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Abstract. In a planar L-drawing of a directed graph (digraph) each edge e is
represented as a polyline composed of a vertical segment starting at the tail of e and a
horizontal segment ending at the head of e. Distinct edges may overlap, but not cross.
Our main focus is on bimodal graphs, i.e., digraphs admitting a planar embedding in
which the incoming and outgoing edges around each vertex are contiguous. We show
that every plane bimodal graph without 2-cycles admits a planar L-drawing. This
includes the class of upward-plane graphs. Bimodal graphs with 2-cycles admit a planar
L-drawing if the underlying undirected graph with merged 2-cycles is a planar 3-tree.
Finally, outerplanar digraphs admit a planar L-drawing – although they do not always
have a bimodal embedding – but not necessarily with an outerplanar embedding.

1 Introduction

In an L-drawing of a directed graph (digraph), vertices are represented by points with distinct
x- and y-coordinates, and each directed edge (u, v) is a polyline consisting of a vertical segment
incident to the tail u and of a horizontal segment incident to the head v. This defines four ports,
North, South, East, and West for each vertex. Two edges may overlap in a subsegment with end
point at a common tail or head. An L-drawing is planar if no two edges cross (Fig. 1(c)). Non-
planar L-drawings were first defined by Angelini et al. [3]. Chaplick et al. [13] showed that it is
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Figure 1: Various representations of a bimodal irreducible triangulation.

NP-complete to decide whether a directed graph has a planar L-drawing if the embedding is not
fixed. However it can be decided in linear time whether a planar st-graph has an upward-planar
L-drawing, i.e., an L-drawing in which the vertical segment of each edge leaves its tail from the top.

A vertex v of a plane digraph G is k-modal (mod(v) = k) if in the cyclic sequence of edges
around v there are exactly k pairs of consecutive edges that are neither both incoming nor both
outgoing. A digraph G is k-modal if mod(v) ≤ k for every vertex v of G. The 2-modal graphs
or 2-modal vertices are often referred to as bimodal, see Fig. 1(a). Any plane digraph admitting
a planar L-drawing is clearly 4-modal. Upward-planar and level-planar drawings induce bimodal
embeddings. While testing whether a graph has a bimodal embedding is possible in linear time,
testing whether a graph has a 4-modal embedding [6] and testing whether a partial orientation of
a plane graph can be extended to be bimodal [10] are NP-complete.

A plane digraph is a planar digraph with a fixed rotation system of the edges around each
vertex and a fixed outer face. In an L-drawing of a plane digraph G, the clockwise cyclic order
of the edges incident to each vertex and the outer face are the ones prescribed for G. In a planar
L-drawing the edges attached to the same port of a vertex v are ordered as follows: There are first
the edges bending to the left with increasing length of the segment incident to v and then those
bending to the right with decreasing length of the segment incident to v.

This is analogous to the Kandinsky model [16], where vertices are drawn as squares of equal
size on a grid and edges as orthogonal polylines on a finer grid (Fig. 1(d)). Bend-minimization in
the Kandinsky model is NP-complete [11] even if the embedding is fixed and can be approximated
within a factor of two [5]. Each undirected simple graph admits a Kandinsky drawing with one
bend per edge [12]. The relationship between Kandinsky drawings and planar L-drawings was
established in [13].

L-drawings of directed graphs can be considered as bend-optimal drawings, since one bend per
edge is necessary in order to guarantee the property that edges must leave a vertex from the top
or the bottom and enter it from the right or the left. Planar L-drawings can be also seen as a
directed version of +-contact representations, where each vertex is drawn as a + and two vertices
are adjacent if the respective +es touch. If the graph is bimodal, then the +es are Ts (including

T,

T

, and

T

). Undirected planar graphs always allow a T-contact representation, which can be
computed utilizing Schnyder woods [14].

Biedl and Mondal [9] showed that a +-contact representation can also be constructed from a
rectangular dual (Fig. 1(b)). A plane graph with four vertices on the outer face has a rectangular
dual if and only if it is an inner triangulation without separating triangles [21]. Bhasker and
Sahni [7] gave the first linear-time algorithm for computing rectangular duals. Then, He [17]
showed how to compute a rectangular dual from a regular edge labeling, while Kant and He [20]
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Figure 2: All planar L-drawings of a triangle up to symmetry.

gave two linear-time algorithms for computing regular edge labelings. Biedl and Derka [8] computed
rectangular duals via (3,1)-canonical orderings.

Contribution: We show that every bimodal graph without 2-cycles admits a planar L-drawing
respecting a given bimodal embedding (Sect. 4). This implies that every upward-planar graph
admits a planar L-drawing respecting a given upward-planar embedding, which solves an open
problem posed in [13]. The construction is based on rectangular duals. We also provide an
iterative algorithm showing that any bimodal graph with 2-cycles admits a planar L-drawing if the
underlying undirected graph with merged 2-cycles is a planar 3-tree (Sect. 5). Finally, we show
that every outerplanar graph admits a planar L-drawing but not necessarily one where all vertices
are incident to the outer face (Sect. 6). We conclude with open problems (Sect. 7).

2 Preliminaries

In this section, we provide further definitions and preliminary results.

2.1 L-Drawings

For each vertex we consider four ports, North, South, East, and West. An L-drawing implies a
port assignment, i.e., an assignment of the edges to the ports of the end vertices such that the
outgoing edges are assigned to the North and South port and the incoming edges are assigned
to the East and West port. A port assignment for each edge e of a digraph G defines a pair
(out(e),in(e)) ∈ {North,South} × {East,West}. An L-drawing realizes a port assignment if each
edge e = (v, w) is incident to the out(e)-port of v and to the in(e)-port of w. A port assignment
admits a planar L-drawing if there is a planar L-drawing that realizes it. Given a port assignment
it can be tested in linear time whether it admits a planar L-drawing [13].
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In this paper, we will distinguish between given L-drawings of a triangle.

Lemma 1 Fig. 2 shows all planar L-drawings of a triangle up to symmetry.

Proof: We first consider a triangle T that is not a directed cycle. Let t be the sink, s the source,
and w the third vertex of T . We may assume that ⟨s, w, t⟩ is the counter-clockwise cyclic order
of vertices around T and that the edge (s, w) uses the North port of s – the other cases being
symmetric. We distinguish two cases.

1. w is to the right of s. In this case t cannot be below w: otherwise it is not possible to close T
in counter-clockwise direction with only one bend per edge. For the x-coordinate of t there
are three possibilities: t is to the right of w (a), between s and w (c), and to the left of s (b).

2. w is to the left of s. As in the former case, t cannot be above w in this case. If t is below s,
its x-coordinate can be to the left of w (g), between w and s (e), or to the right of s (d). If t
is vertically between w and s, its x-coordinate is between w and s (h) or to the left of w (f).

Consider now the case that triangle T is a directed cycle. Then no two edges of T can use the
same port at any vertex. Thus, T is drawn as a 6-gon, which implies that the angular sum is 4π.
Therefore, there is one 3π/2 angle and five π/2 angles. The constructed drawings cover the cases
in which the 3π/2 angle is at a vertex (y) or at a bend (x), thus concluding the proof. □

Coordinates for the Vertices. Given a port assignment that admits a planar L-drawing, a
planar L-drawing realizing it can be computed in linear time by the general compaction approach
for orthogonal or Kandinsky drawings [15]. However, in this approach, the graph has to be first
augmented such that each face has a rectangular shape. For L-drawings of plane triangulations it
suffices to make sure that each edge has the right shape given by the port assignment. We will
prove in Theorem 1 that this can be achieved using topological orderings only. For this, we first
present an auxiliary lemma and give a further definition.

Lemma 2 A drawing of a plane biconnected graph is planar if the ordering of the edges around
each vertex is respected and the boundary of each face is drawn crossing-free.

Proof: We exploit the same idea as in the proof of Tutte – see Item 9.1 on page 758 of [23]. Let G
be a plane biconnected graph and let Γ be a drawing of G in which each face is drawn crossing-free.
Assume two edges e1 and e2 cross. By assumption, e1 and e2 must belong to distinct faces, say f1
and f2, respectively. (We consider the boundary of a face not to be part of the face, i.e., faces are
open regions). Then there must be a point q ∈ f1 ∩ f2. But this is impossible: For each point p
in the plane let δ(p) be the number of faces containing p. Since the inner faces are bounded, there
must be a point qo that is only contained in the outer face and thus, δ(qo) = 1. Consider a curve ℓ
from qo to q that does not contain vertices. Traversing ℓ, the count δ does not change if no edge is
crossed. If we cross an edge then we leave a face and enter another face. Thus, the count will not
change either, contradicting δ(q) ≥ 2. □

Consider two edges e1 and e2 in a planar L-drawing that are assigned to the same port of a
vertex v, and let f be the face between e1 and e2. Then the bend at e1 or e2 must be concave
in f . In this case, we say that e1 and e2 satisfy the concave-bend condition. A reader familiar with
Kandinsky drawings [16] will notice that this condition is inspired by the so called bend-or-end
property.
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Figure 3: A triangular face cannot self-intersect if all edges have the correct shape.

Theorem 1 Let G = (V,E) be a plane triangulated graph with a port assignment that admits a
planar L-drawing. Let X and Y be copies of G with a different orientation of the edges. More
precisely, for each edge e = (v, w) ∈ E

� there is (v, w) in X if in(e) = West and (w, v) in X if in(e) = East.

� there is (v, w) in Y if out(e) = North and (w, v) in Y if out(e) = South.

Let x and y be a topological ordering of X and Y , respectively. Drawing each vertex v at (x(v), y(v))
yields a planar L-drawing realizing the given port assignment.

Proof: By Lemma 2, it suffices to show that all faces are drawn in a planar way. Assume there are
two edges e1 and e2 incident to the same face that cross. Since all faces are triangles, e1 and e2 are
incident to the same vertex v. Assume without loss of generality that out(e1) = North, in(e1) =
West, and that v is the head of e1. We distinguish three ways e2 could cross e1 (see Fig. 3):

(a) v is the head of e2, in(e2) = West, out(e2) = South, and e2 is before e1 in the clockwise order
around v, or

(b) v is the head of e2, in(e2) = West, out(e2) = North, and e2 is after e1 in the clockwise order
around v, or

(c) v is the tail of e2, out(e2) = South, in(e2) = East, the head w of e2 is to the left, and above of
the tail u of e1.

Situation (a) violates the concave-bend condition. A crossing in Situation (b) implies that the
edge e3 closing the triangular face is either (u,w) with in(e3) = West or (w, u) with in(e3) =
East. However, this port assignment would not be one that admits a planar L-drawing. Finally, a
crossing in Situation (c) implies that the edge e3 closing the triangular face is either (u,w) with
in(e3) = East and out(e3) = North or (w, u) with in(e3) = West and out(e3) = South. Again, this
port assignment would not be one that admits a planar L-drawing. □

Observe that in general it does not suffice to only consider a drawing respecting the port
assignment of each edge in order to obtain a planar L-drawing even if the port assignment admits
such a drawing, not even for a directed 4-cycle (Fig. 4(a)) or a 4-cycle consisting only of sinks and
sources (Fig. 4(b)).

Observe that we can modify the edge lengths in a planar L-drawing independently in x- and
y-directions in an arbitrary way, as long as we maintain the ordering of the vertices in x- and
y-direction, respectively. This will still yield a planar L-drawing. This fact implies the following
remark.
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Remark 1 Let G be a plane digraph with a triangular outer face, let Γ be a planar L-drawing
of G, and let Γ0 be a planar L-drawing of the outer face of G such that the edges on the outer face
have the same port assignment in Γ and Γ0. Then there exists a planar L-drawing of G with the
same port assignment as in Γ in which the drawing of the outer face is Γ0.

2.2 Bimodal Graphs

We provide a small technical lemma stating that any given k-modal plane digraph can be “nicely”
extended to a quadrangulated k-modal plane digraph. This is applied in the proof of Theorem 2
where we show that every plane bimodal graph without 2-cycles admits a planar L-drawing. A
vertex v is a sink-switch or source-switch of a simple cycle C in a graph if and only if v is a sink
or a source in C.

Lemma 3 Let G be a plane digraph. We can augment G by adding edges to obtain a biconnected
plane digraph with face-degree at most four such that each k-modal vertex remains k-modal if k > 0
and each 0-modal vertex becomes at most 2-modal. The construction can be done in linear time
and introduces neither parallel edges nor 2-cycles. Moreover, each 4-cycle bounding a face consists
of alternating source and sink switches.

Proof: We perform the augmentation of G in three steps.

Making G connected: If G is not connected, let G1 be a connected component of G such that
the outer face f1

o of G1 (considered as an open region) contains vertices of G. See Fig. 5(a).
Pick a vertex v incident to f1

o with the property that v is an isolated vertex or v is the tail
of an edge incident to f1

o . Let f be the face of G that is contained in f1
o and that is incident

to v. Pick a vertex w incident to f that is not in G1 and such that w is isolated or the head
of an edge incident to f . Add the edge (v, w).

Making G biconnected: If G contains a cut vertex v, let w1 and w2 be two consecutive neighbors
of v in different biconnected components. Let f be the face between the edges connecting v
to w1 and w2, respectively; see Fig. 5(b). If we can add the edge (w1, w2) or (w2, w1) such
that the modalities of w1 and w2 do not increase, if they had been positive before, we do so.
Otherwise the edges incident to f and w1 and w2 are either all outgoing edges of w1 and w2,
respectively, or all incoming edges – we assume without loss of generality they are outgoing.
Further, both w1 and w2 have at least two neighbors incident to f . Let w3 ̸= v be a neighbor
of w2 such that the edge {w2, w3} is incident to f . Add (w1, w3) to G.

b b

c c

dd

a a

(a) directed 4-cycle

a

b

c

d

a

d

c

b

(b) 4-cycle

Figure 4: Given a port assignment that admits a planar L-drawing, not every L-drawing that
realizes it is also planar.
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Making G quadrangulated: If G contains a face f of degree greater than four, let v1, . . . , vk be
the facial cycle of f such that v1 is the tail of an edge incident to f ; see Fig. 5(c). If the edge
between v3 and v2 and the edge between v3 and v4 incident to f are both outgoing edges
of v3, let i = 4. Otherwise let i = 3. Now, if neither (v1, vi) nor (vi, v1) is present in G then
add (v1, vi) to G. Otherwise we can add an edge between v2 and either v4 or v5 if i = 3, or
between v5 and either v3 or v2 if i = 4.

Similarly to triangulating plane graphs (see, e.g., [18, Chapter 6]), this construction can be done
in linear time. □

2.3 Irreducible Triangulations and Rectangular Duals

An irreducible triangulation is an internally triangulated graph without separating triangles, where
the outer face has degree four (Fig. 1). A rectangular tiling of a rectangle R is a partition of R into a
set of non-overlapping rectangles such that no four rectangles meet at the same point. A rectangular
dual of a planar graph is a rectangular tiling such that there is a one-to-one correspondence between
the inner rectangles and the vertices and there is an edge between two vertices if and only if the
respective rectangles touch. We denote by Rv the rectangle representing the vertex v. Note that
an irreducible triangulation always admits a rectangular dual, which can be computed in linear
time [7, 8, 17, 20].

3 Perturbed Generalized L-Drawings

Motivated by the work of Biedl and Mondal [9], we will use rectangular duals in order to construct
planar L-drawings. To this end, in Sect. 3.1, we introduce generalized L-drawings where segments
are replaced by zig-zag-paths. We then essentially perturb the coordinate system such that the
axes are the diagonals of the rectangles in the rectangular dual, i.e., we route the edges, such that
each of their segments is parallel to these diagonals. See Sect. 3.2.

3.1 Generalized Planar L-Drawings

For two points p, q in the plane, we denote the line-segment {λp+(1−λ)q; 0 ≤ λ ≤ 1} connecting
them by pq. An orthogonal polyline P = ⟨p1, . . . , pn⟩ is a sequence of points s.t. pipi+1 is vertical
or horizontal. For 1 ≤ i ≤ n − 1 and a point p ∈ pipi+1, the polyline ⟨p1, . . . , pi, p⟩ is a prefix
of P and the polyline ⟨p, pi+1, . . . , pn⟩ is a suffix of P . Walking from p1 to pn, consider a bend
pi, i = 2, . . . , n − 1. The rotation rot(pi) is 1 if P has a left turn at pi, −1 for a right turn,
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and 0 otherwise (when pi−1pi and pipi+1 are both vertical or horizontal). The rotation of P is

rot(P ) =
∑n−1

i=2 rot(pi).

In a generalized planar L-drawing of a digraph, vertices are still represented by points with
distinct x- and y-coordinates, and edges by orthogonal polylines with the following three properties.
(1) Each directed edge e = (u, v) starts with a vertical segment incident to the tail u and ends with
a horizontal segment incident to the head v. (2) The polylines representing two edges overlap in
at most a common straight-line prefix or suffix, and they do not cross. This definition resembles
the one of angular drawings, defined in the context of Windrose planarity [4], in which edges are
represented by xy-monotone polylines with their endparts being straight-line segments with slope
1 or −1. However, in Windrose planarity the assignment of edges to ports is prescribed by the
input.

In order to define the third property, let init(e) be the prefix of e overlapping with at least one
other edge, let final(e) be the suffix of e overlapping with at least one other edge, and let mid(e)
be the remaining individual part of e. Observe that the first and the last vertex of init(e), final(e),
and mid(e) are end vertices of e, bends of e, or bends of some other edges. Now we define the
third property: (3) For an edge e one of the following is true: (i) neither of the two end points of
mid(e) is a bend of e and rot(e) = ±1 or (ii) one of the two end points of mid(e), but not both, is
a bend of e and rot(mid(e)) = 0. See Fig. 6. As a consequence of the flow model of Tamassia [22],
we obtain the following lemma.

s

t
w

v

e1

e2

e3

e4

(a) not a generalized planar L-drawing

s

t
w

v

e1

e2

e3

e4

(b) underlying orthogonal drawing

Figure 6: Cond. 3 of generalized planar L-drawings is fulfilled for all edges but for e1 and e2. The
rotation of each edge is ±1. However, rot(mid(e1)) = 2 and both end vertices of mid(e2) are bends
of e2.

Lemma 4 A plane digraph admits a planar L-drawing if and only if it admits a generalized planar
L-drawing with the same port assignment.

Proof: A planar L-drawing is a planar generalized L-drawing. For the other direction, assume
that a planar generalized L-drawing Γ of a digraph G is given. We consider Γ as an orthogonal
drawing of a new graph G′ – see Fig. 6(b). To this end, we replace every bend in Γ by a dummy
vertex if it is contained in the polyline representing another edge. Consider now an edge of G that
has more than one bend. This edge is decomposed in G′ into an initial straight-line path Pinit,
an edge emid, and a final straight-line path Pfinal. The edge emid is represented by an orthogonal
polyline with the same bends as mid(e). Using the flow model of Tamassia [22], we can remove
all but rot(mid(e)) bends from emid. Now the cases are two: If none of the end vertices of emid is
a bend of e then rot(e) = ±1 and, thus, e ends up with exactly one bend. If the first or the last
bend of e is an end vertex of emid then rot(emid) = 0 and emid ends up with no bends. Thus, e has
exactly one bend at exactly one end vertex of emid. □
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3.2 Perturbed Generalized Planar L-drawing

Consider a rectangular dual for a directed irreducible triangulation G. We construct a drawing
of G as follows. We place each vertex of G on the center of its rectangle. Each edge is routed as
a perturbed orthogonal polyline, i.e., a polyline within the two rectangles corresponding to its two
end vertices, such that each edge segment is parallel to one of the two diagonals of the rectangle
containing it. See Fig. 7(a). This drawing is called a perturbed generalized planar L-drawing if and
only if (1) each directed edge e = (u, v) starts with a segment on the diagonal \u of Ru from the
upper left to the lower right corner and ends with a segment on the diagonal /v of Rv from the
lower left to the upper right corner. Observe that a change of directions at the intersection of Rv

and Ru is not considered a bend if the two incident segments in Rv and Ru are both parallel to \
or to /. The definition of rotation and Conditions (2) and (3) are analogous to generalized planar
L-drawings.

In a perturbed generalized planar L-drawing, the North port of a vertex is at the segment be-
tween the center and the upper left corner of the rectangle. The other ports are defined analogously.
Since we can always approximate a segment with an orthogonal polyline (Figs. 7(b) to 7(d)), we
obtain the following.

u

v

(a) (u, v) (b) perturbed (c) zig zag (d) rotate (e) split

Figure 7: (a) An edge in a perturbed generalized planar L-drawing. (b-e) From a perturbed
generalized planar L-drawing to a generalized planar L-drawing.

Lemma 5 If a directed irreducible triangulation has a perturbed generalized planar L-drawing,
then it has a planar L-drawing with the same port assignment.

Proof: Let a perturbed generalized planar L-drawing Γ of an irreducible triangulation G be given.
By Lemma 4, it suffices to show that G has a generalized planar L-drawing. First, we construct a
graph G′ of maximum degree 4 by subdividing the edges at all bends and intersections with the
boundary of a rectangle. Observe that now every edge lies in the interior of one rectangle. We
approximate each edge e of G′ with an orthogonal polyline rotated by 45◦, arbitrarily close to it, in
such a way that the following properties hold: No two polylines of two edges cross and the polyline
of an edge is not self-intersecting. The rotation of any polyline is zero. The segments incident
to the end vertices have both slope −45◦ if e is parallel to \v and slope 45◦ if e is parallel to /v,
where Rv is the rectangle containing e. See Fig. 7. Finally, rotate the drawing by 45◦ in clockwise
direction. We obtain a drawing that fulfills all properties of a generalized planar L-drawing of G,
except that edges might overlap in a prefix or a suffix with rotation 0 that might, however, not
be a straight-line segment. We fix this as follows. Let v be a vertex and let ⟨e1, . . . , ek⟩ be the
sequence of edges assigned to a port of v in clockwise order. Assume without loss of generality
that e1, . . . , ek are outgoing edges of v. Let 1 ≤ m ≤ k be such that init(em) is longest. We redraw
each edge ei with i ̸= m so that the common part of ei and em lies on the first segment and the
lengths of init(e1), . . . ,init(em−1) are still increasing and those of init(em+1), . . . ,init(ek) are still
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v

w

(a) pincers

v

w

(b) bad pincers (c) alternative

Figure 8: (a) The (blue) outer edges incident to v and w, respectively, are pincers that are bad in
the drawing of the (blue) outer triangle in (b) and not bad in (c).

decreasing. The rest of ei is drawn arbitrarily close to em in such a way that the rotation of mid(ei)
is maintained. See Fig. 7(e). Observe that the bends of the original drawing still correspond to
bends of the constructed drawing and have the same turns (left or right). Conditions (2) and (3)
are still fulfilled. □

4 Bimodal Graphs without 2-Cycles

We study planar L-drawings of plane bimodal graphs. Our main contribution is to show that if the
graph does not contain any 2-cycles, then it admits a planar L-drawing (Theorem 2). In Sect. 5, we
also show that if there are 2-cycles, then there is a planar L-drawing if the underlying undirected
graph after identifying parallel edges created by the 2-cycles is a planar 3-tree.

4.1 General Overview

Our approach is inspired by the work of Biedl and Mondal [9] to construct a +-contact representa-
tion for undirected graphs from a rectangular dual. We extend their technique in order to respect
the given orientations of the edges.

The idea is to triangulate and decompose a given bimodal graphG into 4-connected components.
Then, proceeding from the outermost to the innermost component, we construct a planar L-drawing
of each component that respects a given shape of the outer face. This construction is based on
rectangular duals and the corresponding perturbed generalized L-drawings.

In order to be able to reinsert the drawing of a component inside the respective triangular face
in the drawing of its parent, we have to pay attention to the following situation. We call a pair of
edges e1, e2 a pincer if e1 and e2 are on a triangle T , both are incoming or both outgoing edges of
its common end vertex v (i.e., v is a sink- or a source switch of T ), and there is another edge e
of G incident to v in the interior of T but with the opposite direction. See Fig. 8. If the outer
face of a 4-connected component contains a pincer, we have to make sure that e1 and e2 are not
assigned to the same port of v in an ancestral component. In a partial perturbed (generalized)
planar L-drawing of G, we call a pincer bad if e1 and e2 are assigned to the same port. Observe
that in a bimodal graph, a pincer must be a source or a sink in an ancestral component. Moreover,
in a 4-connected component at most one pair of incident edges of a vertex can be a pincer. The
algorithm is described in detail in Sect. 4.2 and its correctness and run time are proved in Sect. 4.3.
We summarize the result in the following theorem.

Theorem 2 Every plane bimodal graph without 2-cycles admits a planar L-drawing. Moreover,
such a drawing can be constructed in linear time.
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Theorem 2 yields the following implication, solving an open problem in [13].

Corollary 1 Every upward-plane graph admits a planar L-drawing.

4.2 Algorithm

In this subsection, we present the algorithm for the proof of Theorem 2. We start with a plane
bimodal digraph D without 2-cycles. Triangulate D as follows: Add a new directed triangle in the
outer face. Augment the graph by adding edges to obtain a plane bimodal graph in which each
face has degree at most four as shown in Lemma 3. More precisely, now each non-triangular face
is bounded by a 4-cycle consisting of alternating source and sink switches of the face. We finally
insert a 4-modal vertex of degree 4 into each non-triangular face maintaining the 2-modality of
the neighbors. Let G be the obtained triangulated graph without 2-cycles in which each vertex is
2-modal or an inner 4-modal vertex of degree four.

We construct a port assignment that admits a planar L-drawing ofG as follows. DecomposeG at
separating triangles into 4-connected components. Proceeding from the outermost to the innermost
components, we compute a port assignment for each 4-connected component H, avoiding bad
pincers and such that the ports of the outer face of H are determined by the corresponding inner
face of the parent component of H. We use an arbitrary shape for the outer face of G.

Let H be a 4-connected component of G and let Γ0 be a planar L-drawing of the outer face
of H without bad pincers of G. We now present an algorithm that constructs a planar L-drawing
of H in which the drawing of the outer face is Γ0 and no face contains bad pincers of G.

Port Assignment Algorithm

The aim of the algorithm is to compute a port assignment for the edges of H such that (i) there
are no bad pincers and (ii) there exists a planar L-drawing realizing such an assignment. Note that
the drawing Γ0 already determines an assignment of the external edges to the ports of the external
vertices. By Remark 1 any planar L-drawing with this given port assignment can be turned into
one where the outer face has drawing Γ0.

First, observe that H does not contain vertices on the outer face that are 4-modal in H: This
is true since 4-modal vertices are inner vertices of degree four in the triangulated graph G and
since G has no 2-cycles. Thus, a 4-modal vertex v has four distinct neighbors in G forming a
cycle C enclosing v. If v was still 4-modal in H, then all four neighbors must still be present in H
and, thus, v cannot be on the outer face of H.

Avoiding Bad Pincers. Next, we discuss the means that will allow us to avoid bad pincers.
Let e1 and e2 be two edges with common end vertex v that are incident to an inner face f of H
such that e1, e2 is a pincer of G. Note that the triangle bounding f is a separating triangle of G.
We call f the designated face of v. Further, observe that v cannot be 4-modal in H, as otherwise
it would be at least 6-modal in G. On the other hand, if v is 2-modal in H, then v was an inner
4-modal vertex of degree 4 in G, and e1 and e2 are two non-consecutive edges incident to v. It
follows that H is a K4 where the outer face is not a directed cycle; see Fig. 10(a). For any given
drawing Γ0 of the outer face (see Fig. 9 and Lemma 1 for the possible drawings of a triangle), the
inner vertex can always be added such that no bad pincer is created. Therefore, in the following
we can assume that v is 0-modal in H.

This implies that we only have to take care of pincers where the common end vertex is 0-modal
in H. Since each 0-modal vertex was 2-modal in G, it has at most one designated face. In the
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Figure 9: Realization in the rectangular dual for any kind of drawings of the outer face up to
symmetries.

following, we assume that all 0-modal vertices are assigned a designated incident inner face where
no 0◦ angle is allowed.

Constructing the Rectangular Dual. As an intermediate step towards a perturbed gener-
alized planar L-drawing, we have to construct a rectangular dual of H. More precisely, we first
augment H to an irreducible triangulation Hx for which a rectangular dual can be computed in
linear time [7, 8, 17, 20]. In order to construct Hx, we proceed as follows. Let s, t, and w be
the vertices on the outer face of H. Depending on the given drawing of the outer face, subdivide
one of the edges of the outer face by a new vertex x according to the cases given in Fig. 9 – up
to symmetries. Let f be the quadrangular inner face incident to x. Triangulate f by adding an
edge e incident to x: Let y be the other end vertex of e. If y was 2-modal, we can orient e such
that y is still 2-modal. If y was 0-modal and f was its designated face, then orient e such that y
is now 2-modal. Otherwise, orient e such that y remains 0-modal. Observe that if y had degree 4
in the beginning, then it has degree 5 now.

The resulting graphHx is triangulated, has no separating triangles, and its outer face is bounded
by a quadrangle, hence it is an irreducible triangulation. Let R be a rectangular dual of Hx. Up
to a possible rotation of a multiple of 90◦, we can replace the four rectangles of R on the outer
face with the configuration depicted in Fig. 9 that corresponds to the given drawing of the outer
face. Let Rv be the rectangle of a vertex v in R.

Port Assignment. We now assign edges to the ports of the incident vertices. For the edges on
the outer face the port assignment is given by Γ0. Fig. 9 shows the assignments for the outer face.

Let v be a vertex of Hx. We define the canonical assignment of an edge incident to v to a port
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Figure 10: (a) shows the only case (up to reversing directions) of a graph H in Sect. 4.2 with
a pincer that is incident to a 2-modal vertex (the orientation of the undirected outer edge is
irrelevant). (b) Avoiding bad pincers with virtual edges.
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Figure 11: Port assignment: (b) around neighbor y of outer subdivision vertex x.

around v as follows (see Fig. 11(a)). An outgoing edge (v, u) is assigned to the North port, if Ru

is to the left or the top of Rv. Otherwise it is assigned to the South port. An incoming edge (u, v)
is assigned to the West port, if Ru is to the left or the bottom of Rv. Otherwise it is assigned to
the East port.

In the following we will compute a port assignment such that each edge is assigned in a canonical
way to at least one of its end vertices and such that crossings between edges incident to the same
vertex can be avoided within the rectangle of the common end vertex. We will exploit this property,
alongside with the absence of 2-cycles, to prove that such an assignment determines a perturbed
generalized planar L-drawing of the plane graph Hx. In the following, we separate the discussion
according to the modality of the vertices.

0-Modal Vertices. We consider each 0-modal vertex v to be 2-modal by adding a virtual edge
inside its designated face f . Namely, suppose v is a source, and let e1 = (v, w1) and e2 = (v, w2)
be the two edges incident to v and to f . We add a virtual edge (w, v) connecting v to a new virtual
vertex w, so that (w, v) appears between e1 and e2 in the circular order of the edges around v. Of
course, there is not literally a rectangle Rw representing w, but for the assignments of the edges
to the ports of v, we assume that Rw is the degenerate rectangle corresponding to the segment on
the intersection of Rw1

and Rw2
. See Fig. 10(b).

2-Modal Vertices. Let now v be a 2-modal vertex. We discuss the cases where we have to
deviate from the canonical assignment. We call a side s of a rectangle in the rectangular dual to
be mono-directed, bi-directed, or 3-directed, respectively, if there are 0, 1, or 2 changes of directions
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Figure 12: Assignment of ports when the direction of edges incident to one side of a rectangle
changes a) twice b-e) once, or f) never.

of the edges across s. See Fig. 12. Observe that by 2-modality there cannot be more than two
changes of directions.

Consider first the case that Rv has a side that is 3-directed, say its right side. See Fig. 12(a). If
from top to bottom there are first outgoing edges, followed by incoming edges, and followed again
by outgoing edges, then we assign from top to bottom first the North port, then the East port, and
then the South port to the edges connecting v to vertices whose rectangles lie on the right of Rv

(counterclockwise switch). Otherwise, we assign from top to bottom first the East port, then the
South port, and then the West port (clockwise switch). All other edges are assigned in a canonical
way to the ports of v; observe that there is no change of directions in the other sides of Rv.

Consider now the case that Rv has one side that is bi-directed, say again the right side of Rv.
If the order from top to bottom is first incoming and then outgoing, then assign the edges incident
to the right side of Rv in a canonical way (canonical switch, Fig. 12(b)). Otherwise (unpleasant
switch), we have two options: we either assign the outgoing edges to the North port and the
incoming edges to the East port (counter-clockwise switch, Fig. 12(d)), or we assign the outgoing
edges to the South port and the incoming edges to the West port (clockwise switch, Fig. 12(c)).

Observe that if there is an unpleasant switch on one side of Rv, then there cannot be a canonical
switch on an adjacent side. Assume now that there are two adjacent sides s1 and s2 of Rv in
this clockwise order around Rv with unpleasant switches. Then we consider both switches as
counterclockwise or both as clockwise. Observe that, due to 2-modality, two opposite sides of Rv

are neither both involved in unpleasant switches nor both in canonical switches.

Consider now the case that one side s of Rv is mono-directed, say again the right side of Rv.
See Fig. 12(f). In most cases, we assign the edges incident to s in a canonical way. There are – up
to symmetry – the following exceptions: The top side of Rv is involved in a clockwise switch and
the edges at the right side are incoming edges. In that case we have a clockwise switch at s, i.e.,
the edges at the right side are assigned to the West port of v. The other possible exception occurs
when the bottom side of Rv is involved in a counter-clockwise switch and the edges at the right
side are outgoing edges. In that case we have a counter-clockwise switch at s, i.e., the edges at the
right side are assigned to the North port of v.

In order to avoid switches at mono-directed sides, we handle these exceptions as follows: Let
s1, s, s2 be three consecutive sides in this clockwise order around the rectangle Rv such that there
is an unpleasant switch on side s; say s is the right side of Rv, s1 is the top, and s2 is the bottom,
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Figure 13: Extra Rule

and the edges on the right side are, from top to bottom, first outgoing and then incoming. By
2-modality, there cannot be a switch of directions on both, s1 and s2, i.e., s1 contains no incoming
edges or s2 contains no outgoing edges. In the first case, we opt for a counterclockwise switch for s,
otherwise, we opt for a clockwise switch.

There is one exception to the rule in the previous paragraph (which we refer to as Extra
Rule): Let u and w be two adjacent 0-modal vertices with the same designated face f such that
the two virtual end vertices are on a line ℓ. See Fig. 13. Let su be the side of Ru intersecting Rw

and let sw be the side of Rw intersecting Ru. Assume that u has an unpleasant switch at su and,
consequently, w has an unpleasant switch at sw. Let x be the third vertex on f and let sx be the
side of Rx intersecting Ru and Rw. Observe that sx ⊂ ℓ. Do the switch at su and sw in clockwise
direction if and only if the switch at sx is in clockwise direction, otherwise in counterclockwise
direction.

4-Modal Vertices. If v is an inner 4-modal vertex of degree 4, then each side of Rv is incident
to exactly one rectangle, and we always use the canonical assignment. Suppose now that v is a
4-modal vertex of degree 5, which can only happen if v is the inner vertex y adjacent to the
subdivision vertex x of an edge incident to the outer face. Note that we do not have to draw the
edge between x and y. However, this case is still different from the previous one, since there are
two rectangles incident to the same side s of Ry. If the switch at s is canonical, then there is no
problem. Otherwise, we do the assignment as in Fig. 11(b).

Observe that we get one edge between y and a vertex on the outer face that is not assigned in
a canonical way at y. But this edge is assigned in a canonical way at the vertex in the outer face.
This completes the port assignments.

4.3 Correctness and Run Time

We prove that the constructed port assignment admits a perturbed generalized planar L-drawing
and, thus, a planar L-drawing of H. The proof starts by showing that each edge is assigned in a
canonical way at one end vertex at least (Lemma 6). Then we route the edges as indicated in the
proof of Lemma 7. Finally, in Lemma 8, we discuss the run time. We conclude by presenting the
proof of Theorem 2.

Lemma 6 Every edge e = (u,w) is assigned in a canonical way at u or w.

Proof: Suppose, for contradiction, that there is an edge e = (u,w) that is assigned in a canonical
way neither at u nor at w. Assume, without loss of generality, that Ru is on top of Rw. This
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implies that e is assigned to the North port of u and to the West port of w. Moreover, the bottom
side su of Ru is involved in a clockwise switch and the top side sw of Rw in a counter-clockwise
switch. See Fig. 14.

u

w
q

e

z?
sw

su

Figure 14: Edges are canonical at one end vertex at least.

First consider the case that neither su nor sw is mono-directed. Then the only reason for these
unpleasant switches is that 1. u has an incoming edge (q, u) such that Rq is incident to the bottom
of Ru and is to the right of Rw, and 2. w has an outgoing edge (w, z) such that Rz is incident to
the top of Rw and is to the right of Ru. This is not simultaneously possible if at least one among
Rz or Rq is a real rectangle. In the case that Rz and Rq were both virtual, the designated face of u
and w would be the same, Rz and Rq would be collinear and, thus, the Extra Rule would apply.
However, this implies that the switches at u and w are both clockwise or both counterclockwise.
See Fig. 13.

Consider now the case that one of the two sides su and sw, say sw, is mono-directed. By
construction, a non-canonical switch at a mono-directed side can only happen if the vertex is one
of the 0-modal vertices to which the Extra Rule was applied. See Fig. 15.

x′

w′
u

w

x

y

`sw
su

Figure 15: Illustration of the proof of Lemma 6 in the case of the Extra Rule.

We distinguish two cases based on whether su is bidirected or mono-directed. Suppose first
that su is bidirected. As above there must still be a neighbor q of u such that Rq is to the right
of Rw and below Ru, which however is not possible.

Assume now that also su is mono-directed, i.e., the Extra Rule was also applied to u and a
vertex w′, and the designated face f ′ of u and w′ is as indicated by the (red) stub incident to u in
Fig. 15. Let x′ be the third vertex incident to f ′. Observe that Ru and Rw′ must have a common
corner that lies on a side of Rx′ . However, this is only possible if the bottom right corner of Ru

and the bottom left corner of Rw′ lie on the top side of Rx′ , which implies that x′ = w. But w is
a 0-modal vertex and x′ cannot be 0-modal. □

Lemma 7 The constructed port assignment admits a planar L-drawing of H.

Proof: In the following we show how to route the edges in order to obtain a perturbed generalized
planar L-drawing with the given port assignment. By Lemma 5 this is sufficient to obtain a planar
L-drawing with the same port assignment.
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Recall that in a perturbed generalized planar L-drawing each edge is routed as a polyline
lying in the two rectangles corresponding to its end vertices, composed of segments parallel to the
respective diagonals and satisfying the following properties:

(1) each directed edge e = (u, v) starts with a segment on the diagonal \u of Ru from the upper
left to the lower right corner and ends with a segment on the diagonal /v of Rv from the lower
left to the upper right corner.

(2) The polylines representing two edges overlap in at most a common straight-line prefix or a
suffix and they do not cross.

(3) For an edge e one of the following is true: (i) none of the two end vertices of mid(e) is a bend
of e and rot(e) = ±1 or (ii) one of the two end vertices of mid(e), but not both, is a bend of e
and rot(mid(e)) = 0.

Property 1 is already fulfilled by routing the initial and final segment of each edge along the
diagonal prescribed by the constructed port assignment. Next, we show that the port assignment
allows for a routing of the edges that also fulfills Properties 2 and 3.

Let e be an edge between v and w that is assigned in a canonical way at w. Let e be assigned
to the port p of Rw. Let d be the corner of Rw at the end of the diagonal corresponding to the
port p. We define how to route e distinguishing three main cases depending on the relationship of
Rv and Rw with respect to d – see the columns of Fig. 16. Each case has two subcases depending
on whether e is assigned in a canonical way at v or not – see the rows of Fig. 16. We subdivide the
case where e is assigned in a canonical way at v into two additional subcases b.1 and b.2. Let u be
the common neighbor of v and w that is incident to the side of w containing the corner d. Let d′

be the common point of Ru, Rv, and Rw. The Subcase b.2 is the following: There is an edge
connecting u to either v or w that is assigned in a canonical way at u and in a non-canonical way
at the other end-vertex, whose drawing according to Case 2a passes through d′. Observe that in
the last column of Row b.2 the corner d does not have to be on a side of Ru since Ru might be
smaller.

For each of the cases, we draw e as sketched in the corresponding box in Fig. 16: The first and
the last segment of an edge represents a straight line of an appropriate length, while every other
segment represents a perturbed orthogonal polyline with rotation 0. If e is assigned to the same
port as another edge e′, we make sure that the routing respects the embedding by appropriately
selecting the length of the first or last segment of e and e′. E.g., assume that e′ follows e in
counterclockwise order around vertex v such that both are assigned to the North port of v and
assume that the first bend of both, e and e′, is a right turn. Then the bend of e is closer to v than
the bend of e′.

Observe that the edges are only routed within the rectangles of their end vertices. Thus, if
there were crossings then they would involve edges incident to the same vertex, say v, and would
lie within the rectangle Rv. However, the port assignment respects the planar embedding and,
thus, ensures that the middle part of the edges can be routed such that no two edges cross. This
guarantees that Property 2 is fulfilled.

It remains to show that also Property 3 is fulfilled. This is trivial for the cases in Row b.1,
since in this case the edge is composed of two parts, each having rotation 0, which meet at a
bend b. Thus, mid(e) either starts at b and has rotation 0, or it contains b as an inner point and
has rotation ±1.

Analogously, for the other cases, it suffices to prove that mid(e) contains two out of the three
indicated bends as inner points – one with a left turn and one with a right turn. In fact, in this
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Figure 16: How to route the edge e between v and w. Point d is the corner at the end of the
diagonal of Rw to which e is assigned.

case mid(e) has rotation 0 or ±1 depending on whether the third bend is an end point of mid(e)
or not.

To this end, we prove that each of the bends that are encircled red in Fig. 16 are inner points
of mid(e), i.e., that they do not lie on any other edge. This is obvious, if the bend is not on a
diagonal, since the end points of mid(e) lie on the diagonals of the rectangles of the end vertices
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of e. If the bend is on the diagonal, we prove that there are no edges leaving the diagonal after
the bend. Note that if there was such an edge then it would be one that immediately follows or
precedes e in the cyclic order around the respective end vertex.

b.2) We argue about the bend b on the diagonal of Rv in Column 2, the arguments for the bend
on the diagonal of Rw in Column 3 is analogous. Observe that the edge e is immediately
followed by the edge (u, v) in the cyclic order around v. Since (u, v) is assigned to a different
port of v than e, the statement follows.

ev
w

u

(a) Case 1a

e

v

w

u

(b) Case 3a

Figure 17: The bend encircled red is an inner point of mid(e) in the case of the Extra Rule.

1a+3a) These two cases can only happen if we had applied the Extra Rule, as otherwise e
would have been assigned in a canonical way at v. See Fig. 17. I.e., two among u, v, w are
0-modal vertices, their designated face is the one bounded by u, v, w, the respective virtual
rectangles are collinear, and there is an unpleasant switch at the third vertex. Further,
the non-virtual edge that immediately follows e (Case 3a) or precedes e (Case 1a) in the
cyclic order around w is the edge (u,w). However, the port assignment in the Extra Rule
guarantees that (u,w) is assigned to a different port of w than e.

This concludes the proof of the lemma. □

Lemma 8 A planar L-drawing of H in which the drawing of the outer face is Γ0 and no face
contains bad pincers of G can be constructed in linear time.

Proof: The construction guarantees a planar L-drawing of H. The port assignment is such that
there are no bad pincers and for the outer face it is the same as in Γ0. A rectangular dual can be
constructed in linear time [7, 20]. The port assignment can also be done in linear time. Finally,
the coordinates can be computed in linear time using topological ordering – see Theorem 1. □

Proof: [Proof of Theorem 2] Let D be a plane bimodal graph without 2-cycles. We can triangu-
late D in linear time, by adding a directed triangle in the outer face, by applying Lemma 3, and
by inserting a vertex in each face of degree four. The decomposition of the resulting graph G into
its 4-connected components can be performed in linear time [19]. Proceeding from the outermost
to the innermost components, we compute a planar L-drawing for each 4-connected component H,
avoiding bad pincers and such that the outer face Γ0 is the one determined by the respective
triangular face of the parent component of H. We can do so in linear time by Lemma 8. □
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5 Bimodal Planar 3-Trees

A planar 3-tree is defined recursively: The complete graph K4 on four vertices is a planar 3-tree.
Adding a new vertex into an inner face f of a planar 3-tree and connecting it to the 3 vertices on
the boundary of f yields again a planar 3-tree.

Theorem 3 A bimodal graph has a planar L-drawing if the underlying undirected graph, after the
identification of parallel edges due to 2-cycles, is a planar 3-tree.

Before we prove the theorem, we collect some useful properties on 2-cycles in bimodal graphs
and on pincers.1

Remark 2 In a bimodal 3-connected graph

1. a vertex can be incident to at most two 2-cycles and

2. at most two edges of a triangle can be part of 2-cycles.

Proof: There is no way of ordering the edges of three 2-cycles around a vertex in a bimodal way.
Now consider a triangle and assume that each vertex of the triangle is incident to two 2-cycles.
Observe that if a vertex is incident to two 2-cycles then the incoming incident edges and the
outgoing incident edges, respectively, have to be consecutive. This is not possible simultaneously
for all three vertices since a triangle has an odd length. □

Remark 3 Let T be a triangle of a bimodal graph G and let v be a sink(source)-switch of T . If v
is incident to an outgoing edge outside T , then v is not incident to a pincer on T .

Proof: Otherwise v would also be incident to an outgoing edge inside T and, thus, v would not
be bimodal. □

Proof: [of Theorem 3] Observe that there are no separating 2-cycles in the digraph since planar
3-trees are 3-connected. The idea of the construction is as follows. Although, by definition, the
smallest planar 3-tree is a K4, we start the induction with a graph containing three vertices. The
underlying undirected graph induced by the three vertices contains a triangle plus some additional
parallel edges. We find a planar L-drawing for that triangle with its 2-cycles and then keep inserting
the vertices maintaining the invariant that there are no bad pincers. Observe that each inserted
vertex has three adjacent vertices in the current digraph and up to five incident edges. We call a
vertex an in/out-vertex of a face f if it is neither a source switch nor a sink switch of f .

Base Case. The input graph is a bimodal graph consisting of three vertices. Recall that by
definition the edges form a triangle with possibly some 2-cycles. If the outer face is a 2-cycle, remove
one of its two edges. Draw the triangle T bounding the outer face such that the respective vertices
of the 2-cycle are extreme points of a diagonal of the bounding box of the drawing (Figs. 18(a)
to 18(d)) and add the missing edge of the outer 2-cycle. If the outer 2-cycle had been between the
source and the sink of T then – due to bimodality at the source and the sink – T is not involved
in any further 2-cycles. Otherwise, by Remark 2.2, there can be at most one more 2-cycle. By
Remark 3, bad pincers are not possible in these cases: The vertices incident to the external 2-cycle
are already incident to two edges in opposite direction.

1Recall that (bad) pincers were defined in Sect. 4.1 and depicted in Fig. 8.
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s

(a) sink–source

s

(b) sink–in/out

s

(c) in/out–source (d) in/out–in/out

(e) directed (f) not directed

Figure 18: Different ways of drawing a triangle T with possible 2-cycles. The edges of T are thicker.
Top row: the outer face is bounded by a 2-cycle where the edge not in T connects the indicated
vertices of T . Observe that in (d) only one of the edges inside T is possible. Bottom row: the
outer face is bounded by T and T is directed or not.

s ss

Figure 19: Different ways of drawing a triangle where the angle at both, the source and the sink,
is 0◦ and how to add an additional internal vertex – where only one of the edges in the 2-cycle is
present.

Consider now the case that the outer face is bounded by a triangle T . We say that a triangle
contains a 2-cycle if one edge of the 2-cycle is an edge of the triangle and the other edge of the
2-cycle is in the interior of the triangle. Note that if a triangle contains two 2-cycles then, by
bimodality, the common vertex of the two 2-cycles must be the source or the sink of the triangle.
Thus, if the triangle is a directed cycle, it contains at most one 2-cycle.

Now, if T is a directed cycle, draw it as indicated in Fig. 18(e). Otherwise, the three vertices
of T are a source, a sink, and an in/out vertex. Start with the drawing of T where no two edges are
attached to the same port of a vertex. Add the 2-cycles. Thus, T with its 2-cycles is a subgraph
of one of the two cases in Fig. 18(f). The choice of the initial drawing of T and Remark 3 imply
that there are no bad pincers.

Inductive Case. Let T be a triangle bounding a face. We show how to insert a vertex v
connected to the three vertices of T .

Assume first that T has a source s, a sink t and an in/out-vertex w. There are three cases:
(1) The angles in T at s and t, respectively, are both 0◦ (Cases afb in Fig. 9 or Fig. 19, respectively),
(2) the angle at either the source or the sink – say the source – is 0◦ (Cases cg and dh in Fig. 9
or Fig. 20, Columns a+b, respectively), or (3) T does not contain a 0◦ angle (Case e in Fig. 9 or
Fig. 20, Column c, respectively).

In the first case – since by induction there are no bad pincers in T – the direction of the edges
between v on one hand and the source and the sink on the other hand are fixed and it follows
that – due to bimodality – v cannot be incident to a 2-cycle. By Remark 3, the pair of edges with
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Figure 20: Different ways of inserting a vertex into a triangle. Not all edges are present simulta-
neously.

a 0◦ angle at the in/out-vertex w of T cannot be a pincer. Thus, we can add v and its incident
edges as indicated in Fig. 19 – where only one of the edges in the 2-cycle is present.

In Cases 2 and 3, we have the property that if there is a 2-cycle between v and w then – due to
bimodality of w – the order around w is fixed and must be such that on both sides an edge of T
and an edge of the 2-cycle forms a 0◦ angle. Consider now Case 2 and assume w.l.o.g. that there
are two edges of T that form a 0◦ angle at s. Up to symmetry there are two such drawings of T .
See Fig. 20, Columns a+b. If t is incident to a 2-cycle with v then the order of the edges in the
2-cycle determines whether we are in Case (i) or (ii). By Remark 3, no two edges that are assigned
to the same port are a pincer. If t is not incident to a 2-cycle with v, we can choose between Case
(i) and (ii) and we do it such that we do not create a bad pincer incident to t. Observe that, due
to bimodality, a vertex cannot be incident to two pincers whose triangles are internally disjoint.

Consider now Case 3 (Fig. 20, Column c). There can be at most two 2-cycles incident to v,
and if so, fixing the ordering of the edges of one 2-cycle also fixes the ordering of the other (due
to bimodality of v). Depending on this ordering, we can always choose one out of the Cases (ii)
or (iv) such that no bad pincer occurs. If v is incident to at most one 2-cycle, the choice depends
on pincers at v, s and t and can always be done without creating bad pincers: There are all four
variants of pairs of 0◦ angles at s and t, so we can always choose one that does not contain a bad
pincer.

If v is a source or a sink, we have to also make sure that there is no bad pincer incident to v.
Observe that in this case v is not incident to any 2-cycles. It follows that T cannot contain edges
incident to both s and t that are involved in pincers with edges incident to v. E.g., assume that v
is a source. Then only (v, t) can be involved in a bad pincer: (v, s) and an edge on T incident to s
do not have the same direction at s, and w is already incident to an edge in the opposite direction
as (v, w). Among the four possibilities we can always choose one that has neither a bad pincer
incident to v nor a bad pincer incident to t.

Assume now that T is a directed triangle (Cases x and y in Fig. 9 or Fig. 20, Columns d+e,
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respectively). Observe that due to bimodality v cannot be incident to two 2-cycles. By Remark 3,
there cannot be a pincer that consists of an edge in T and an edge incident to v. For the same
reason, if v is neither a source nor a sink, then there cannot be a pincer incident to v. It remains
to check for bad pincers at v in the case were v is a source or a sink. Among the three possibilities
in Column a or b, we can always choose one that has no bad pincer at v. □

6 Outerplanar Digraphs

Since there exist outerplanar digraphs that do not admit any bimodal embedding [6], we cannot
exploit Theorem 2 to construct planar L-drawings for the graphs in this class. However, we are
able to prove the following.

Theorem 4 Every outerplanar graph admits a planar L-drawing.

Proof: Put all vertices on a diagonal in the order in which they appear on the outer face – starting
from an arbitrary vertex. The drawing of the edges is determined by the direction of the edges
and the relative position of the end vertices, since an edge must start with a vertical segment and
end with a horizontal segment. This implies that some edges are drawn above and some below the
diagonal. By outerplanarity, there are no crossings. □

We remark that Theorem 4 provides an alternative proof to the one in [6] that any outerplanar
digraph admits a 4-modal embedding. Observe that the planar L-drawings constructed in the
proof of Theorem 4 are not necessarily outerplanar. In the following, we prove that this may be
unavoidable.

Theorem 5 Not every outerplanar graph admits an outerplanar L-drawing.

f

Proof: Consider the graph depicted above. It has a unique outerplanar embedding. Let f be
the inner face of degree 6. Each vertex incident to f is 4-modal and is a source switch or a sink
switch of f . Thus, the angle at each vertex is 0◦. The angle at each bend is at most 3/2π. Thus,
the angular sum around f would imply (2 · deg f − 2) · π ≤ 3/2 · deg f · π, which is not true for
deg f = 6. □

As established in Theorem 6 below, there are even 4-modal biconnected internally triangulated
outerplane digraphs that do not admit an outerplanar L-drawing. The proof of this fact relies on
the following lemma.

Lemma 9 Every biconnected internally triangulated outerplanar digraph G with a 4-modal out-
erplanar embedding can be extended to an internally triangulated outerplanar digraph G′ with a
4-modal outerplanar embedding in which all vertices of G are 4-modal.
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Figure 21: How to make the vertices of a biconnected internally triangulated outerplanar digraph
4-modal.

Proof: See Fig. 21 for an illustration. Let v1, . . . , vn be the vertices of G in the order in which they
appear on the outer face and let vn+1 = v1. For i = 1, . . . , n add a new vertex xi with neighbor vi
and a vertex yi with neighbors xi, vi, and vi+1. Now each new vertex has degree at most three
and thus, will be 2-modal, no matter how we orient the edges. Each vertex vi, i = 1, . . . , n of G
is incident to three new edges. These can be oriented such that each vi, i = 1, . . . , n becomes
4-modal. □

Theorem 6 Not every biconnected internally triangulated outerplanar digraph with a 4-modal
outerplanar embedding has an outerplanar L-drawing.

Proof: We consider the digraph G = (V,E) in Fig. 22(a) augmented as described in Lemma 9.
The resulting digraph G′ is a biconnected internally triangulated outerplanar digraph, and its
unique outerplanar embedding is 4-modal. It has 57 vertices. Each vertex of G is 4-modal in G′.
We show that G′ has no planar L-drawing with its outerplanar embedding. Fig. 22(b) shows a
non-planar L-drawing of G where the cyclic order of the edges is as in the outerplanar embedding.

Consider now the following flow network LG associated with a plane digraph G = (V,E). Let F
be the set of faces of G. LG has node set W := V ∪ E ∪ F , arcs from vertices to incident faces,
and from faces to incident edges, and supplies

� b(v) = 4−mod(v)
2 , v ∈ V ,

� b(f) = 2 +#source switches of f , f inner face,

� b(f) = −2 + #source switches of f , f outer face,

� b(e) = −1, e ∈ E.

Based on the relationship to Kandinsky drawings, Chaplick et al. [13] showed that any planar
L-drawing of a biconnected digraph G yields a flow ϕ in LG as follows: Let α(v, f) be the angle in
the face f at a vertex v. Then ϕ(v, f) = α(v, f)/π if the two edges incident to both, v and f , are
two outgoing or two incoming edges of v and ϕ(v, f) = α(v, f)/π − 1/2, otherwise. ϕ(f, e) = 1 if
and only if there is a convex bend in face f on edge e and 0 otherwise.

However, not every flow on LG corresponds to a planar L-drawing. In effect, the angles and
bends in the non-planar L-drawing in Fig. 22(b) also yield a flow ϕ′ in LG.
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v

(a) graph

v

f1
f2

e2

e1

(b) non-planar L-drawing

Figure 22: A biconnected internally triangulated outerplanar digraph with a 4-modal outerplanar
embedding that has no outerplanar L-drawing – in an extension that makes the present vertices
4-modal. b) Different from the drawing conventions of L-drawings, the edges at the West port of v
are drawn slightly apart in order to make the embedding visible.
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Assume now that there is a planar L-drawing Γ′ of G′ and consider the drawing Γ of G induced
by Γ′. Let ϕ be the flow that corresponds to Γ. The difference between ϕ and ϕ′ is a union C
of directed cycles in the residual network LG,ϕ′ of LG with respect to the flow ϕ′ (see e.g. [1,
Theorem 3.7]). Since in G′ all vertices of G are 4-modal, no arc from a vertex of G to an inner face
of G can carry flow. Hence, C does not contain vertices of G. The direction of the arcs in LG,ϕ′

is from a face f to an incident edge e with a concave bend in e and from e to the other incident
face f ′.

Since ϕ corresponds to a planar L-drawing it follows that at least one of the edges e1 or e2
must have a concave bend in the outer face fo. Thus, C contains the arcs (f2, e2), (e2, fo) or
the arcs (f1, e1), (e1, fo). This implies that C must also contain an arc from the outer face. But
there are only three such arcs (solid blue arcs). Whenever such an arc is contained in C then also
the respective dashed blue arc has to be contained in C. Since in a union of directed cycles the
number of incoming and outgoing edges of each vertex must be the same, we have that C can
neither contain the arc (e2, fo) nor (e1, fo). □

7 Open Problems

We conclude with several directions for future work.

� Are there bimodal graphs with 2-cycles that do not admit any planar L-drawing (with or
without the given embedding)?

� What is the complexity of testing whether a 4-modal graph admits a planar L-drawing with
a fixed embedding?

� In the directed Kandinsky model where edges leave a vertex to the top or the bottom and
enter a vertex from the left or the right, for which k is there always a drawing with at most
1 + 2k bends per edge for any 4-modal graph? k = 0 does not suffice. What about k = 1?

� Can one efficiently test whether an outerplanar graph with a given 4-modal outerplanar
embedding admits an outerplanar L-drawing?

� Can one efficiently test whether an upward-planar graph, with or without a given upward-
planar embedding, admits an upward-planar L-drawing? Recently, some partial progress in
this direction has been made [2].
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