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Abstract. Motivated by the fact that in a space where shortest paths are unique,
no two shortest paths meet twice, we study a question posed by Greg Bodwin: Given
a geodetic graph G, i.e., an unweighted graph in which the shortest path between any
pair of vertices is unique, is there a philogeodetic drawing of G, i.e., a drawing of G in
which the curves of any two shortest paths meet at most once? We answer this question
in the negative by showing the existence of geodetic graphs that require some pair of
shortest paths to cross at least four times. The bound on the number of crossings is
tight for the class of graphs we construct. Furthermore, we exhibit geodetic graphs
of diameter two that do not admit a philogeodetic drawing. On the positive side we
show that geodetic graphs admit a philogeodetic drawing if both the diameter and the
density are very low.
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1 Introduction

Greg Bodwin [1] examined the structure of shortest paths in graphs with edge weights that guar-
antee that the shortest path between any pair of vertices is unique. Motivated by the fact that
a set of unique shortest paths is consistent in the sense that no two such paths can “intersect,
split apart, and then intersect again”, he conjectured that if the shortest path between any pair of
vertices in a graph is unique then the graph can be drawn so that any two shortest paths meet at
most once. Formally, a meet of two Jordan curves γ1, γ2 : [0, 1] → R2 is a pair of maximal intervals
I1, I2 ⊆ [0, 1] for which γ1(I1) = γ2(I2). Degenerate intervals that comprise just a single point are
allowed. A meet where the two curves switch sides is called a crossing. In particular, a meet that
includes an endpoint of one of the curves is not a crossing. Two curves meet k times if they have
k pairwise distinct meets. For example, shortest paths in a simple polygon (geodesic paths) have
the property that they meet at most once [6].

A drawing of a graph G in R2 maps the vertices to pairwise distinct points and maps each
edge to a Jordan arc between the two end-vertices that is disjoint from any other vertex. Drawings
extend in a natural fashion to paths: Let φ be a drawing of G, and let P = v1, . . . , vn be a path
in G. Then let φ(P ) denote the Jordan arc that is obtained as the composition of the curves
φ(v1v2), . . . , φ(vn−1vn). A drawing φ of a graph G is philogeodetic if for every pair P1, P2 of
shortest paths in G the curves φ(P1) and φ(P2) meet at most once.

An unweighted graph is geodetic if there is a unique shortest path between every pair of vertices.
Trivial examples of geodetic graphs are trees and complete graphs. Observe that any two shortest
paths in a geodetic graph are either disjoint or they intersect in a path. Thus, a planar drawing
of a planar geodetic graph is philogeodetic. Also every straight-line drawing of a complete graph
is philogeodetic. Refer to Figure 1 for an illustration of a drawing of a complete graph that is not
philogeodetic; this example also highlights some of the concepts discussed above. It is a natural
question to ask whether every (geodetic) graph admits a philogeodetic drawing.

v1

v2

v5

v4

v3

Figure 1: A drawing of the geodetic graph K5. It has a crossing formed by edges v1v3 and v2v5. In
addition, edges v1v4 and v2v4 meet but do not cross since their only meet includes the vertex v4. Finally,
edges v2v5 and v3v5 meet three times, violating the property of philogeodetic drawings.

Results. We show that there exist geodetic graphs that require some pair of shortest paths to
meet at least four times (Theorem 1). The idea is to start with a sufficiently large complete graph
and subdivide the edges uniformly1 an even number of times, e.g., twice. The Crossing Lemma [8]
can be used to show that some pair of shortest paths must cross at least four times. By increasing

1Subdividing a set E′ of edges uniformly means to subdivide every edge in E′ exactly the same number of times.
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the number of subdivisions per edge we can obtain sparse counterexamples. The bound on the
number of crossings is tight because any graph obtained from Kn by uniformly subdividing each of
its edges can be drawn so that every pair of shortest paths meets at most four times (Theorem 2).

On the one hand, our construction yields counterexamples of diameter five. On the other
hand, the unique graph of diameter one is the complete graph, which is geodetic and admits a
philogeodetic drawing (e.g., any straight-line drawing since all unique shortest paths are single
edges). Hence, it is natural to ask what is the largest d so that every geodetic graph of diameter
d admits a philogeodetic drawing. We show that d = 1 by exhibiting an infinite family of geodetic
graphs of diameter two that do not admit philogeodetic drawings (Theorem 3). The construction
is based on incidence graphs of finite affine planes. The proof also relies on the Crossing Lemma.
Finally, combining low diameter and low density, we show in Theorem 4 that any geodetic graph
G = (V,E) with diameter two and edge-vertex ratio |E|/|V | < 1.5 admits a philogeodetic drawing.

Geodetic graphs. Geodetic graphs were introduced by Ore who asked for a characterization as
Problem 3 in Chapter 6 of his book “Theory of Graphs” [7, p. 104]. An asterisk flags this problem
as a research question, which seems justified, as more than sixty years later a full characterization
is still elusive.

Stemple and Watkins [15, 16] and Plesńık [10] resolved the planar case by showing that a con-
nected planar graph is geodetic if and only if every block is (1) a single edge, (2) an odd cycle,
or (3) stems from a K4 by iteratively choosing a vertex v of the original K4 and subdividing the
edges incident to v uniformly. Geodetic graphs of diameter two were fully characterized by Scapel-
lato [12]. They include the Moore graphs [3] and graphs constructed from a generalization of affine
planes. Further constructions for geodetic graphs were given by Plesńık [10, 11], Parthasarathy
and Srinvasan [9], and Frasser and Vostrov [2].

Plesńık [10] and Stemple [14] proved that a geodetic graph is homeomorphic to a complete
graph if and only if it is obtained from a complete graph Kn by iteratively choosing a vertex
v of the original Kn and subdividing the edges incident to v uniformly. A graph is geodetic if
it is obtained from any geodetic graph by uniformly subdividing each edge an even number of
times [9, 11]. However, the graph G obtained by uniformly subdividing each edge of a complete
graph Kn an odd number of times is not geodetic: Let u, v, w be three vertices of Kn and let x
be the middle subdivision vertex of the edge uv. Then there are two shortest x-w-paths in G, one
containing v and one containing u.

2 Subdivision of a Complete Graph

The complete graph Kn is geodetic and rather dense. However, all shortest paths are very short,
as they comprise a single edge only. So despite the large number of edge crossings in any drawing,
every pair of shortest paths meets at most once, as witnessed, for instance, by any straight-line
drawing of Kn. In order to lengthen the shortest paths, it is natural to consider subdivisions of
Kn. We must be careful to keep the shortest paths unique, however.

As a first attempt, one may want to “take out” some edge uv by subdividing it many times.
However, on the one hand, by the characterization of geodetic graphs homeomorphic to a complete
graph [10, 14], we would then also have to subdivide the edges incident to v or u many times.
On the other hand, Stemple [14] has shown that in a geodetic graph every path where all internal
vertices have degree two must be a shortest path. Thus, it is impossible to take out an edge using
subdivisions. So we use a different approach instead, where all edges are subdivided uniformly.
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Figure 2: A drawing of K(8, 2), the complete graph K8 where every edge is subdivided twice, so that every
pair of shortest paths meets at most four times. Two shortest paths that meet four times are shown bold
and orange.

Theorem 1 There exists an infinite family of sparse geodetic graphs for which in any drawing in
R2 some pair of shortest paths meets at least four times.

Proof: Take an even number t and a complete graph Ks for some s ∈ N. Subdivide each edge t
times. The resulting graph K(s, t) is geodetic [9, 11]. See Figure 2 for a drawing of K(8, 2). Note
that K(s, t) has n = s+ t

(
s
2

)
vertices and m = (t+ 1)

(
s
2

)
edges, with m ∈ O(n), for s fixed and t

sufficiently large. Consider a drawing Γ of K(s, t).
Let B denote the set of s branch vertices in K(s, t), which correspond to the vertices of the

original Ks. For two distinct vertices u, v ∈ B, let [uv] denote the shortest uv-path in K(s, t),
which corresponds to the subdivided edge uv of the underlying Ks. As t is even, the path [uv]
consists of t+1 (an odd number of) edges. For every such path [uv], with u, v ∈ B, we charge the
crossings in Γ along the t+1 edges of [uv] to one or both of u and v as detailed below; see Figure 3
for illustration.

� Crossings along an edge that is closer to u than to v are charged to u;

� crossings along an edge that is closer to v than to u are charged to v; and

� crossings along the single central edge of [uv] are charged to both u and v.

Let Γs be the drawing of Ks induced by Γ: every vertex of Ks is placed at the position of
the corresponding branch vertex of K(s, t) in Γ and every edge of Ks is drawn as a Jordan arc
along the corresponding path of K(s, t) in Γ. Assuming

(
s
2

)
≥ 4s (i.e., s ≥ 9), by the Crossing

Lemma [8], at least

1

64

(
s
2

)3
s2

=
1

512
s(s− 1)3 ≥ c · s4

pairs of independent edges cross in Γs, for some constant c. Every crossing in Γs corresponds to
a crossing in Γ and is charged to at least two (and up to four) vertices of B. Thus, the overall
charge is at least 2cs4, and at least one vertex u ∈ B gets at least the average charge of 2cs3.

Each charge unit corresponds to a crossing of two independent edges in Γs, which is also charged
to at least one other vertex of B. Hence, there is a vertex v ̸= u so that at least 2cs2 crossings
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u

v

Figure 3: Every crossing is charged to at least one endpoint of each of the two involved (independent)
edges. Vertices are shown as white disks, crossings as red crosses, and charges by dotted arrows. The figure
shows an edge uv that is subdivided four times, splitting it into a path with five segments. A crossing
along any such segment is assigned to the closest of u or v. For the central segment, both u and v are at
the same distance, and any crossing there is assigned to both u and v.

are charged to both u and v. Note that there are only s − 1 edges incident to each of u and v,
and the common edge uv is not involved in any of the charged crossings (as adjacent rather than
independent edge). Let Ex, for x ∈ B, denote the set of edges of Ks that are incident to x.

We claim that there are two pairs of mutually crossing edges incident to u and v, respectively;
that is, there are sets Cu ⊂ Eu \ {uv} and Cv ⊂ Ev \ {uv} with |Cu| = |Cv| = 2 so that e1 crosses
e2, for all e1 ∈ Cu and e2 ∈ Cv.

Before proving this claim, we argue that establishing it completes the proof of the theorem.
By our charging scheme, every crossing e1 ∩ e2 happens at an edge of the path [e1] in Γ that is at
least as close to u as to the other endpoint of e1. Denote the three vertices that span the edges of
Cu by u, x, y. Consider the two subdivision vertices x′ along [ux] and y′ along [uy] that form the
endpoint of the middle edge closer to x and y, respectively, than to u; see Figure 4 for illustration.

u

x y

︸ ︷︷ ︸t/2 vertices

︸ ︷︷ ︸t/2 vertices ︸ ︷︷ ︸
t/2

ver
tice

s

︸ ︷︷ ︸
t/2

ver
tice

s
x′ y′

Figure 4: Two adjacent edges ux and uy, both subdivided t times, and the shortest path between the “far”
endpoints x′ and y′ of the central segments of [ux] and [uy].

The triangle uxy in Ks corresponds to an odd cycle of length 3(t+1) in K(s, t). So the shortest
path between x′ and y′ in K(s, t) has length 2(1 + t/2) = t+ 2 and passes through u, whereas the
path from x′ via x and y to y′ has length 3(t+ 1)− (t+ 2) = 2t+ 1, which is strictly larger than
t + 2 for t ≥ 2. It follows that the shortest path between x′ and y′ in K(s, t) is crossed by both
edges in Cv. A symmetric argument yields two subdivision vertices a′ and b′ along the two edges
in Cv so that the shortest a′b′-path in K(s, t) is crossed by both edges in Cu. By definition of our
charging scheme (that charges only “nearby” crossings to a vertex), the shortest paths x′y′ and
a′b′ in K(s, t) have at least four crossings.

It remains to prove the claim. To this end, consider the bipartite graph X on the vertex set
Eu ∪ Ev where two vertices are connected if the corresponding edges are independent and cross
in Γs. Observe that two sets Cu and Cv of mutually crossing pairs of edges (as in the claim)
correspond to a 4-cycle C4 in X. So suppose for the sake of a contradiction that X does not
contain C4 as a subgraph. Then by the Kővári-Sós-Turán Theorem [5] the graph X has O(s3/2)
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edges. But we already know that X has at least 2cs2 = Ω(s2) edges, which yields a contradiction.
Hence, X is not C4-free and the claim holds. □

The bound on the number of crossings in Theorem 1 is tight.

Theorem 2 A graph obtained from a complete graph by subdividing the edges uniformly an even
number of times can be drawn so that every pair of shortest paths crosses at most four times.

Proof: Place the vertices in convex position. Draw the subdivided edges along straight-line
segments. For each edge, put half of the subdivision vertices very close to one endpoint and the
other half very close to the other endpoint. Figure 2 shows a corresponding drawing for K(8, 2) as
an example. As a result, all crossings fall into the central segment of the path.

There are two different types of vertices, and six different types of shortest paths. Let B denote
the set of branch vertices, and let S denote the set of subdivision vertices. Note that for every
edge uv of Kn, only the central segment of the subdivided path [uv] may have crossings in the
drawing. We claim that every shortest path in the graph contains at most two central segments in
the drawing, from which the theorem follows immediately. Consider a pair u, v of vertices.

Case 1: {u, v} ∩ B ̸= ∅. Suppose without loss of generality that u ∈ B. If v ∈ B or v ∈ S
subdivides an edge incident to u, then the shortest uv-path contains at most one central segment.
Otherwise, v ∈ S subdivides an edge xy disjoint from u. One of x or y, without loss of generality
x is closer to v. Then the shortest uv-path is [ux][xv], which contains exactly one central segment,
namely in [ux].

Case 2: u, v ∈ S. If u and v subdivide the same edge, then the shortest uv-path contains at
most one central segment. If u and v subdivide distinct adjacent segments, xy and xz, then the
shortest uv-path is either [ux][xv], which contains at most two central segments. Or the sum of
the length of [uy] and [zv] is at most half of the number of subdivision vertices per edge and the
shortest uv-path is [uy][yz][zv], which then contains at most one central segment. Otherwise, u
and v subdivide disjoint segments, xy and wz, where without loss of generality x is closer to u than
y and w is closer to v than z. Then the shortest uv-path is [ux][xw][wv], which contains exactly
one central segment, namely in [xw]. □

3 Graphs of Diameter Two

In this section we give examples of geodetic graphs of diameter two that cannot be drawn in the
plane such that any two shortest paths meet at most once.

An affine plane of order k ≥ 2 consists of a set of lines and a set of points with a containment
relationship such that (i) each line contains k points, (ii) for any two points there is a unique line
containing both, (iii) there are three points that are not contained in the same line, and (iv) for
any line ℓ and any point p not on ℓ there is a line ℓ′ that contains p, but no point from ℓ. Two lines
that do not contain a common point are parallel. Observe that each point is contained in k + 1
lines. Moreover, there are k2 points and k+1 classes of parallel lines each containing k lines. The
2-dimensional vector space F2 over a finite field F of order k with the lines {(x,mx+ b); x ∈ F},
m, b ∈ F and {(x0, y); y ∈ F}, x0 ∈ F is a finite affine plane of order k. Thus, there exists a finite
affine plane of order k for any k that is a prime power (see, e.g., [4]).

Scapellato [12] showed how to construct geodetic graphs of diameter two as follows: Take a
finite affine plane of order k. Let L be the set of lines and let P be the set of points of the affine
plane. Consider now the graph Gk with vertex set L ∪ P and the following two types of edges:
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There is an edge between two lines if and only if they are parallel. There is an edge between a
point and a line if and only if the point lies on the line; see Fig. 5. There are no edges between
points.

The following statement follows from Scapellato’s classification [12]. As we need much less than
this classification in its full generality, we provide an easy proof of what we use, for the sake of
self-containment.

Lemma 1 Gk is a geodetic graph of diameter two.

Proof: Two lines have distance one if they are parallel. Otherwise they share exactly one vertex
and, hence, are connected by exactly one path of length two. For any two points there is exactly
one line that contains both. Given a line ℓ and a point p then either p lies on ℓ and, thus, p and ℓ
have distance one. Or there is exactly one line ℓ′ containing p that is parallel to ℓ and, thus, there
is exactly one path of length two between ℓ and p. □

. . . k2 points

. . .
k + 1 cliques of
k parallel lines each

Gk :
. . .. . .

Figure 5: Structure of the graph Gk.

Theorem 3 There are geodetic graphs of diameter two that cannot be drawn in the plane such
that any two shortest paths meet at most once.

Proof: Let k ≥ 129 be such that there exists an affine plane of order k (e.g., the prime k = 131).
Assume there was a drawing of Gk in which any two shortest paths meet at most once. Let G be
the bipartite subgraph of Gk without edges between lines. Observe that any path of length two in
G is a shortest path in Gk. As G has n = 2k2 + k vertices and m = k2(k + 1) > kn/2 edges, we
have m > 4n, for k ≥ 8. Therefore, by the Crossing Lemma [8, Remark 2 on p. 238] there are at
least m3/64n2 > k3n/512 crossings between independent edges in G.

Hence, there is a vertex v such that the edges incident to v are crossed more than k3/128 times
by edges not incident to v. By assumption, (a) any two edges meet at most once, (b) any edge
meets any pair of adjacent edges at most once, and (c) any pair of adjacent edges meets any pair
of adjacent edges at most once. Thus, the crossings with the edges incident to v stem from a
matching. It follows that there are at most (n− 1)/2 = (2k2 + k − 1)/2 such crossings. However,
(2k2 + k − 1)/2 < k3/128, for k ≥ 129. □

Theorem 1 and 3 show that there exist geodetic graphs of edge-vertex ratio 1+ε (for arbitrarily
small ε > 0) and diameter-two geodetic graphs, respectively, that do not admit a philogeodetic
drawing. In the following we show that combining both restrictions is sufficient to guarantee the
existence of a philogeodetic drawing.

Theorem 4 All diameter-two geodetic graphs with edge-vertex ratio less than 1.5 admit a philo-
geodetic drawing.
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Proof: Let G be a geodetic graph of diameter two. Theorem 4.1 of [13] establishes that either (i) G
is a 2-connected graph or (ii) G consists of a set of complete graphs all attached at a single vertex.
For the latter case we observe that every complete graph admits a (straight-line) philogeodetic
drawing, where all vertices are incident to the unbounded region. Hence, such philogeodetic draw-
ings of each of the complete graphs can be merged at the shared vertex to obtain a philogeodetic
drawing of G.

Thus we now assume that G is 2-connected. Since G has edge-vertex ratio less than 1.5, the
graph G contains at least one degree two vertex. By Property I on page 270 of [13] G is a regular
pyramid with altitude two and base Um. More precisely, base Um is a complete graph on vertices
u1, . . . , um. These vertices are connected to the apex w by pairwise (interior) vertex-disjoint paths
uiviw, i ∈ {1, . . . ,m}, of length two; see Figure 6. Since Um admits a philogeodetic drawing with

Um

u1
u2um

w

v2vm v1

Figure 6: A philogeodetic drawing of the regular pyramid with altitude two.

all vertices on the unbounded region, the vertex w can be inserted into this region and all paths
uiviw can be drawn without introducing any crossings. This yields a philogeodetic drawing of G.

□

4 Conclusions

In this paper, we initiated the study of philogeodetic graph drawings. Our two counterexamples
in Theorems 1 and 3 indicate that even very restrictive graph classes may not admit philogeodetic
drawings. On the other hand, Theorem 2 suggests that few meets per pair of shortest paths may
be sufficient. Thus, we propose to investigate k-philogeodetic drawings, where pairs of shortest
paths are restricted to k meets. Such drawings may exist for graphs that are far from geodetic.
For instance, if shortest paths p1 and p2 between u and v meet at k non-adjacent vertices, these
vertices occur in the same order m1, . . . ,mk along p1 and p2. Each path that follows either p1 or
p2 from mi to mi+1 for 1 ≤ i < k is a shortest path, i.e., there are Ω(2k) shortest paths between
u and v.

In Theorem 4 we showed that we can always find a philogeodetic drawing if both the density and
the diameter of a geodetic graph are severely restricted. We ask to which extent these restrictions
must be lifted so to find a geodetic graph without a philogeodetic drawing. To this end, observe
that that the counterexample in Theorem 1 restricts the density of the graph at the expense of
an unbounded diameter while the counterexample in Theorem 3 has diameter two but unbounded
edge-vertex ratio.

The complexity of deciding if a geodetic graph admits a philogeodetic drawing and generaliza-
tions to surfaces of higher genus are interesting open problems.
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