
Journal of Graph Algorithms and Applications
http://jgaa.info/ vol. 26, no. 3, pp. 335–352 (2022)
DOI: 10.7155/jgaa.00597

Parameterized Algorithms for Queue Layouts

Sujoy Bhore 1 Robert Ganian 2 Fabrizio Montecchiani 3 Martin Nöllenburg 2

1Computer Science Department, Université libre de Bruxelles (ULB), Bruxelles, Belgium
2Algorithms and Complexity Group, TU Wien, Vienna, Austria
3Engineering Department, University of Perugia, Perugia, Italy

Submitted: October 2020 Reviewed: May 2022 Revised: June 2022

Accepted: June 2022 Final: June 2022 Published: June 2022

Article type: Regular paper Communicated by: D. Auber, P. Valtr

Abstract. An h-queue layout of a graph G consists of a linear order of its vertices
and a partition of its edges into h sets, called queues, such that no two independent
edges of the same queue nest. The minimum h such that G admits an h-queue layout
is the queue number of G. We present two fixed-parameter tractable algorithms that
exploit structural properties of graphs to compute optimal queue layouts. As our first
result, we show that deciding whether a graph G has queue number 1 and computing a
corresponding layout is fixed-parameter tractable when parameterized by the treedepth
ofG. Our second result then uses a more restrictive parameter, the vertex cover number,
to solve the problem for arbitrary h.

1 Introduction

An h-queue layout of a graph G is a linear layout of G consisting of a linear order of its vertices
and a partition of its edges into h sets, called queues, such that no two independent edges of the
same queue nest [32]; see Fig. 1 for an illustration. The queue number qn(G) of a graph G is
the minimum number of queues in any queue layout of G. While such linear layouts represent an
abstraction of various problems such as, for instance, sorting and scheduling [6,40], they also play a
central role in three-dimensional graph drawing. It is known that a graph class has bounded queue

Special Issue on the 28th Int. Symposium on Graph Drawing and Network Visualization, GD 2020

A preliminary version of this paper appeared in the Proceedings of the 28th International Symposium on Graph
Drawing and Network Visualization (GD 2020) [8]. Research of Fabrizio Montecchiani partially supported by: (i)
MIUR, under grant 20174LF3T8 “AHeAD: efficient Algorithms for HArnessing networked Data”; (ii) Dipartimento
di Ingegneria dell’Università degli Studi di Perugia, under grants RICBA19FM and RICBA20ED. Robert Ganian
acknowledges support from the Austrian Science Fund (FWF) grant Y 1329, Sujoy Bhore and Martin Nöllenburg
acknowledge support from FWF grant P 31119.

E-mail addresses: sujoy.bhore@gmail.com (Sujoy Bhore) rganian@ac.tuwien.ac.at (Robert Ganian) fab-
rizio.montecchiani@unipg.it (Fabrizio Montecchiani) noellenburg@ac.tuwien.ac.at (Martin Nöllenburg)

This work is licensed under the terms of the CC-BY license.

http://dx.doi.org/10.7155/jgaa.00597
mailto:sujoy.bhore@gmail.com
mailto:rganian@ac.tuwien.ac.at
mailto:fabrizio.montecchiani@unipg.it
mailto:fabrizio.montecchiani@unipg.it
mailto:noellenburg@ac.tuwien.ac.at
https://creativecommons.org/licenses/by/4.0/

336 Bhore et al. Parameterized Algorithms for Queue Layouts

number if and only if every graph in this class has a three-dimensional crossing-free straight-line
grid drawing in linear volume [15, 22]. We refer the reader to [24, 37] for further references and
applications. Moreover, it is worth recalling that stack layouts [36,42] (or book embeddings), which
allow nesting edges but forbid edge crossings, form the “dual” concept of queue layouts.

Figure 1: A 4-queue layout of K8.

A rich body of literature is concerned with the study of upper bounds for the queue number of
several planar and non-planar graph families (see, e.g., [1,4,5,9,14,19,21,22,31,41] and also [23] for
additional references). For instance, a graph of treewidth w has queue number at most O(2w) [41],
while every proper minor-closed class of graphs (including planar graphs) has constant queue
number [21].

Of particular interest to us is the corresponding recognition problem, which we denote by
Queue Number: Given a graph G and a positive integer h, decide whether G admits an h-queue
layout. In 1992, in a seminal paper, Heath and Rosenberg proved that 1-Queue Number, i.e., the
restriction of Queue Number to instances with h = 1, is NP-complete [32]. In particular, they
characterized the graphs that admit queue layouts with only one queue as the arched leveled-planar
graphs, and showed that the recognition of these graphs is NP-complete [32].

Since Queue Number is NP-complete even for a single queue, it is natural to ask under which
conditions the problem can be solved efficiently. For instance, it is known that if the linear order
of the vertices is given (and the aim is thus to simply partition the edges of the graph into h
queues), then the problem becomes solvable in polynomial time [31]. We follow up on recent work
made for the stack number [7] and initiate the study of the parameterized complexity of Queue
Number by asking under which parameterizations the problem is fixed-parameter tractable. In
other words, we are interested in whether (1-)Queue Number can be solved in time f(k) · nO(1)

for some computable function f of the considered structural parameter k of the n-vertex input
graph G. Parameterized complexity is a modern algorithmic paradigm that allows us to obtain a
more fine-grained understanding of the complexity of difficult problems, and it has recently gained
increasing attention in the graph drawing community; see the recent Dagstuhl seminar for more
information about the paradigm’s limitations and applicability [27]. Parameterized complexity
has been successfully applied on graph drawing problems related to 1-planarity [3, 26], crossing
minimization [33], layered graph drawing [20], linear layouts [7,9], orthogonal planarity [16], upward
planarity [10], and others.

As our main result, we show 1-Queue Number is fixed-parameter tractable parameterized by
the treedepth of the input graph (Section 3). We remark that treedepth is a fundamental graph
parameter with close ties to the theory of graph sparsity (see, e.g., [35]). The main technique
used by the algorithm is iterative pruning, where we recursively identify irrelevant parts of the
input and remove these until we obtain a bounded-size equivalent instance (a kernel) solvable by

JGAA, 26(3) 335–352 (2022) 337

brute force. While the iterative pruning technique has already been used in a few other algorithms
that exploit treedepth [28–30], the unique challenge here lay in establishing that the removal of
seemingly irrelevant parts of the graph cannot change NO-instances to YES-instances. The proof
of this claim, formalized in Lemma 1, uses a new type of block decomposition of 1-queue layouts.

For our second result, we turn to the general Queue Number problem. Here, we establish
fixed-parameter tractability when parameterized by a larger parameter, namely the vertex cover
number (Section 4). This result is also achieved by kernelization and forms a natural counterpart to
the recently established fixed-parameter tractability of computing the stack number under the same
parameterization [7], see also recent work on upward book thickness [9], although the technical
arguments and steps of the proof differ due to the specific properties of queue layouts.

2 Preliminaries

We adopt standard notation and terminology from graph theory [17]. We can assume that our
input graphs are connected, as the queue number of a graph is the maximum queue number over
all its connected components. Given a graph G = (V,E) and a vertex v ∈ V , let N(v) be the set
of neighbors of v in G. Also, for r ∈ N, we denote by [r] the set {1, . . . , r}. An h-queue layout of
G is a pair ⟨≺, σ⟩, where ≺ is a linear order of V , and σ : E → [h] is a function that maps each
edge of E to one of h sets, called queues. In an h-queue layout ⟨≺, σ⟩ of G, it is required that no
two independent edges in the same queue nest, that is, for no pair of edges uv,wx ∈ E with four
distinct end-vertices and σ(uv) = σ(wx), the vertices are ordered as u ≺ w ≺ x ≺ v. Given two
distinct vertices u and v of G, u is to the left of v if u ≺ v, else u is to the right of v. Note that a
1-queue layout of G is simply defined by a linear order ≺ of V and σ ≡ 1.

We assume familiarity with basic notions in parameterized complexity [12, 18]. We consider
two graph parameters for our algorithms: treedepth and vertex cover number.

2.1 Treedepth

Treedepth is a parameter closely related to treewidth, and the structure of graphs of bounded
treedepth is well understood [35]. A useful way of thinking about graphs of bounded treedepth
is that they are (sparse) graphs with no long paths. We formalize a few notions needed to define
treedepth, see also Fig. 2 for an illustration. A rooted forest F is a disjoint union of rooted trees.
For a vertex x in a tree T of F , the height (or depth) of x in F is the number of vertices in the
path from the root of T to x. The height of a rooted forest is the maximum height of a vertex of
the forest. Let V (T) be the vertex set of any tree T ∈ F .

Definition 1 (Treedepth) Let the closure of a rooted forest F be the graph clos(F) = (Vc, Ec)
with the vertex set Vc =

⋃
T∈F V (T) and the edge set Ec = {xy | x is an ancestor of y in some T ∈ F}.

A treedepth decomposition of a graph G is a rooted forest F such that G ⊆ clos(F). The treedepth
td(G) of a graph G is the minimum height of any treedepth decomposition of G.

An optimal treedepth decomposition can be computed by an FPT algorithm.

Proposition 1 ([39]) Given an n-vertex graph G and an integer k, it is possible to decide
whether G has treedepth at most k, and if so, to compute a treedepth decomposition of G of height
at most k in time 2O(k2) · n.

Proposition 2 ([35]) Let G be a graph and td(G) ≤ k. Then G has no path of length 2k.

338 Bhore et al. Parameterized Algorithms for Queue Layouts

3 2

1

5

4

6
8

7

9
12 11

10
5′

4′

6′

(a)

3

2

1

5

4

67

8

9

1211

10

C1

C2 C3

5′

4′

6′

(b)

Figure 2: (a) A graph G and (b) a treedepth decomposition T of G of height 4, in which T has
light red edges. In particular, P2 = {1, 2}, A2 = {C1, C2, C3}, and m2 = 3. The tree is highlighted
in red.

2.2 Vertex cover number

A vertex cover C of a graph G = (V,E) is a subset C ⊆ V such that each edge in E has at least
one incident vertex in C. The vertex cover number of G, denoted by τ(G), is the size of a minimum
vertex cover of G. Observe that td(G) ≤ τ(G) + 1: it suffices to build F as a single path with
vertex set C and with the leaves V \ C all placed below the last vertex of this path. Computing
an optimal vertex cover of G is FPT.

Proposition 3 ([11]) Given an n-vertex graph G and a constant τ , it is possible to decide
whether G has vertex cover number at most τ , and if so, to compute a vertex cover C of size τ of
G in time O(2τ + τ · n).

3 Parameterization by Treedepth

In this section, we establish our main result: the fixed-parameter tractability of 1-Queue Number
parameterized by treedepth. We formalize the statement below.

Theorem 1 Let G be a graph with n vertices and constant treedepth k. We can decide in O(n)
time whether G has queue number one, and, if this is the case, we can also output a 1-queue layout
of G in the same time.

3.1 Algorithm Description

Since we assume G to be connected, any treedepth decomposition of G consists of a single tree T .
Now, suppose that a treedepth decomposition T of G of depth k is given. For a vertex t of T , let
Pt be the set of ancestors of t including t, let At be the set of connected components of G − Pt

that contain a child of t, and mt be the maximum number of vertices in a component in At; see
also Fig. 2(b). Notice that |At| is precisely the number of children of t in T .

Observation 1 For every component C ∈ At and for every vertex v ∈ C, it holds that N(v) ⊆
C ∪ Pt. Thus, |C ∪ Pt| ≤ mt + k.

JGAA, 26(3) 335–352 (2022) 339

Now, we define the following equivalence over components in At. Components C,D ∈ At

satisfy C ∼ D if and only if there exists a bijective renaming function ηC,D : C → D over (the
vertices of) C,D such that each vertex ci ∈ C has a counterpart ηC,D(ci) = di ∈ D that satisfies:
(i) N(ci) ∩ Pt = N(di) ∩ Pt and (ii) ci is adjacent to cj ∈ C if and only if di is adjacent to its
counterpart dj . When C,D are clear from the context, we may drop the subscript of η for brevity.
For an example of two equivalent components, see the subtrees rooted at vertices 4 and 4′ in
Fig. 2(b).

By Observation 1, the number of equivalence classes of ∼ is upper-bounded by the number of
possible graphs on k +mt vertices, which is at most 2(k+mt)

2

. The next observation allows us to
propagate the bounds formalized by the notation above from children towards the root.

Observation 2 If for a vertex t of T there exist integers a, b such that each child q of t satisfies
|Aq| ≤ a and mq ≤ b, then mt ≤ (a · b) + 1.

The main component of our treedepth algorithm is Lemma 1, stated below. Intuitively, applying
Lemma 1 bottom-up on T (together with Observation 2) allows us to iteratively remove subtrees
from T while preserving the (non-)existence of a hypothetical solution—in particular, we will be
able to prune subtrees of parents with a very large number of children until we reach an equivalent
instance where each vertex has a bounded number of children. To formalize the meaning of “very
large”, we define the following function for i ≥ 2 (recalling that k is the depth of T):

#children(k, i) =
((
(2(k+1) + 1)size(k,i)

2

+ 1
)
· (size(k, i) + k)!

)
· 2(k+size(k,i))2 ,

where size(k, i) is a recursively defined function that captures the size bound given by Obser-
vation 2 as follows:

� size(k, i) = (size(k, i− 1) ·#children(k, i− 1)) + 1 for i ≥ 2, and

� size(k, 1) = #children(k, 1) = 0.

As an example, we note that while size(k, 2) = 1, the value of #children(k, 2) is already in
kΘ(k) and both functions experience an exponential jump with each increase of i from there on.
Intuitively, the precise values of the functions are set to guarantee that if one has successfully
completed pruning for subtrees on lower levels of the treedepth decomposition, and if at the same
time the number of children of a vertex at depth i is greater than #children(k, i), we will find an
equivalence class at level i that is sufficiently large to guarantee the correctness of the pruning step.
This intuition is formalized in the aforementioned Lemma 1 (and readers are invited to compare
the definitions of these functions with the way they are used in its proof):

Lemma 1 Assume G has a vertex t at depth i in T with the property that |At| ≥ #children(k, i),
but mt ≤ size(k, i) and every descendant q of t in T satisfies that |Aq| ≤ #children(k, i− 1). Then
there exists a component B of At such that G−B has queue number one if and only if G has queue
number one. Moreover, B can be computed in time O(size(k, i)! ·#children(k, i)2).

The proof of the lemma is deferred to Section 3.2. Before proceeding, we show how Lemma 1
is used to obtain Theorem 1.

Proof: [of Theorem 1] We start by applying Proposition 1 to compute a treedepth decomposition
T of G of depth at most k. Consider now vertices at depth k − 1 in T , i.e., vertices whose
children are all leaves in T , and set i = 2. Observe that every vertex v at this depth satisfies

340 Bhore et al. Parameterized Algorithms for Queue Layouts

mv ≤ size(k, 2) since size(k, 2) = 1 and mv = 1. If |Av| ≥ #children(k, 2), we apply Lemma 1 to
obtain an equivalent graph with fewer vertices and restart on that graph. Otherwise, every vertex
v at depth k − 1 satisfies |Av| < #children(k, 2).

We now iterate the above argument for depths smaller than k−1 (i.e., for vertices closer to the
root). In particular, assume that for some depth d where 1 ≤ d ≤ k − 1, every vertex v at depth
d satisfies |Av| < #children(k, i), where i = k − d + 1. Then we can set d′ := d − 1, i′ := i + 1,
and recall from Observation 2 that every vertex v′ at depth d′ satisfies mv′ ≤ size(k, i′). Consider
now a speciifc vertex v′ with too many children—in particular, |Av′ | ≥ #children(k, i′). If such a
vertex exists, we will once again apply Lemma 1 to obtain an equivalent smaller instance and then
restart the algorithm. Repeating this procedure for d′ will eventually stop, and at that point it
will hold that |Av′ | < #children(k, i′) for every v′ at depth d′, in turn allowing us to continue the
procedure at the next level of the decomposition (i.e., at depth d′′ ≤ d′).

Once the above procedure terminates for the last time, the root r of T satisfies |Ar| <
#children(k, k) and mr ≤ size(k, k). At that point, we have a kernel G′ [12, 18]—an equivalent
graph that has size bounded by a function of k, notably by f(k) = #children(k, k) · size(k, k) + 1.
To prove Theorem 1, it suffices to decide whether G′ admits a 1-queue layout by a brute-force al-
gorithm that runs in time O(f(k)! · f(k)2). Since Lemma 1 is applied O(n) times and the runtime
of the associated algorithm is O(size(k, k) ·#children(k, k)2), the total runtime is upper-bounded
by a function of k times n. □

Finally, we note that while it would be possible to provide a term upper-bounding the de-
pendency on k of the running time of Lemma 1, it is clear that such a term must necessarily be
non-elementary—indeed, the recursive definition of the two functions #children(k, k) and size(k, k)
results in a tower of exponents of height k.

3.2 Proof of Lemma 1

Since we have

|At| ≥
((
(2(k+1) + 1)size(k,i)

2

+ 1
)
· (size(k, i) + k)!

)
· 2(k+size(k,i))2 = #children(k, i)

and the number of equivalence classes of ∼ is upper-bounded by 2(k+mt)
2 ≤ 2(k+size(k,i))2 , there

must exist an equivalence class, denoted A∼
t ⊆ At, containing at least

(
(2(k+1) + 1)size(k,i)

2

+

1
)
· (size(k, i) + k)! connected components in At which are pairwise equivalent w.r.t. ∼. The

reason we need this many components in the equivalence class is that this will allow us to argue
that every hypothetical solution must contain two components which behave “in the same way”
(as will become clear later). Moreover, this equivalence class can be computed in time at most
size(k, i)! ·#children(k, i)2 by simply brute-forcing over all potential renaming functions η between
arbitrarily chosen #children(k, i)-many components in At to construct the set of all equivalence
classes of these components. Let B be an arbitrarily selected component in A∼

t . First, observe
that if G is a YES-instance then so is G − B, as deleting vertices and edges cannot increase the
queue number. On the other hand, assume there is a 1-queue layout of G − B with linear order
≺. Our aim for the rest of the proof is to obtain a linear order ≺′ of G that extends ≺ and yields
a valid 1-queue layout of G.

A Refined Equivalence. Recall that we are, at this stage, proceeding under the assumption
that there exists a 1-queue layout of G − B with linear order ≺. Let ≡≺ be an equivalence over
components in A∼

t which takes this hypothetical order ≺ into account and is defined as follows.

JGAA, 26(3) 335–352 (2022) 341

v1 w1v2 w2v′1 w′
1v′2 w′

2

Figure 3: Two delimiting components C1 and C2 (blue and red), with two counterpart (and hence
interleaving) edges labeled. Notice that no two counterpart edge pairs are separate.

For two components C,D ∈ A∼
t , C ≡≺ D if and only if the following holds: the linear order ≺

restricted to Pt∪ηC,D(C) is the same as ≺ restricted to Pt∪C. In other words, ≡≺ is a refinement
of ∼ restricted to A∼

t which groups components based on the order in which their vertices appear
(also taking into account which subinterval they appear in w.r.t. Pt). Note that ≡≺ has at most
(mt + k)! ≤ (size(k, i) + k)! many equivalence classes, since |Pt| ≤ k; hence, by the virtue of A∼

t

having size at least
(
(2(k+1) + 1)size(k,i)

2

+ 1
)
· (size(k,i) + k)!, there must exist an equivalence

class U of ≡≺ containing at least (2(k+1) + 1)size(k,i)
2

+ 1 components of A∼
t .

We adopt the following terminology for U : we will denote the components in U as C1, C2, . . . , Cu,
where u = |U |, we will identify the vertices in a component Ci by using the lower index i, and for
each such vertex v, say v = vi ∈ Ci, use vj to denote its counterpart ηCi,Cj

(vi).

Identifying Delimiting Components. Consider two adjacent vertices vi, wi in Ci. We say
that component Cj is vw-separate from Ci if edges viwi and vjwj neither nest nor cross each
other. On the other hand, Cj is vw-interleaving (respectively, vw-nesting) with Ci if viwi and
vjwj cross each other (respectively, if one of viwi and vjwj nests the other). By the definition of
≡≺ and U , these three cases are exhaustive. Moreover, if viwi is an edge then so is vjwj and hence
Cj cannot be vw-nesting with Ci.

Our next aim will be to find two components—we will call them delimiting components—that
are not vw-separate for any edge vw, see, e.g., Fig. 3. To this end, for some two adjacent vertices
vi, wi of Ci, denote by D1 the component whose counterpart to vi (say v1) is placed leftmost in ≺
among all components in U . We now define a sequence of components as follows: Dℓ is the unique
component that is (i) vw-separate from Dℓ−1 and (ii) whose vertex vℓ is placed to the right of
vℓ−1, and (iii) vℓ is placed leftmost among all components satisfying properties (i) and (ii). Let d
be the maximum integer such that Dd exists.

Lemma 2 d ≤ 2k+1 + 1.

Proof: Consider, for a contradiction, that there exists a component Dℓ such that ℓ > 2k and
ℓ < d − 2k, i.e., that there is a sequence of at least 2k pairwise vw-separated components to the
left as well as to the right of Dℓ. By the connectivity of G, there must be a path from v to some
vertex in Pt, say p. However, by the definition of ≡≺ every vertex in Pt lies either to the left of
v1 or to the right of wd, and hence a path from v to p would need to pass through a sequence of
2k edges forming disjoint intervals in the linear order ≺. Since nestings are not allowed, such a
path must have at least one vertex inside each of these intervals, and hence its length is at least
2k, which contradicts Proposition 2. □

342 Bhore et al. Parameterized Algorithms for Queue Layouts

Moreover, each component Cq in U can be uniquely assigned to one component Dℓ as defined
above (w.r.t. the chosen edge vw) as follows: If Cq = Dℓ for some ℓ, then Cq is assigned to itself;
otherwise, Dℓ is the component whose vertex vℓ is to the left of and simultaneously closest to the
corresponding vertex vq in Cq among all components D1, . . . , Dd.

Lemma 3 Let Cq and Cp be two components assigned to the same component Dℓ w.r.t. the edge
vw. Then Cq and Cp are vw-interleaving.

Proof: Assume without loss of generality that wℓ is placed to the right of vℓ; recall that wℓ and
vℓ are the counterparts of w and v, respectively, in Dℓ. Since both Cq and Cp are assigned to Dℓ,
the counterparts vq and vp to vℓ must be placed to the left of wℓ (by the definition of assignment).
Because edges cannot nest on the same queue, this implies that the counterparts wq and wp to wℓ

must be placed to the right of wℓ. Hence Cq and Cp cannot be vw-separate, and the observation
follows by recalling that Cq and Cp cannot be vw-nesting either. □

We are now ready to construct our delimiting components. Recall that at this point, |U | ≥
(2(k+1) + 1)size(k,i)

2

+ 1 while the maximum number of edges inside a component in U is upper-
bounded by m2

t ≤ size(k, i)2. Hence by the pigeon-hole principle and by applying the bound
provided in Lemma 2 for each edge inside the components of U , there must exist two components
in U , say Cx and Cy, that are assigned to the same component Dvw

ℓ for each edge vw. By Lemma 3
it now follows that they are vw-interleaving for every edge vw.

Using Delimiting Components. Before we use Cx and Cy to insert the component B of At

as required by Lemma 1, we can show that the way they interleave with each other is “consistent”
in ≺.

Lemma 4 Assume without loss of generality that some vertex vx is to the left of vy. Then for
each vertex wx it holds that wx is to the left of wy.

Proof: Consider for a contradiction that there is a vertex wx to the right of wy. Consider a vx-wx

path Px in the subgraph of G induced on the vertices of Cx, and let Py be the vy-wy path in the
subgraph of G induced on the vertices of Cy consisting of the counterparts of Px. Let axbx be the
first edge on Px such that ax is placed to the left of ay but bx is placed to the right of by. Then
the edges axbx and ayby would be nesting, contradicting the correctness of ≺. □

We remark that it is not the case that Cx must be vw-interleaving with Cy if vw is not an
edge—this is, in fact, a major complication that we will need to overcome to complete the proof.

Without loss of generality and recalling Lemma 4, we will hereinafter assume that every vertex
vx ∈ Cx is placed to the left of its counterpart vy ∈ Cy. The following definition allows us to
partition the vertices of Cx into subsequences that should not be interleaved with vertices of B.

Definition 2 (Block) A block L = {v1x, v2x, . . . , vhx} of Cx is a maximal set of vertices of Cx such
that: (1) there is no vertex viy (the counterpart in Cy of vix), with 1 ≤ i ≤ h, between two vertices
of L in ≺; and (2) there are no two vertices of L such that one has a neighbor to its left and one
has a neighbor to its right.

We observe that, as an immediate consequence of Definition 2, no two vertices of L are adjacent
(an edge uv in L would imply that u has a neighbor to its right and v has a neighbor to its left,
or vice versa).

JGAA, 26(3) 335–352 (2022) 343

vi,`iB

Li

vi,1x vi`ix vi vi,1y
. . .

Bi

vi,1B
. . .

(a)

L1 L2 L3 L4 L5 L6 L7 L8 L9B1 B2B3 B4 B5 B6 B7 B8 B9

(b)

Figure 4: Reinsertion of Bi: (a) A schematic illustration, and (b) an example where blue and red
vertices belong to Cx and Cy, respectively.

For each block L = {v1x, v2x, . . . , vhx} of Cx, there is a corresponding set of vertices {v1B , v2B , . . . , vhB}
of B, i.e., the set containing the counterparts of L in B. We will obtain a linear order of G by
processing the blocks of Cx one by one as encountered in a left-to-right sweep of ≺, and for each
block L, we will extend ≺ by suitably inserting the corresponding vertices of B.

Consider the i-th encountered block Li = {vi,1x , vi,2x , . . . , vi,ℓix } of Cx, refer to Fig. 4 for an
illustration. Note that, because Cx and Cy are equivalent components, it holds vi,1y ≺ vi,2y · · · ≺ vi,ℓiy

(even though such vertices might not be consecutive). Also, let vi be the first vertex to the left of
vi,1y in ≺ (possibly vi = vi,ℓix). We insert all vertices in the corresponding block Bi of B such that:

vi ≺ vi,1B ≺ vi,2B ≺ . . . vi,ℓiB ≺ vi,1y . After processing the last block of Cx, we know that all vertices
of Cx have been considered and hence all vertices of B have been reinserted, that is, we extended
≺ to a linear order ≺′ of the whole graph G. The next observation immediately follows by the
procedure described above.

Observation 3 For every vertex vx, it holds that vx ≺′ vB ≺′ vy.

We now establish the correctness of ≺′, completing the proof of Lemma 1.

Lemma 5 The linear order ≺′ yields a valid 1-queue layout of G.

Proof: To prove the statement, we argue that no two edges of G nest in the 1-queue layout
defined by ≺′. We recall that ≺′ extends ≺, hence we do not need to argue about pairs of edges
in G−B. Moreover, by construction, ≺′ restricted to Cx is the same as ≺′ restricted to B (up to
the renaming function η). Consequently, no two edges having both endpoints in B can nest. To
complete the proof, it suffices to consider the two cases of an edge having only one endpoint or
both endpoints in B (i.e., the “newly added” edges), and show that no such edge can be involved
in any nesting.

344 Bhore et al. Parameterized Algorithms for Queue Layouts

� We first consider any edge vBw for w ∈ Pt and vB ∈ B, and assume vB ≺′ w (else the
argument is symmetric). Suppose, for a contradiction, that vBw nests another edge ab.
Recall that since Cx and B are equivalent components, if vB is to the left of w, the same
holds for vx. By Observation 3, we know vx ≺′ vB ≺′ w, which implies that ab is nested
by vxw as well, a contradiction with the correctness of ≺. Similarly, if vBw is nested by
an edge ab, then we know vB ≺′ vy ≺′ w, which implies that ab nests vyw as well, again a
contradiction.

� We now consider any edge vBwB , with vB ≺′ wB . We further distinguish whether, for a
contradiction, vBwB nests an edge ab or is nested by an edge ab.

– Assume vBwB nests an edge ab. Since Definition 2 ensures that a block cannot contain a pair
of adjacent vertices, we know that vx and wx belong to different blocks, say Li and Lj (with

i < j) respectively. Therefore, we can rename the vertices as vx = vi,i
′

x and wx = vj,j
′

x , and

similarly vB = vi,i
′

B and wB = vj,j
′

B ; refer to Fig. 5(a) for an illustration. By Observation 3,

it holds vi,i
′

x ≺′ vi,i
′

B ≺′ vi,i
′

y and vj,j
′

x ≺′ vj,j
′

B ≺′ vj,j
′

y . Moreover, the correctness of ≺
implies that vi,i

′

B ≺′ a ≺′ vi,i
′

y (since vi,i
′

y vj,j
′

y cannot nest ab) and vj,j
′

x ≺′ b ≺′ vj,j
′

B (since

vi,i
′

x vj,j
′

x cannot nest ab). Because a is between vi,i
′

B and vi,i
′

y , either there exists another

vertex vi,1y (the counterpart to the first vertex in block Li, where possibly vi,1y = a) such that

vi,i
′

B ≺′ vi,1y ⪯′ a ≺′ vi,i
′

y , or a = vi,i
′

y .

Suppose first a ̸= vi,1y and a ̸= vi,i
′

y . Observe that vi,1x has at least one neighbor in Cx

(because Cx is connected), and that vj,j
′

x is to the right of vi,i
′

x , hence, by Definition 2, vi,1x

also has a neighbor to its right, say vl,j
∗

x . Because no two edges nest in ≺, it must be: (i)
vi,1x ≺′ vi,i

′

x , (ii) vl,j
∗

x ≺′ b, and (iii) vl,j
∗

y ≺′ b (possibly vl,j
∗

y = b). Altogether, this implies

that vj,j
′

x and vl,j
∗

x are in the same block (i.e., l = j) and hence vj,j
′

B ≺′ vj,j
∗

y ≺′ b, which

contradicts b ≺′ vj,j
′

B . If instead a = vi,1y or a = vi,i
′

y , then b is either a vertex of Cy or a

vertex of Pt. If b ∈ Cy, the argument is similar, as we can set b = vj,j
∗

y and observe that vj,j
′

B

should be to the left of vj,j
∗

y , see Fig. 5(b). If b ∈ Pt, we would have vj,j
′

x ≺′ b ≺′ vj,j
′

y , which
contradicts the fact that Cx and Cy are equivalent components, see Fig. 5(c).

– Assume now that vBwB is nested by an edge ab. Again we can rename the vertices as

vx = vi,i
′

x and wx = vj,j
′

x , and similarly vB = vi,i
′

B and wB = vj,j
′

B . By the position of b we can

deduce either that b = vj,j
′

y (possibly j′ = 1) or that edge vi,i
∗

y vj,1y exists. In the latter case

either vi,i
∗

y vj,1y is also nested by ab or vi,i
′

B ≺′ a, and in both cases we obtain a contradiction;
refer to Fig. 6(a) for an illustration. In the former case, we should again distinguish whether

a ∈ Cy or a ∈ Pt. If a ∈ Cy, it should be vi,i
′

B ≺ a = vi,i
∗

y , see Fig. 6(b). If a ∈ Pt, we

would have vi,i
′

x ≺′ a ≺′ vi,i
′

y , which again contradicts the fact that Cx and Cy are equivalent
components, see Fig. 6(c).

□

4 Parameterization by Vertex Cover Number

We now turn to the general Queue Number problem and show that it is fixed-parameter tractable
when parameterized by the vertex cover number. We formalize our result as follows.

JGAA, 26(3) 335–352 (2022) 345

vi,1x vi,i
′

B vi,i
′

y
a b vj,j

′

B vj,j
′

yvj,j
∗

xvi,1yvi,i
′

x vj,j
′

x vj,j
∗

y

(a)

vi,i
′

x vi,i
′

B
a = vi,i

′

y b = vj,j
∗

y vj,j
′

B vj,j
′

yvj,j
′

x vj,j
∗

x

(b)

vi,i
′

x vi,i
′

B
a = vi,i

′

y b vj,j
′

B vj,j
′

yvj,j
′

x

(c)

Figure 5: Illustration for the proof of Lemma 5: vi,i
′

B vj,j
′

B nests ab.

346 Bhore et al. Parameterized Algorithms for Queue Layouts

vi,i
′

x vi,i
′

B vi,i
′

y
a bvj,j

′

B vj,j
′

yvj,j
′

x vj,1yvi,i
∗

y

(a)

vi,i
′

x vi,i
′

B vi,i
′

y
a = vi,i

∗

y b = vj,j
′

yvj,j
′

Bvj,j
′

x

(b)

vi,i
′

x vi,i
′

B vi,i
′

y
a b = vj,j

′

yvj,j
′

Bvj,j
′

x

(c)

Figure 6: Illustration for the proof of Lemma 5: vi,i
′

B vj,j
′

B is nested by ab.

JGAA, 26(3) 335–352 (2022) 347

Theorem 2 Let G be a graph with n vertices and vertex cover number τ = τ(G). A queue layout

of G with the minimum number of queues can be computed in O(2τ
O(τ)

+ τ log τ · n) time.

4.1 Algorithm Description

Before describing the algorithm behind Theorem 2, we make an easy observation (which matches
an analogous observation in [7]).

Lemma 6 Every n-vertex graph G = (V,E) with a vertex cover C of size τ admits a τ -queue
layout. Moreover, if G and C are given as input, such a τ -queue layout can be computed in
O(n+ τ · n) time.

Proof: Denote by c1, . . . , cτ the τ vertices of C and let ≺ be any linear order of G such that
ci ≺ ci+1, for i = 1, 2, . . . , τ − 1. A queue assignment σ of G on h queues can be obtained as
follows. Let U = V \ C. For each i ∈ [τ] all edges uci with u ∈ U ∪ {c1, . . . , ci−1} are assigned
to queue i. Now, consider the edges assigned to any queue i ∈ [τ]. By construction, they are all
incident to vertex ci, and thus no two of them nest each other. Therefore, the pair ⟨≺, σ⟩ is a
τ -queue layout of G and can be computed in O(n+ τ · n) time. □

Let C be a vertex cover of size τ of graph G. For any subset U of C, a vertex v ∈ V \ C is
of type U if N(v) = U . This defines an equivalence relation on V \ C and in particular partitions
V \C into at most

∑τ
i=1

(
τ
i

)
= 2τ − 1 < 2τ distinct types. Denote by VU the set of vertices of type

U .

Lemma 7 Let h ∈ N and v ∈ VU such that |VU | ≥ 2 · hτ +2. Then G admits an h-queue layout if
and only if G′ = G− {v} does. Moreover, an h-queue layout of G′ can be extended to an h-queue
layout of G in linear time.

The proof of Lemma 7 is deferred to Section 4.2.

Proof: [of Theorem 2] By Proposition 3, we can determine the vertex cover number τ of G and
compute a vertex cover C of size τ in time O(2τ + τ · n). With Lemma 7 in hand, we can then
apply a binary search on the number of queues h ≤ τ as follows. If h > τ , by Lemma 6 we can
immediately conclude that G admits a τ -queue layout and compute one in O(n+τ ·n) time. Hence
we shall assume that h ≤ τ . We construct a kernel G∗ from G of size hO(τ) as follows. We first
classify each vertex of G based on its type. We then remove an arbitrary vertex from each set VU

with |VU | > 2 · hτ + 1 until |VU | ≤ 2 · hτ + 1. Thus, constructing G∗ can be done in O(2τ + τ · n)
time, since 2τ is the number of types and τ · n is the maximum number of edges of G. From
Lemma 7 we conclude that G admits an h-queue layout if and only if G∗ does.

Given a linear order ≺∗ of G∗, a queue assignment σ∗ such that ⟨≺∗, σ∗⟩ is an h-queue layout
of G∗ exists if and only if σ∗ contains no h-rainbow [31], i.e., h independent edges that pairwise
nest, which can be easily checked (and computed if it exists) in hO(τ) time [31]. Consequently,
determining whether G∗ admits an h-queue layout can be done by first guessing all linear orders,
and then for each of them by testing for the existence of an h-rainbow. Since we have 2τ types,
and each of the at most 2 · hτ + 1 elements of the same type are equivalent in the queue layout
(that is, the position of two elements of the same type can be exchanged in ≺∗ without affecting

σ∗), the number of linear orders can be upper bounded by (2τ)O(hτ) = 2τ
O(τ)

. Thus, whether h

queues suffice for G∗ can be determined in 2τ
O(τ) ·hO(τ) = 2τ

O(τ)

time. An h-queue layout of G∗ (if
any) can be extended to one of G by iteratively applying the constructive procedure of Lemma 7,

348 Bhore et al. Parameterized Algorithms for Queue Layouts

in O(τ · n) time. Finally, by applying a binary search on h we obtain an overall time complexity

of O(2τ
O(τ)

+ τ log τ · n), as desired. □

4.2 Proof of Lemma 7

One direction follows easily, since removing a vertex from an h-queue layout still gives an h-queue-
layout of the resulting graph. So let ⟨≺, σ⟩ be an h-queue layout of G′. We prove that an h-queue
layout of G can be constructed by inserting v immediately to the right of a suitable vertex u in VU

and by assigning the edges of v to the same queues as the corresponding edges of u.
We say that two vertices u1, u2 ∈ VU are queue equivalent, if for each vertex w ∈ U , the edges

u1w and u2w are both assigned to the same queue according to σ. Each vertex in VU has degree
exactly |U |, hence this relation partitions the vertices of VU into at most h|U | ≤ hτ sets. Let
V ∗
U = VU \ {v}. Since |V ∗

U | ≥ 2 · hτ + 1, at least three vertices of this set, which we denote by
u1, u2, and u3, are queue equivalent. Consider now the graph induced by the edges of these three
vertices that are assigned to a particular queue. By the above argument, such a graph is a Kl,3,
for some l > 0. However, K3,3 does not admit a 1-page queue layout, because any graph with
queue number 1 is planar [32]. As a consequence, l ≤ 2, that is, each ui ∈ V ∗

U has at most two
edges on each queue. Denote such two edges by uiw and uiz and assume without loss of generality
that u1 ≺ u2 ≺ u3 and w ≺ z. We now claim that w ≺ u1 ≺ u2 ≺ u3 ≺ z, else two edges would
nest. We can distinguish a few cases based on the position of u1 (recall that u1 ≺ u2 ≺ u3), refer
to Fig. 7 for an illustration.

w u1 u2 u3z

(a) Case A

wu1 u2 u3z

(b) Case B.1

wu1 u2 u3z

(c) Case B.2

wu1 u2 u3z

(d) Case B.3

w u1 u2 u3z

(e) Case C.1

w u1 u2 u3z

(f) Case C.2

Figure 7: Illustration for the proof of Lemma 7.

� Case A: w ≺ z ≺ u1, then the nesting edges are zu1 and wu2.

� Case B: u1 ≺ w ≺ z, then we distinguish three more subcases.

– Case B.1: u2 ≺ w, then the nesting edges are u1z and u2w.

– Case B.2: w ≺ u2 ≺ z, then the nesting edges are u1z and wu2.

– Case B.3: z ≺ u2, then the nesting edges are zu2 and wu3.

� Case C: w ≺ u1 ≺ z, if w ≺ u2 ≺ u3 ≺ z the claim follows. Else, we have two more subcases
based again on the position of u2.

JGAA, 26(3) 335–352 (2022) 349

– Case C.1: w ≺ z ≺ u2, then the nesting edges are wu2 and u1z.

– Case C.2: w ≺ u2 ≺ z ≺ u3, then the nesting edges are wu3 and u1z.

It follows that we can extend ≺ by introducing v as the first vertex to the right of u1 and, for each
edge vw such that w ∈ U , we can assign vw to the same queue as u1w. This operation does not
introduce any nesting. Namely, if vw is assigned to a queue containing only one edge of u1, the
graph induced by the edges in this queue is a star with center w and no two edges can nest. If vw
is assigned to a queue containing two edges of u1, say u1w and u1z, then we know that all vertices
of VU are between w and z in ≺ and again no two edges nest.

5 Conclusions and Open Problems

We proved that h-Queue Number is fixed-parameter tractable parameterized by treedepth for
h = 1, and by the vertex cover number for arbitrary h ≥ 1. Several interesting questions arise
from our research, among them:

1. A first natural question is to understand whether Theorem 1 can be extended to the gen-
eral case (h ≥ 1). In particular, our arguments establishing the existence of interleaving
components already fail for h = 2.

2. Extending Theorem 1 to graphs of bounded treewidth is also an interesting problem; here
the main issue is to be able to forget information about vertices in a partial order, thus an
approach based on testing arched leveled-planarity might be more suitable.

3. Finally, we mention the possibility of studying the parameterized complexity of mixed linear
layouts, using both queues and stacks, see [2, 13,25,32,38].

It is worth noting that the preliminary version of this manuscript [8] has already led to inter-
esting follow-up work [34] which uses analogous techniques to generalize Theorem 2.

References

[1] J. M. Alam, M. A. Bekos, M. Gronemann, M. Kaufmann, and S. Pupyrev. Lazy queue layouts
of posets. In D. Auber and P. Valtr, editors, GD 2020, volume 12590 of LNCS, pages 55–68.
Springer, 2020. doi:10.1007/978-3-030-68766-3_5.

[2] P. Angelini, M. A. Bekos, P. Kindermann, and T. Mchedlidze. On mixed linear layouts of
series-parallel graphs. In D. Auber and P. Valtr, editors, GD 2020, volume 12590 of LNCS,
pages 151–159. Springer, 2020. doi:10.1007/978-3-030-68766-3_12.

[3] M. J. Bannister, S. Cabello, and D. Eppstein. Parameterized complexity of 1-planarity. J.
Graph Algorithms Appl., 22(1):23–49, 2018. doi:10.7155/jgaa.00457.

[4] M. J. Bannister, W. E. Devanny, V. Dujmović, D. Eppstein, and D. R. Wood. Track
layouts, layered path decompositions, and leveled planarity. Algorithmica, 2018. doi:

10.1007/s00453-018-0487-5.

https://doi.org/10.1007/978-3-030-68766-3_5
https://doi.org/10.1007/978-3-030-68766-3_12
https://doi.org/10.7155/jgaa.00457
https://doi.org/10.1007/s00453-018-0487-5
https://doi.org/10.1007/s00453-018-0487-5

350 Bhore et al. Parameterized Algorithms for Queue Layouts

[5] M. A. Bekos, H. Förster, M. Gronemann, T. Mchedlidze, F. Montecchiani, C. N. Raftopoulou,
and T. Ueckerdt. Planar graphs of bounded degree have bounded queue number. SIAM J.
Comput., 48(5):1487–1502, 2019. doi:10.1137/19M125340X.

[6] S. N. Bhatt, F. R. K. Chung, F. T. Leighton, and A. L. Rosenberg. Scheduling tree-dags using
FIFO queues: A control-memory trade-off. J. Parallel Distrib. Comput., 33(1):55–68, 1996.
doi:10.1006/jpdc.1996.0024.

[7] S. Bhore, R. Ganian, F. Montecchiani, and M. Nöllenburg. Parameterized algorithms for book
embedding problems. J. Graph Algorithms Appl., 24(4):603–620, 2020. doi:10.7155/jgaa.

00526.

[8] S. Bhore, R. Ganian, F. Montecchiani, and M. Nöllenburg. Parameterized algorithms for
queue layouts. In D. Auber and P. Valtr, editors, GD 2020, volume 12590 of LNCS, pages
40–54. Springer, 2020. doi:10.1007/978-3-030-68766-3_4.

[9] S. Bhore, G. D. Lozzo, F. Montecchiani, and M. Nöllenburg. On the upward book thick-
ness problem: Combinatorial and complexity results. In H. C. Purchase and I. Rutter,
editors, GD 2021, volume 12868 of LNCS, pages 242–256. Springer, 2021. doi:10.1007/

978-3-030-92931-2_18.

[10] S. Chaplick, E. Di Giacomo, F. Frati, R. Ganian, C. N. Raftopoulou, and K. Simonov. Param-
eterized algorithms for upward planarity. In SoCG 2022. Schloss Dagstuhl - Leibniz-Zentrum
für Informatik, 2022. To appear.

[11] J. Chen, I. A. Kanj, and G. Xia. Improved upper bounds for vertex cover. Theor. Comput.
Sci., 411(40-42):3736–3756, 2010. doi:10.1016/j.tcs.2010.06.026.

[12] M. Cygan, F. V. Fomin, L. Kowalik, D. Lokshtanov, D. Marx, M. Pilipczuk, M. Pilipczuk, and
S. Saurabh. Parameterized Algorithms. Springer, 2015. doi:10.1007/978-3-319-21275-3.

[13] P. de Col, F. Klute, and M. Nöllenburg. Mixed linear layouts: Complexity, heuristics, and
experiments. In D. Archambault and C. D. Tóth, editors, GD 2019, volume 11904 of LNCS,
pages 460–467. Springer, 2019. doi:10.1007/978-3-030-35802-0_35.

[14] G. Di Battista, F. Frati, and J. Pach. On the queue number of planar graphs. SIAM J.
Comput., 42(6):2243–2285, 2013. doi:10.1137/130908051.

[15] E. Di Giacomo, G. Liotta, and H. Meijer. Computing straight-line 3D grid drawings of graphs
in linear volume. Comput. Geom., 32(1):26–58, 2005. doi:10.1016/j.comgeo.2004.11.003.

[16] E. Di Giacomo, G. Liotta, and F. Montecchiani. Orthogonal planarity testing of bounded
treewidth graphs. J. Comput. Syst. Sci., 125:129–148, 2022. doi:10.1016/j.jcss.2021.11.
004.

[17] R. Diestel. Graph Theory, 4th Edition, volume 173 of Graduate texts in mathematics. Springer,
2012.

[18] R. G. Downey and M. R. Fellows. Fundamentals of Parameterized Complexity. Texts in
Computer Science. Springer, 2013. doi:10.1007/978-1-4471-5559-1.

[19] V. Dujmović. Graph layouts via layered separators. J. Comb. Theory, Ser. B, 110:79–89,
2015. doi:10.1016/j.jctb.2014.07.005.

https://doi.org/10.1137/19M125340X
https://doi.org/10.1006/jpdc.1996.0024
https://doi.org/10.7155/jgaa.00526
https://doi.org/10.7155/jgaa.00526
https://doi.org/10.1007/978-3-030-68766-3_4
https://doi.org/10.1007/978-3-030-92931-2_18
https://doi.org/10.1007/978-3-030-92931-2_18
https://doi.org/10.1016/j.tcs.2010.06.026
https://doi.org/10.1007/978-3-319-21275-3
https://doi.org/10.1007/978-3-030-35802-0_35
https://doi.org/10.1137/130908051
https://doi.org/10.1016/j.comgeo.2004.11.003
https://doi.org/10.1016/j.jcss.2021.11.004
https://doi.org/10.1016/j.jcss.2021.11.004
https://doi.org/10.1007/978-1-4471-5559-1
https://doi.org/10.1016/j.jctb.2014.07.005

JGAA, 26(3) 335–352 (2022) 351

[20] V. Dujmovic, M. R. Fellows, M. Kitching, G. Liotta, C. McCartin, N. Nishimura, P. Ragde,
F. A. Rosamond, S. Whitesides, and D. R. Wood. On the parameterized complexity of layered
graph drawing. Algorithmica, 52(2):267–292, 2008. doi:10.1007/s00453-007-9151-1.

[21] V. Dujmović, G. Joret, P. Micek, P. Morin, T. Ueckerdt, and D. R. Wood. Planar graphs
have bounded queue-number. In Foundations of Computer Science (FOCS’19), pages 862–875.
IEEE, 2019. doi:10.1109/FOCS.2019.00056.

[22] V. Dujmović, P. Morin, and D. R. Wood. Layout of graphs with bounded tree-width. SIAM
J. Comput., 34(3):553–579, 2005. doi:10.1137/S0097539702416141.

[23] V. Dujmović, P. Morin, and D. R. Wood. Layered separators in minor-closed graph classes
with applications. J. Comb. Theory, Ser. B, 127:111–147, 2017. doi:10.1016/j.jctb.2017.
05.006.

[24] V. Dujmović and D. R. Wood. On linear layouts of graphs. Discrete Math. Theor. Comput.
Sci., 6(2):339–358, 2004. URL: http://dmtcs.episciences.org/317.

[25] V. Dujmović and D. R. Wood. Stacks, queues and tracks: Layouts of graph subdivisions.
Discrete Math. Theor. Comput. Sci., 7(1):155–202, 2005. URL: http://dmtcs.episciences.
org/346.

[26] E. Eiben, R. Ganian, T. Hamm, F. Klute, and M. Nöllenburg. Extending partial 1-planar
drawings. In A. Czumaj, A. Dawar, and E. Merelli, editors, ICALP 2020, volume 168 of
LIPIcs, pages 43:1–43:19. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2020. doi:

10.4230/LIPIcs.ICALP.2020.43.

[27] R. Ganian, F. Montecchiani, M. Nöllenburg, and M. Zehavi. Parameterized complexity in
graph drawing (dagstuhl seminar 21293). Dagstuhl Reports, 11(6):82–123, 2021. doi:10.

4230/DagRep.11.6.82.

[28] R. Ganian and S. Ordyniak. The complexity landscape of decompositional parameters for
ILP. Artificial Intelligence, 257:61–71, 2018. doi:10.1016/j.artint.2017.12.006.

[29] R. Ganian, T. Peitl, F. Slivovsky, and S. Szeider. Fixed-parameter tractability of dependency
QBF with structural parameters. In D. Calvanese, E. Erdem, and M. Thielscher, editors, KR
2020, pages 392–402, 2020. doi:10.24963/kr.2020/40.

[30] G. Z. Gutin, M. Jones, and M. Wahlström. The mixed Chinese postman problem pa-
rameterized by pathwidth and treedepth. SIAM J. Discrete Math., 30(4):2177–2205, 2016.
doi:10.1137/15M1034337.

[31] L. S. Heath, F. T. Leighton, and A. L. Rosenberg. Comparing queues and stacks as mechanisms
for laying out graphs. SIAM J. Discrete Math., 5(3):398–412, 1992. doi:10.1137/0405031.

[32] L. S. Heath and A. L. Rosenberg. Laying out graphs using queues. SIAM J. Comput.,
21(5):927–958, 1992. doi:10.1137/0221055.

[33] P. Hlinený and A. Sankaran. Exact crossing number parameterized by vertex cover. In
D. Archambault and C. D. Tóth, editors, GD 2019, volume 11904 of LNCS, pages 307–319.
Springer, 2019. doi:10.1007/978-3-030-35802-0_24.

https://doi.org/10.1007/s00453-007-9151-1
https://doi.org/10.1109/FOCS.2019.00056
https://doi.org/10.1137/S0097539702416141
https://doi.org/10.1016/j.jctb.2017.05.006
https://doi.org/10.1016/j.jctb.2017.05.006
http://dmtcs.episciences.org/317
http://dmtcs.episciences.org/346
http://dmtcs.episciences.org/346
https://doi.org/10.4230/LIPIcs.ICALP.2020.43
https://doi.org/10.4230/LIPIcs.ICALP.2020.43
https://doi.org/10.4230/DagRep.11.6.82
https://doi.org/10.4230/DagRep.11.6.82
https://doi.org/10.1016/j.artint.2017.12.006
https://doi.org/10.24963/kr.2020/40
https://doi.org/10.1137/15M1034337
https://doi.org/10.1137/0405031
https://doi.org/10.1137/0221055
https://doi.org/10.1007/978-3-030-35802-0_24

352 Bhore et al. Parameterized Algorithms for Queue Layouts

[34] Y. Liu, Y. Li, and J. Huang. Parameterized algorithms for linear layouts of graphs with respect
to the vertex cover number. In D. Du, D. Du, C. Wu, and D. Xu, editors, COCOA 2021, volume
13135 of LNCS, pages 553–567. Springer, 2021. doi:10.1007/978-3-030-92681-6_43.

[35] J. Nešetřil and P. Ossona de Mendez. Sparsity – Graphs, Structures, and Algorithms, vol-
ume 28 of Algorithms and combinatorics. Springer, 2012. doi:10.1007/978-3-642-27875-4.

[36] T. Ollmann. On the book thicknesses of various graphs. In Southeastern Conference on
Combinatorics, Graph Theory and Computing, volume VIII of Congressus Numerantium, page
459, 1973.

[37] S. V. Pemmaraju. Exploring the powers of stacks and queues via graph layouts. PhD thesis,
Virginia Tech, 1992.

[38] S. Pupyrev. Mixed linear layouts of planar graphs. In F. Frati and K.-L. Ma, editors, Graph
Drawing and Network Visualization (GD’17), volume 10692 of LNCS, pages 197–209. Springer,
2018. doi:10.1007/978-3-319-73915-1_17.

[39] F. Reidl, P. Rossmanith, F. S. Villaamil, and S. Sikdar. A faster parameterized algorithm
for treedepth. In ICALP 2014, volume 8572 of LNCS, pages 931–942. Springer, 2014. doi:

10.1007/978-3-662-43948-7_77.

[40] R. E. Tarjan. Sorting using networks of queues and stacks. J. ACM, 19(2):341–346, 1972.
doi:10.1145/321694.321704.

[41] V. Wiechert. On the queue-number of graphs with bounded tree-width. Electr. J. Comb.,
24(1):P1.65, 2017. doi:10.37236/6429.

[42] M. Yannakakis. Embedding planar graphs in four pages. J. Comput. Syst. Sci., 38(1):36–67,
1989. doi:10.1016/0022-0000(89)90032-9.

https://doi.org/10.1007/978-3-030-92681-6_43
https://doi.org/10.1007/978-3-642-27875-4
https://doi.org/10.1007/978-3-319-73915-1_17
https://doi.org/10.1007/978-3-662-43948-7_77
https://doi.org/10.1007/978-3-662-43948-7_77
https://doi.org/10.1145/321694.321704
https://doi.org/10.37236/6429
https://doi.org/10.1016/0022-0000(89)90032-9

	Introduction
	Preliminaries
	Treedepth
	Vertex cover number

	Parameterization by Treedepth
	Algorithm Description
	Proof of lem:main

	Parameterization by Vertex Cover Number
	Algorithm Description
	Proof of le:kernel

	Conclusions and Open Problems

