable angle sequences in R3.

For a subset S of Rd, let relint(S) denote the relative interior of S and let conv(S) denote the
convex hull of S.

Lemma 4 Let A = (α0, . . . , αn−1), n ≥ 3, be an angle sequence. There exists a polygon P ⊂ R3

realizing A if and only if there exists a spherical polygon P ′ ⊂ S2 realizing A such that 0 ∈
relint(conv(P ′)). Furthermore, P can be constructed efficiently if P ′ is given.

Proof: Assume that an oriented polygon P = (v0, . . . , vn−1) realizes A in R3. Let ui = (vi+1 −
vi)/∥vi+1−vi∥ ∈ S2 be the unit direction vector of the edge vivi+1 of P according to its orientation.
Then P ′ = (u0, . . . ,un−1) is a spherical polygon that realizes A. Suppose, for the sake of contra-
diction, that 0 is not in the relative interior of conv(P ′). Then there is a plane H that separates
0 and P ′, that is, if n is the normal vector of H, then

〈
n,ui

〉
> 0 for all i ∈ {0, . . . , n− 1}. This

implies
〈
n, (vi+1 − vi)

〉
> 0 for all i, hence

〈
n,

∑n−1
i=1 (vi+1 − vi)

〉
> 0, which contradicts the fact

that
∑n−1

i=1 (vi+1 − vi) = 0, and
〈
n,0

〉
= 0.

Conversely, assume that a spherical polygon P ′ realizes A, with edge lengths α0, . . . , αn−1 > 0.
If all the vertices of P ′ lie on a common great circle, then 0 ∈ relint(conv(P ′)) implies

∑n−1
i=0 ±αi =

0 mod 2π, where the sign is determined by the direction (cw. or ccw.) in which a particular
segment of P ′ traverses the common great circle according to its orientation. As observed by
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Garg [10, Section 6], the signed angle sequence is consistent in this case due to the assumption
that 0 ∈ relint(conv(P ′)). Thus, we obtain a realization of A that is contained in a plane.

Otherwise we may assume that 0 ∈ int(conv(P ′)). By Carathéodory’s theorem [17, Thereom
1.2.3], P ′ has 4 vertices whose convex combination is the origin 0. Then we can express 0 as a
strictly positive convex combination of all vertices of P ′. The coefficients in the convex combination
encode the lengths of the edges of a polygon P realizing A, which concludes the proof in this case.

We now show how to compute strictly positive coefficients in strongly polynomial time. Let
c = 1

n

∑n−1
i=0 ui be the centroid of the vertices of P ′. If c = 0, we are done. Otherwise, we can

find a tetrahedron T = conv{ui0 , . . . ,ui3} such that 0 ∈ T and such that the ray from 0 in the
direction −c intersects int(T ), by solving an LP feasibility problem in R3. By computing the
intersection of the ray with the faces of T , we find the maximum µ > 0 such that −µc ∈ ∂T (the

boundary of T ). We have −µc =
∑3

j=0 λjuij and
∑3

j=0 λj = 1 for suitable coefficients λj ≥ 0.

Now 0 = µc − µc = µ
n

∑n−1
i=0 ui +

∑3
j=0 λjuij is a strictly positive convex combination of the

vertices of P ′. □

Algorithms. In the remainder of this section, we show how to find a realization P ⊂ R3 or report
that none exists, in polynomial time. Our first concern is to decide whether an angle sequence is
realizable by a spherical polygon. This is possible to do in a weakly polynomial-time.

Theorem 3 There exists a constructive weakly polynomial-time algorithm to test whether a given
angle sequence A = (α0, . . . , αn−1) can be realized by a spherical polygon P ′ ⊂ S2.

Proof: Let A = (α0, . . . , αn−1) ∈ (0, π)n be a given angle sequence. Let n = (0, 0, 1) ∈ S2, that
is, n is the north pole. For i ∈ {0, 1, . . . , n− 1}, let Ui ⊆ S2 be the locus of the end vertices ui of
all (spherical) polygonal lines P ′

i = (n,u0, . . . ,ui) with edge lengths α0, . . . , αi−1. It is clear that
A is realizable by a spherical polygon P ′ if and only if n ∈ Un−1.

Note that for all i ∈ {0, . . . , n − 1}, the set Ui is invariant under rotations around the z-
axis, since n is a fixed point and rotations are isometries. We show how to compute the sets Ui,
i ∈ {0, . . . , n− 1}, efficiently.

We define a spherical zone as a subset of S2 between two horizontal planes (possibly, a circle, a
spherical cap, or a pole). Recall the parameterization of S2 using spherical coordinates (cf. Figure 7
(left)): for every v ∈ S2, v(ψ,φ) = (sinψ sinφ, cosψ sinφ, cosφ), with longitude ψ ∈ [0, 2π)
and polar angle φ ∈ [0, π], where the polar angle φ is the angle between v and n. Using this
parameterization, a spherical zone is a Cartesian product [0, 2π)×I for some circular arc I ⊂ [0, π].
In the remainder of the proof, we associate each spherical zone with such a circular arc I.

We define additions and subtraction on polar angles α, β ∈ [0, π] by

α⊕ β = min{α+ β, 2π − (α+ β)}, α⊖ β = max{α− β, β − α};

see Figure 7 (right). (This may be interpreted as addition mod 2π, restricted to the quotient space
defined by the equivalence relation φ ∼ 2π − φ.)

We show that Ui is a spherical zone for all i ∈ {0, . . . , n − 1}, and show how to compute the
intervals Ii ⊂ [0, π] efficiently. First note that U0 is a circle at (spherical) distance α0 from n,
hence U0 is a spherical zone with I0 = [α0, α0].

Assume that Ui is a spherical zone associated with Ii ⊂ [0, π]. Let ui ∈ Ui, where ui = v(ψ,φ)
with ψ ∈ [0, 2π) and φ ∈ Ii. By the definition of Ui, there exists a polygonal line (n,u0, . . . ,ui)
with edge lengths α0, . . . , αi. The locus of points in S2 at distance αi+1 from ui is a circle; the
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v(ψ,ϕ)

ϕ(v)

ψ(v)

n

ϕ

ϕ+ αi+1

ϕ	 αi+1

Ci+1(ϕ)

ϕ⊕ αi+1

Figure 7: Parametrization of the unit vectors (left). Circular arc Ci+1(φ) (right).

polar angles of the points in the circle form an interval Ci+1(φ). Specifically (see Figure 7 (right)),
we have

Ci+1(φ) = [min{φ⊖ αi+1, φ⊕ αi+1},max{φ⊖ αi+1, φ⊕ αi+1}].

By rotational symmetry, Ui+1 = [0, 2π)× Ii+1, where Ii+1 =
⋃

φ∈Ii
Ci+1(φ). Consequently, Ii+1 ⊂

[0, π] is connected, and hence, Ii+1 is an interval. Therefore Ui+1 is a spherical zone. As φ⊕ αi+1

and φ ⊖ αi+1 are piecewise linear functions of φ, we can compute Ii+1 using O(1) arithmetic
operations.

We can construct the intervals I0, . . . , In−1 ⊂ [0, π] as described above. If 0 /∈ In−1, then
n /∈ Un−1 and A is not realizable. Otherwise, we can compute the vertices of a spherical realization
P ′ ⊂ S2 by backtracking. Put un−1 = n = (0, 0, 1). Given ui = v(ψ,φ), we choose ui−1 as follows.
Let ui−1 be v(ψ,φ⊕ αi) or v(ψ,φ⊖ αi) if either of them is in Ui−1 (break ties arbitrarily). Else
the spherical circle of radius αi centered at ui intersects the boundary of Ui−1, and then we choose
ui−1 to be an arbitrary such intersection point. The decision algorithm (whether 0 ∈ In−1) and
the backtracking both use O(n) arithmetic operations. □

Enclosing the Origin. Theorem 3 provides an efficient algorithm to test whether an angle
sequence can be realized by a spherical polygon, however, Lemma 4 requires a spherical polygon
P ′ whose convex hull contains the origin in its relative interior. We show that this is always possible
if a realization exists and

∑n−1
i=0 αi ≥ 2π. The general strategy in the inductive proof of this claim

(Lemma 6 below) is to incrementally modify P ′ by changing the turning angle at one of its vertices
to 0 or π. This allows us to reduce the number of vertices of P ′ and apply induction.

Before we are ready to prove Lemma 6 we need to do some preliminary work. First, we introduce
some terminology for spherical polygonal linkages with one fixed endpoint. Let P ′ = (u0, . . . ,un−1)
be a polygon in S2 that realizes an angle sequence A = (α0, . . . , αn−1); we do not assume∑n−1

i=0 αi ≥ 2π. Denote by U j−
i the locus of the endpoints u′

i ∈ S2 of all (spherical) polygo-
nal lines (ui−j ,u

′
i−j+1, . . . ,u

′
i), where the first vertex is fixed at ui−j , and the edge lengths are

αi−j , . . . , αi. Similarly, denote by U j+
i the locus of the endpoints u′

i ∈ S2 of all (spherical) polyg-
onal lines (ui+j ,u

′
i+j−1, . . . ,u

′
i) with edge lengths αi+j+1, . . . , αi+1. Due to rotational symmetry

about the line passing through ui−j and 0, the sets U j−
i and U j+

i are each a spherical zone (i.e.,
a subset of S2 bounded by two parallel circles), possibly just a circle, or a cap, or a point. In
particular, the distance between ui and any boundary component (circle) of U j−

i or U j+
i is the

same; see Figure 8.
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u1

u0

α1

n

ϕ(u0)

π0
ϕ(u0) = I0

ϕ(u1) ∈ I1

U1 = U2−
1

B2−
1

T 2−
1

U1−
0

Figure 8: The spherical zone U1 (or U2−
1 ) containing u1 corresponding to I1.

If U2+
i is bounded by two circles, let T 2+

i and B2+
i denote the two boundary circles such that

ui is closer to T 2+
i than to B2+

i . If U2+
i is a cap, let T 2+

i denote the boundary of U2+
i , and let

B2+
i denote the center of U2+

i . We define T 2−
i and B2−

i analogously.
The vertex ui of P ′ is a spur of P ′ if the segments uiui+1 and uiui−1 overlap (equivalently,

the turning angle of P ′ at ui is π). We use the following simple but crucial observation.

Observation 1 Assume that n ≥ 4 and U2+
i is neither a circle nor a point. The turning angle of

P ′ at ui+1 is 0 if and only if ui ∈ B2+
i ; and ui+1 is a spur of P ′ if and only if ui ∈ T 2+

i . (By
symmetry, the same holds if we replace + with −.)

Lemma 5 Let P ′ be a spherical polygon (u0, . . . ,un−1), n ≥ 4, that realizes an angle sequence A =
(α0, . . . , αn−1). Then there exists a spherical polygon P ′′ = (u0, . . . ,ui−1,u

′
i,u

′
i+1,ui+2, . . . ,un−1)

that also realizes A such that the turning angle at ui−1 is 0, or the turning angle at u′
i+1 is 0 or π.

Proof: If n ≥ 4, Observation 1 allows us to move vertices ui and ui+1 so that the turning angle
at ui−1 drops to 0, or the turning angle at ui+1 changes to 0 or π, while all other vertices of
P ′ remain fixed. Indeed, one of the following three options holds: U1−

i ⊆ U2+
i , U1−

i ∩ B2+
i ̸= ∅,

or U1−
i ∩ T 2+

i ̸= ∅. If U1−
i ⊆ U2+

i , then by Observation 1 there exists u′
i ∈ U1−

i ∩ B2−
i ∩ U2+

i .
Since u′

i ∈ U2+
i there exists u′

i+1 ∈ U1+
i+1 such that P ′′ = (u0, . . . ,ui−1,u

′
i,u

′
i+1,ui+2, . . . ,un−1)

realizes A and the turning angle at ui−1 equals 0. Similarly, if there exists u′
i ∈ U1−

i ∩ B2+
i or

u′
i ∈ U1−

i ∩ T 2+
i , then there exists u′

i+1 ∈ U1+
i+1 such that P ′′ as above realizes A with the turning

angle at ui+1 equal to 0 or π, respectively. □

We are now ready to prove the lemma stated below.

Lemma 6 Given a spherical polygon P ′ that realizes an angle sequence A = (α0, . . . , αn−1), n ≥ 3,

with
∑n−1

i=0 α ≥ 2π, a spherical polygon P ′′ realizing A such that 0 ∈ relint(conv(P ′′)) can be
computed in weakly polynomial time.

Proof: We proceed by induction on the number of vertices of P ′. In the basis step, we have n = 3.
In this case, P ′ is a spherical triangle. The length of every spherical triangle is at most 2π, and
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therefore
∑n−1

i=0 αi = 2π. Hence, the lemma holds in this case by taking P ′ to be contained in a
great circle, which has 0 in the relative interior of its convex hull.

In the induction step, assume that n ≥ 4 and the lemma holds for smaller values of n. Assume
0 /∈ relint(conv(P ′)), otherwise the proof is complete. We distinguish between several cases.

Case 1: a path of consecutive edges lying in a great circle contains a half-circle. We
may assume w.l.o.g. that at least one endpoint of the half-circle is a vertex of P ′. Since the length
of each edge is less than π, the path that contains a half-circle has at least 2 edges.

Case 1.1: both endpoints of the half-circle are vertices of P ′. Assume w.l.o.g., that the
two endpoints of the half-circle are ui and uj , for some i < j. These vertices decompose P ′ into
two polylines, P ′

1 and P ′
2. We rotate P ′

2 about the line through uiuj so that the turning angle at
ui is a suitable value in [−ε,+ε] as follows. First, set the turning angle at ui to be 0. Let P ′′

denote the resulting polygon. If 0 ∈ int(conv(P ′′)) we are done. If P ′′ is contained in a great circle
then 0 ∈ int(conv(P ′′)) due to the angle 0 at ui, and we are done as well. Else, P ′′ is contained
in a hemisphere H bounded by the great circle through ui−1uiui+1. In this case, we perturb the
turning angle at ui so that ui+1 is not contained in H thereby achieving 0 ∈ int(conv(P ′′)).

Case 1.2: only one endpoint of the half-circle is a vertex of P ′. Let P ′
1 = (ui, . . . ,uj) be the

longest path in P ′ that contains a half-circle, and lies in a great circle. Since 0 /∈ relint(conv(P ′)),
the polygon P ′ is contained in a hemisphere H bounded by the great circle ∂H that contains P ′

1,
but P ′ is not contained in ∂H. By construction of P ′

1, we have uj+1 /∈ ∂H. In order to make
the proof in this case easier, we make the following assumption. If a part P0 of P ′ between two
antipodal/identical vertices that belong ∂H is contained in a great circle, w.l.o.g. we assume that
P0 is contained in ∂H. (This can be achieved by a suitable rotation about the line passing through
the endpoints of P0.)

Assume, w.l.o.g. that the second endpoint of P ′
1 is u0, that is, j = 0. Let j′ be the smallest

value such that uj′ ∈ ∂H. Since 0 /∈ relint(conv(P ′)), we have u0, . . . ,uj′ ∈ H. We show that we
can perturb the polygon P ′ into a new polygon P ′′ = (u′

0, . . . ,u
′
j′−1,uj′ , . . . ,un−1) realizing A so

that 0 ∈ int(conv(P ′′)). Since (u0, . . . ,uj′) is not contained in a great circle by our assumption,
there exists j′′, 0 < j′′ < j′, such that the turning angle of P ′

1 at j′′ is neither 0 nor π. We prove
in the next paragraph that we can assume that j′′ = 1.

Suppose that j′′ > 1. We perturb the polygon P ′ thereby lowering its value j′′, while still
keeping P ′ a realization of A. By Observation 1, uj′′−1 /∈ ∂U2+

j′′−1. Since the turning angle at

uj′′−1 is either 0 or π. Note that U2+
j′′−1 is the union of the spherical circles Sc of radius αj′′−1

with centers c on U1+
j′′ . Since uj′′−1 /∈ ∂U2+

j′′−1, there exists a circle Sc that intersects U1−
j′′−1 in two

different points p1 and p2. We replace uj′′ with c and uj′′−1 with p1 on P ′ thereby still keeping
P ′ a realization of A. In the modified polygon P ′, the turning angle at uj′′−1 = p1 is neither 0
nor π.

By Observation 1 and the assumption j′′ = 1, we have u0 /∈ ∂U2+
0 , and we can perturb u0

within U2+
0 into u′

0 and u1 into u′
1 so that u′

0 /∈ H, and u′
1,u2 . . . ,uj′−1 ∈ relint(H), thereby

achieving 0 ∈ int(conv(P ′′)).

Case 2: the turning angle of P ′ is 0 at some vertex ui. By supressing the vertex ui, we
obtain a spherical polygon Q′ on n − 1 vertices that realizes the sequence (α0, . . . , αi−2, αi−1 +
αi, αi+1, . . . , αn−1) unless αi−1 + αi ≥ π, but then we are in Case 1. By induction, this sequence
has a realization Q′′ such that 0 ∈ relint(conv(Q′′)). Subdivision of the edge of length αi−1 + αi

producers a realization P ′′ of A such that 0 ∈ relint(conv(Q′′)) = relint(conv(P ′′)).
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Case 3: there is no path of consecutive edges lying in a great circle and containing a
half-circle, and no turning angle is 0.

Case 3.1: n = 4. We claim that U2+
0 ∩ U2−

0 contains B2−
0 or B2+

0 . By Observation 1, this
immediately implies that we can change one turning angle to 0 and proceed to Case 1.

To prove the claim, note that U2+
0 ∩U2−

0 ̸= ∅ and −2 ≡ 2 (mod 4), and hence the circles T 2−
0 ,

T 2+
0 , B2−

0 , and B2+
0 are all parallel since they are all orthogonal to u2. Thus, by symmetry there are

two cases to consider depending on whether U2+
0 ⊆ U2−

0 . If U2+
0 ⊆ U2−

0 , then B2+
0 ⊂ U2+

0 ∩ U2−
0 .

Else U2+
0 ∩U2−

0 contains B2+
0 or B2−

0 , whichever is closer to u2, which concludes the proof of this
case.

Case 3.2: n ≥ 5. Choose i ∈ {0, . . . , n − 1} so that αi+2 is a minimum angle in A. Note that
U2+
i is neither a circle nor a point since that would mean that ui+2 and ui+1, or ui and ui+1 are

antipodal, which is impossible. We apply Lemma 5 and obtain a spherical polygon

P ′′ = (u0, . . . ,ui−1,u
′
i,u

′
i+1,ui+2, . . . ,un−1).

If the turning angle of P ′′ at ui−1 or u
′
i+1 equals to 0, we proceed to Case 2. Otherwise, the turning

angle of P ′′ at u′
i+1 equals π. In other words, we introduce a spur at u′

i+1. If αi+1 = αi+2 we can
make the turning angle of P ′′ at ui+2 equal to 0 by rotating the overlapping segments (u′

i+1,ui+2)
and (u′

i+1,u
′
i) around ui+2 = u′

i and proceed to Case 2. Otherwise, we have αi+2 < αi+1 by the
choice of i. Let Q′ denote an auxiliary polygon realizing (α0, . . . , αi, αi+1 − αi+2, αi+3, . . . , αn−1).
We construct Q′ from P ′′ by cutting off the overlapping segments (u′

i+1,ui+2) and (u′
i+1,u

′
i). We

apply Lemma 5 to Q′ thereby obtaining another realization

Q′′ = (u0, . . . ,ui−1,u
′′
i ,u

′′
i+1,ui+3, . . . ,un−1).

We re-introduce the cut off part to Q′′ at u′′
i+1 as an extension of length αi+2 of the segment

u′′
i u

′′
i+1, whose length in Q′′ is αi+1 − αi+2 > 0, in order to recover a realization of A by the

following polygon
R′ = (u0, . . . ,ui−1,u

′′
i ,u

′′
i+1,u

′′
i+2,ui+3, . . . ,un−1).

If the turning angle of Q′′ at ui−1 equals 0, the same holds for R′ and we proceed to Case 2. If
the turning angle of Q′′ at u′′

i+1 equals π, then the turning angle of R′ at u′′
i+1 equals 0 and we

proceed to Case 2. Finally, if the turning angle of Q′′ at u′′
i+1 equals 0, then R′ has a pair of

consecutive spurs at u′′
i+1 and u′′

i+2, that is, a so-called “crimp.” We may assume w.l.o.g. that
αi+3 < αi+1. Also we assume that the part (u′′

i ,u
′′
i+1,u

′′
i+2,ui+3) of R′ does not contain a pair

of antipodal points, since otherwise we proceed to Case 1. Since (u′′
i ,u

′′
i+1,u

′′
i+2,ui+3) does not

contain a pair of antipodal points, |(u′′
i ,ui+3)| = αi+1 + αi+3 − αi+2. It follows that

|(u′′
i ,ui+3)|+ |(u′′

i ,u
′′
i+1)|+ |(u′′

i+1u
′′
i+2)|+ |(u′′

i+2,ui+3)| =
αi+1 + αi+3 − αi+2 + αi+1 + αi+2 + αi+3 = 2(αi+1 + αi+3).

If αi+3+αi+1 < π, then the 3 angles αi+1, αi+2+αi+3, and |(u′′
i ,ui+3)| are all less than π. Moreover,

their sum, which is equal to 2(αi+3+αi+1), is less than 2π, and they satisfy the triangle inequalities.
Therefore we can turn the angle at u′′

i+2 to 0, by replacing the path (u′′
i ,u

′′
i+1,u

′′
i+2,ui+3) on R′

by a pair of segments of lengths αi+1 and αi+2 + αi+3.
Otherwise, αi+3 + αi+1 ≥ π, and thus,

|(u′′
i ,ui+3)|+ |(u′′

i ,u
′′
i+1)|+ |(u′′

i+1u
′′
i+2)|+ |(u′′

i+2,ui+3)| ≥ 2π.
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In this case, we can apply the induction hypothesis to the closed spherical polygon (u′′
i ,u

′′
i+1,u

′′
i+2,ui+3).

In the resulting realization S′, that is w.l.o.g. fixing u′′
i and ui+3, we replace the segment (u′′

i ,ui+3)
by the remaining part of R′ between u′′

i and ui+3. Let R′′ denote the resulting realization of A.
If S′ is not contained in a great circle then 0 ∈ int(conv(S′)) ⊆ int(conv(R′′)), and we are done.
Otherwise, S′ \ (ui+3,ui) contains a pair of antipodal points on a half-circle. The same holds for
R′′, and we proceed to Case 1, which concludes the proof. □

The combination of Theorem 3 with Lemmas 4 and 6 yields Theorems 2 and 4. The proof
of Lemma 6 can be turned into an algorithm with running time polynomial in n if we assume
that every arithmetic operation can be carried out in O(1) time. Nevertheless, we get only a
weakly polynomial running time, since we are unable to guarantee a polynomial size encoding of
the numerical values that are computed in the process of constructing a spherical polygon realizing
A that contains 0 in its convex hull in the proof of Lemma 6.

4 Crossing Free Realizations in 3D

It is perhaps surprising that in R3 not all realizable angle sequences can be realized without
a crossing. The following theorem identifies some angle sequences for which this is the case.
They correspond exactly to sequences realizable as a standard musquash [19], see Figure 9 for an
illustration, which is a thrackle, that is, a polygon in which every pair of nonadjacent edges cross
each other.

Figure 9: Standard musquash with 7 (left) and 5 (right) vertices.

Theorem 5 Let A = (α0, . . . , αn−1) be an angle sequence, where n ≥ 5 is odd,
∑n−1

i=0 (π−αi) = π
and αi ∈ (0, π) for all i ∈ {0, . . . , n − 1}. Then A is realizable in R3 but every realization lies in
an affine plane and has a self-intersection.

Proof: Let P ′ = (u0, . . . ,un−1) be a spherical realization of A corresponding to a realization P

in R3, such that n ≥ 5 is odd and
∑n−1

i=0 (π − αi) = π. We permute the vertices of the polygon
P ′ thereby obtaining an auxiliary spherical polygon Q′ = (u0,u2, . . . ,un−1,u1,u3, . . . ,u0). The
spherical polygon Q′ is well defined since n is odd.

Note that (assuming modulo n arithmetic on the indices) the spherical distance between ui

and ui+2 is bounded above by

|(ui,ui+2)| ≤ π − αi + π − αi−1, (2)

for every i = 0, . . . , n− 1. Indeed, (2) is vacuously true if αi + αi+1 ≤ π. (Recall the definition of
U2+
i from Section 3.) Otherwise, π−αi+π−αi−1 is the spherical distance of any point on T 2−

i to
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ui which is also the farthest possible distance of ui+2 from ui. By (2), the total spherical length

of the polygon Q′ is at most 2(nπ −
∑n−1

i=0 αi) = 2π.

It follows, by applying Fenchel’s theorem to Q′, that the length of Q′ is 2π. By Lemma 4, we
conclude that Q′, and thus, also P ′ are contained in a great circle, which we can assume to be the
equator. Due to its length, Q′ has no self-intersections. (The polygon Q is in fact convex, but we
do not use this in what follows.)

Since P ′ lies in a plane, P also lies in a plane and realizes a signed version A± of the original
angle sequence A. As inequality (2) must hold with equality due to the length of Q′, for all
i = 0, . . . , n, the all angles in A± have the same sign. We may assume w.l.o.g. that αi > 0 for all
i. Note that

∑n−1
i=0 αi = (n − 1)π ≥ 4π by the hypothesis of the theorem. Thus, by Theorem 1,

the polygon P must have a self-crossing. □

5 Conclusions

We devised efficient algorithms to realize a consistent angle sequence with the minimum number
of crossings in 2D.

In 3D, we can test efficiently whether a given angle sequence is realizable, and find a realization
if one exists. Every claim we make for R3 generalizes to Rd, for all d ≥ Rd. The reason is that
the circular arcs Ii constructed during an execution of the algorithm in the proof of Theorem 3
depend only on the angles in the sequence, and would be the same in any higher dimension.

However, it remains an open problem to find an efficient algorithm that returns the minimum
number of crossings in generic realizations. As we have seen in Section 4, there exist consistent
angle sequences in 3D for which every generic realization has crossings. It is not difficult to see
that crossings are unavoidable only if every 3D realization of an angle sequence A is contained in
a plane, which is the case, for example, when A = (π− ε, . . . , π− ε, (n− 1)ε), for sequences of odd
length n ≥ 5. Thus, an efficient algorithm for this problem would follow by Theorem 1, once one
can test efficiently whether A admits a fully 3D realization. The evidence that we currently have
points to the following conjecture that the converse of Theorem 5 also holds.

Conjecture 1 An angle sequence A = (α0, . . . , αn−1), where αi ∈ (0, π) and n ≥ 4, that can be
realized by a polygon in R3, has a realization by a self-intersection free polygon in R3 if and only
if n is even or

∑n−1
i=0 (π − αi) ̸= π.

It can be seen that Conjecture 1 is equivalent to the claim that every realization of A in R3

has a self-intersection if and only if A can be realized in R2 as a thrackle.

Can our results in R2 or R3 be extended to broader interesting classes of graphs? A natural
analog of our problem in R3 would be a construction of triangulated spheres with prescribed
dihedral angles, discussed in a recent paper by Amenta and Rojas [1]. For convex polyhedra,
Mazzeo and Montcouquiol [18] proved, settling Stoker’s conjecture, that dihedral angles determine
face angles.
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[17] J. Matoušek. Lectures on Discrete Geometry, volume 212 of Graduate Texts in Mathematics.
Springer-Verlag New York, 2002. doi:10.1007/978-1-4613-0039-7.

[18] R. Mazzeo and G. Montcouquiol. Infinitesimal rigidity of cone-manifolds and the Stoker
problem for hyperbolic and Euclidean polyhedra. Journal of Differential Geometry, 87(3):525–
576, 2011. doi:10.4310/jdg/1312998235.

[19] G. Misereh and Y. Nikolayevsky. Thrackles containing a standard musquash. Australasian
Journal Of Combinatorics, 70(2):168––184, 2018.

[20] G. Panina and I. Streinu. Flattening single-vertex origami: The non-expansive case. Compu-
tational Geometry: Theory and Applications, 43(8):678–687, 2010. doi:10.1016/j.comgeo.

2010.04.002.

[21] M. Patrignani. Complexity results for three-dimensional orthogonal graph drawing. J. Discrete
Algorithms, 6(1):140–161, 2008. doi:10.1016/j.jda.2006.06.002.

[22] F. Saliola and W. Whiteley. Constraining plane configurations in CAD: circles, lines, and
angles in the plane. SIAM Journal on Discrete Mathematics, 18(2):246–271, 2004. doi:

10.1137/S0895480100374138.

[23] J. Snoeyink. Cross-ratios and angles determine a polygon. Discrete & Computational Geom-
etry, 22(4):619–631, 1999. doi:10.1007/PL00009481.

[24] I. Streinu and W. Whiteley. Single-vertex origami and spherical expansive motions. In on
Japanese Conference on Discrete and Computational Geometry, volume 3742 of LNCS, pages
161–173. Springer, 2004. doi:10.1007/11589440_17.

[25] J. M. Sullivan. Curves of finite total curvature. In A. I. Bobenko, J. M. Sullivan, P. Schröder,
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