
Journal of Graph Algorithms and Applications
http://jgaa.info/ vol. 26, no. 2, pp. 257–282 (2022)
DOI: 10.7155/jgaa.00593

An Improvement of Reed’s Treewidth Approximation

Mahdi Belbasi Martin Fürer

Computer Science and Engineering Department, Pennsylvania State University
University Park, PA USA

Submitted: July 2021 Reviewed: November 2021 Revised: March 2022

Reviewed: May 2022 Revised: June 2022 Accepted: June 2022

Final: June 2022 Published: June 2022

Article type: Regular Paper

Communicated by: S.-H. Hong, S. C. Nandy, R. Uehara

Abstract. We present a new approximation algorithm for the treewidth problem
which finds an upper bound on the treewidth and constructs a corresponding tree de-
composition as well. Our algorithm is a faster variation of Reed’s classical algorithm.
For the benefit of the reader, and to be able to compare these two algorithms, we
start with a detailed time analysis of Reed’s algorithm. We fill in many details that
have been omitted in Reed’s paper. Computing tree decompositions parameterized
by the treewidth k is fixed parameter tractable (FPT), meaning that there are algo-
rithms running in time O(f(k)g(n)) where f is a computable function, and g(n) is
polynomial in n, where n is the number of vertices. An analysis of Reed’s algorithm
shows f(k) = 2O(k log k) and g(n) = n log n for a 5-approximation. Reed simply claims
time O(n log n) for bounded k for his constant factor approximation algorithm, but the
bound of 2Ω(k log k)n log n is well known. From a practical point of view, we notice that
the time of Reed’s algorithm also contains a term of O(k2224kn log n), which for small
k is much worse than the asymptotically leading term of 2O(k log k)n log n. We analyze
f(k) more precisely, because the purpose of this paper is to improve the running times
for all reasonably small values of k.

Our algorithm runs in O(f(k)n log n) too, but with a much smaller dependence on
k. In our case, f(k) = 2O(k). This algorithm is simple and fast, especially for small
values of k. We should mention that Bodlaender et al. [2016] have an algorithm with a
linear dependence on n, and Korhonen [2021] obtains the much better approximation
ratio of 2, while the current paper achieves a better dependence on k.

Special Issue on the 15th Int. Conference and Workshops on Algorithms and Computation, WALCOM 2021

E-mail addresses: belbasi@psu.edu (Mahdi Belbasi) fhs@psu.edu (Martin Fürer)

This work is licensed under the terms of the CC-BY license.

http://dx.doi.org/10.7155/jgaa.00593
mailto:belbasi@psu.edu
mailto:fhs@psu.edu
https://creativecommons.org/licenses/by/4.0/

258 Mahdi Belbasi, Martin Fürer An Improvement of Reed’s Treewidth Approximation

1 Introduction

Since the 1970s and early 1980s, when the notions of treewidth and tree decomposition were
introduced [5, 13, 19], they have played important roles in computer science [7]. In a nutshell,
treewidth is a parameter of a graph that measures how similar it is to a tree. One of the main
reasons that the tree decomposition is widely studied is that many NP-complete problems have
efficient algorithms for graphs with small treewidth. In fact, Courcelle’s metatheorem [9] states
that every graph property definable in monadic second-order logic of graphs can be solved in
linear time on graphs of bounded treewidth. The first step of solving such problems is to find an
optimal or near-optimal tree decomposition. However, finding an optimal tree decomposition itself
is NP-hard [2]. In this work, we propose an algorithm which is based on Reed’s algorithm [17] to
approximate the treewidth and find an approximately optimal tree decomposition.

Definition 1 A graph problem is fixed parameter tractable (FPT) if it can be solved in time
O
(
f (k)nO(1)

)
, where f is a computable function, k is a parameter of the graph, and n is the

input graph size.

1.1 Previously Known Results

In this work, we are interested in algorithms which run fast (polynomial in terms of the number
of vertices) for graphs with bounded treewidth. One of the first algorithms given for this problem
goes back to the same paper where treewidth has been shown to be NP-complete. Arnborg et
al. [2] gave an algorithm which runs in time O(nk+2). In 1995, Robertson and Seymour [20] gave a
quadratic time FPT approximation algorithm. Later on, Lagergren introduced an 8-approximation
algorithm with the time complexity of 2O(k log k)n log2 n [16]. In 1992, Reed [17] improved these
algorithms to have an algorithm running in time 2O(k log k)n log n. In this paper, we formally show
that the approximation ratio of Reed’s algorithm is 7 or 5, depending on the frequency of the split
by volume. We show that this algorithm runs in time O

(
224kk!n log n

)
, in order to be able to

compare it to our algorithm. Like the algorithm of Robertson and Seymour, Reed’s algorithm is
recursive. In [20], they find a separator that partitions G into two parts but they do not force
the separator to partition the entire graph in a balanced fashion. Reed finds a separator which
partitions the graph in a balanced way to obtain time O(n log n) for bounded k. This paper focuses

on this algorithm. Later, Bodlaender gave an exact algorithm which runs in 2O(k3)n [6]. Even
though we focus only on constant-factor approximation algorithms, it is worth mentioning the
(log k)-approximation algorithm by Amir [1] and the

√
log k-approximation algorithm by Feige et

al. [10]. Later in 2016, Bodlaender et al. [8] gave two constant factor approximation algorithms
which run in 2O(k)O(n log n) and 2O(k)O(n) respectively. The former is a 3-approximation and the
latter is af 5-approximation. Although it is a great result from a theoretical point of view, it uses a
sophisticated data structure and the constant factor hidden in O(k) in the exponent is not claimed
to be practical. Very recently, Korhonen gave a 2-approximation algorithm for the same problem
running in time 2O(k)n [15]. He first provides a loose upper bound on the hidden coefficient of k in
the exponent. Then he improves it to 10.7549 by decreasing his potential function to what seems
to be a natural barrier in the worst-case scenario. Here, we sacrifice the linear dependence on n,
but drop the coefficient of k in the exponent to only 7.61. Table 1.1 summarizes the history of
previously known algorithms for treewidth problem.

JGAA, 26(2) 257–282 (2022) 259

Reference
Approximation

Ratio
Dependence

on k
Dependence

on n
Comments

Arnborg et al. (1987) [3] 1 O
(
nk+2

)
not FPT

Robertson & Seymour (1995) [18,20] 4 O
(
33k

)
n2

Lagergren (1996) [16] 8 2O(k log k) n log2 n
Reed (1992) [17] 5 (or 7) 224kk! (Sec. 3) O (n log n)

Bodlaender (1996) [6] 1 2O(k
3) n

Feige et al. (2008) O(
√
log k) O(1) nO(1)

not a constant-
factor approxi-

mation

Amir (2010) [1]

O(log k) O(k log k) n4
not a constant-
factor approxi-

mation
4 O

(
24.38kk

)
n2

4.5 O
(
23kk1.5

)
n2

11
3 O

(
23.6982kk3

)
n3 log4 n

Fomin et al. (2015) [12] 1 O(1) 1.7347n not FPT

Bodlaender et al. (2016) [8]
3 2O(k) n log n the coefficients of
5 2O(k) n k are not stated

Belbasi & Fürer (2021) [4] 5 28.766k n log n

Korhonen (2021) [15] 2 210.7549k n

relatively low
coefficient of k
in the exponent,
good approxi-

mation ratio, and
only linear

This paper 5 27.61k n log n

extra log n
in the running
time compared

to [15]
but has smaller
coefficient of k
in the exponent

Table 1: The history of previous algorithms for the treewidth approximation problem

260 Mahdi Belbasi, Martin Fürer An Improvement of Reed’s Treewidth Approximation

1.2 Our Contribution

First in Section 3, we analyze Reed’s algorithm [17] in detail. Reed has focused on the dependence
on n because his goal was to come up with an O(n log n)-time algorithm, for fixed k. The “fastest”1

algorithm at that time, was Lagergren’s O(n log2 n)-time algorithm [16]. We show that the depen-
dence on k in Reed’s algorithm is 2O(k log k). Furthermore, we give a proof for the approximation
ratio of Reed’s algorithm by filling in the details.

Then, we propose two improvements and prove that the approximation ratio stays at 5. One
of our improvements focuses on the notion of a “balanced split”. We call a split balanced, if we
get two parts of volume 1 − ϵ and ϵ (or better). Then, the running time of our algorithm has a
factor of 1/ϵ. For instance, if we set ϵ = 1

100 , a generous estimation shows that the dependence
on k in our O(f(k)n log n)-time algorithm is k2 28.87k, instead of 224k(k+ 1)! in Reed’s algorithm.
Here the asymptotic notation is a bit misleading from a practical point of view, as 224k = o(k!),
even though k! is reasonable for small k, while 224k is not. Then, we further improve the running
time upper bound and show that our algorithm runs in time O(27.61kk2n log n). In the end, the
main aim of this paper is to produce a constant-factor approximation algorithm that runs in time
2ckn log n with c as small as possible.

2 Preliminaries

2.1 Tree Decomposition

Definition 2 A tree decomposition of a graph G = (V,E), is a tree T = (VT , ET) such that each
node x in VT is associated with a set Bx (called the bag of x) of vertices in G, and such that T
has the following properties:

� The union of all bags is equal to V. In other words, for each v ∈ V, there exists at least one
node x ∈ VT with Bx containing v.

� For every edge {u, v} ∈ E, there exists a node x such that u, v ∈ Bx.

� For any nodes x, y ∈ VT , and any node z ∈ VT belonging to the path connecting x and y in
T , Bx ∩By ⊆ Bz.

In this paper we use a variation of tree decomposition where the adjacent bags differ in at most
one vertex (converting can happen in linear time).

The width of a tree decomposition is the size of a largest bag minus one. The treewidth of a
graph G is the minimum width over all tree decompositions of G called tw(G). Observe that the
treewidth of a tree is 1. In the following, we reserve the letter k for the treewidth+1.

We have to mention that Bodlaender et al. [8] filled in some details on Reed’s algorithm. We
need to be more detailed because we do not use Reed’s algorithm as a black box. That is why
we first analyze Reed’s algorithm precisely (Section 3), fill in the blanks, and then introduce our
improvements of his algorithm (Section 4).

1Considering the dependence on both n and k.

JGAA, 26(2) 257–282 (2022) 261

G1

G2 G3 G4 G5

a

b c

d e f

≤
n

2
4
k

≤
n

2
4
k

≤
n

2
4
k

≥ n
24k

representatives

Figure 1: For a given graph G, let V (G) be the set of its vertices. Let G6 =
G[V (G3) ∪ V (G4) ∪ V (G5) ∪ {c}] (the entire rightmost green subtree rooted at c), and assume
|V (G1)|, |V (G2)|, and |V (G6)| ≥ n

24k , and |V (G3)|, |V (G4)|, and |V (G5)| < n
24k . Here, d, e, and f

are NOT representatives but a, b, and c are.

3 Analysis of Reed’s Algorithm

In 1992, Reed gave an elegant algorithm [17] to either construct a tree decomposition of width less
than 7k or 5k of a given graph G, or declare that the treewidth is at least k and output a subgraph
which is a bottleneck (no separator of size ≤ k).

3.1 Summary of Reed’s Algorithm

In Reed’s algorithm, one of the main tasks is to find a “balanced” separator S that splits the graph
G− S into two subgraphs with sets of vertices X,Y ⊆ V (G). Once a balanced separator is found,
the algorithm recursively finds a tree decomposition for G[X ∪S] (the subgraph induced by X ∪S)
and G[Y ∪ S].

The main task is to find a balanced separator. Instead of branching on every vertex (going to
X,Y, or S, which would be exponential in n), Reed forms groups of vertices and works with the
representatives of the groups. Then, he branches on the representatives.

262 Mahdi Belbasi, Martin Fürer An Improvement of Reed’s Treewidth Approximation

w1

w2

w3

w4

w5

ErrorRepresentatives

X Y

S
(|S| ≤ k)

Figure 2: Error, i.e. part of a subtree not on the side of its representative

Reed does a DFS and finds the deepest vertex v whose subtree has at least n
24k vertices2 (See

Figure 1). We call such a vertex a “representative”. He defines the weight of the representative v
as the size of its subtree rooted at v in the DFS, denoted by w(v). The idea here, is that if some
representatives with a large total weight go to either X or Y , then most of their descendants will
go to the same set. The reason is that if a descendant goes to the other side, the path connecting
the representative to the descendant has at least one vertex in the separator. However, we know
that the separator cannot have more than k vertices. So, not many vertices will go to the wrong
set; not more than n

24 vertices, in total. This is because every subtree that partially goes to the
other side should go through the separator and have one vertex there. Hence, not more than k
subtrees rooted at children of the representatives can go through the separator, which results in
at most n

24 vertices on the wrong side. This nice property allows Reed to work with the set of
representatives (which is much smaller) rather than all the vertices (see Figure 2).

Now, one might think, why not just check all the possibilities of the representatives going to
X,Y, or S? The reason that this simple idea does not work is that if a representative goes to the
separator, its entire substree of arbitrary size can go anywhere and we do not have any control over
it. Reed handles this problem by deciding whether any representative is going to the separator, at
the very beginning of the algorithm. If so, he just places such a representative (namely v) into S
(and not its subtree) and starts forming a new group of representatives by running a new DFS on
G− {v}. So, the other representatives might change. Also, since one vertex has been placed into
the separator, now k ← k − 1. However, if none of the representatives goes to the separator, he

2Later, we talk about this threshold.

JGAA, 26(2) 257–282 (2022) 263

branches on placing them left (X) or right (Y). This is the high-level idea of Reed’s algorithm.
Let’s start with presenting and reviewing some definitions.

3.2 Centroids and Separators

For an undirected graph G = (V,E) and a subset W of the vertices, G[W] is the subgraph induced
by W . For the sake of simplicity throughout this paper, let G −W be G[V \W] and G − v be
G− {v} for any W ⊆ V (G) and any v ∈ V (G).

Also, in a weighted graph, a non-negative integer weight w(v) is defined for each vertex v. For
a subset W of the vertices, the weight w(W) is simply the sum of the weights of all vertices in W .
Furthermore, the total weight or the weight of G is the weight of V .

Definition 3 A centroid of a weighted tree T is a node x such that none of the trees in the forest
T − x has more than half the total weight.

Definition 4 A tree decomposition is called a good tree decomposition if the adjacent bags differ
in at most one vertex.

For good tree decompositions we choose a stronger version of centroid.

Lemma 1 Any tree decomposition T with width k can be converted in linear time to a good tree
decomposition T ∗ of the same graph without increasing the width.

Proof: Bodlaender [6] has defined the more restrictive notion of a smooth tree decomposition and
shown that it can be computed in linear time. However, we include the derivation for our notion
to make it self-contained3.

Let x and y be two adjacent nodes of T with associated bags Bx, and By, respectively.
Let Bx = {v1, . . . , vt}, and By = {u1, . . . , us}. Notice that s, t ≤ k.
Now, let V − = Bx \By, and U+ = By \Bx. Let D = V − ∪U+ = {d1, . . . , d|V −|, d

′
1, . . . , d

′
|U+|}.

We just add |D| intermediate nodes (namely x1, x2, . . . , x|V −|, y1, y2, . . . , y|U+|) between x and
y such that we start by deleting vertices of V − one by one and then adding vertices of U+ one at
a time.

Set
Bx1 = Bx \ {d1}
Bxi = Bxi−1 \ {di} ∀i ∈ {2, . . . , |V −|}
By1

= Bx|V −|
∪ {d′1}

Byi = Byi−1 ∪ {d′i} ∀i ∈ {2, . . . , |U+|}.

(1)

□

□

Definition 5 A strong centroid of a good tree decomposition τ of a graph G = (V,E) with respect
to W ⊆ V is a node x of τ such that none of the connected components of G−Bx contains more
than 1

2 |W \Bx| vertices of W .

The following lemma shows the existence of a strong centroid for any given subset W of V .

3Alternatively, one can refer to the derivation of a similar result for nice tree decomposition [14].

264 Mahdi Belbasi, Martin Fürer An Improvement of Reed’s Treewidth Approximation

Lemma 2 For every good tree decomposition (T , {Bx : x ∈ VT }) of a graph G = (V,E) and every
subset W ⊆ V , there exist a strong centroid with respect to W 4.

Proof: If a node x is not a strong centroid with respect to W , then let Cx be the set of vertices
in the unique connected component of G− Bx containing more than 1

2 |W \ Bx| vertices of X. In
the forest obtained from the tree T by removing x, there is a tree Tx with the property that the
union of all bags in Tx contains all the vertices of Cx.

Now, we define a set F of directed tree edges by (x, y) ∈ F if all the following conditions hold:

� x is not a strong centroid

� y is a neighbor of x in T ,

� y is a node in Tx.

Now we show that there is a node x with out-degree 0 in (VT , F). Such an x is a centroid, and we
are done. Otherwise, F contains (x, y) and (y, x) for some x, y ∈ VT . W.l.o.g., By = Bx ∪ {v} for
some v ∈ V \Bx. Note that Tx and Ty are disjoint. Furthermore, any vertex that is in a bag of Tx
and in a bag of Ty is also in Bx and By. Thus also Cx and Cy are disjoint.

Furthermore, W ∩Cx ⊆W \Bx and W ∩Cy ⊆W \By ⊆W \Bx. As W ∩Cx and W ∩Cy are
disjoint, they cannot both have more than 1

2 |W \Bx| vertices, which is a contradiction.
Hence, there exists a node x which is a strong centroid. □

□

We use the definitions of balanced W -separator and weakly balanced W separation from the
book of Flum and Grohe [11].

Definition 6 Let G = (V,E) be a graph and W ⊆ V . A balanced W -separator is a set S ⊆ V
such that every connected component of G− S has at most 1

2 |W | vertices.

Lemma 3 [11, Lemma 11.16] Let G = (V,E) be a graph of treewidth at most k − 1 and W ⊆ V .
Then there exists a balanced W -separator of G of size at most k.

We say that a separator S separates X ⊆ V from Y ⊆ V if C ∩X = ∅ or C ∩ Y = ∅ for every
connected component C of G− S.

Definition 7 Let G = (V,E) be a graph and W ⊆ V . A weakly balanced separation of W is a
triple (X,S, Y), where X,Y ⊆W , S ⊆ V are pairwise disjoint sets such that:

� |S| ≤ k

� W = X ∪ (S ∩W) ∪ Y

� S separates X from Y

� 0 < |X|, |Y | ≤ 2
3 |W |.

4Flum-Grohe [11] use the property of a standard centroid for tree decompositions in Lemma 11.16 page 267.
They talk about balanced W -separators and do not use the term centroid. They only use the standard notion of

a centroid, showing that no connected component contains more than
|W |
2

of the vertices. Strong centroids show

that no connected component has size more than
|W\S|

2
.

JGAA, 26(2) 257–282 (2022) 265

Lemma 4 [11, Lemma 11.19] For k ≥ 3, let G = (V,E) be a graph of treewidth at most k−1 and
W ⊆ V with |W | ≥ 2k+1. Then there exists a weakly balanced separation of W of size at most k.

Even though Lemma 4 is sufficient for us, one can make it stronger such that it holds for
|W | ≥ k + 1.

Theorem 1 [11, Corollary 11.22] For a graph of treewidth at most k− 1 with a given set W ⊆ V
of size |W | = 3k−2, a weakly balanced separation of W of size ≤ k can be found in time O(33kk2n).

3.3 Algorithm to Find a Weakly Balanced Separation

Separation(G, k) is the main part of Reed’s algorithm. It finds a separator of size at most k in G
using the procedures Split(G,X, Y, k) and DFS-Trees(G, k). We explain each of these procedures.

3.3.1 Split(G,X, Y, k)

For X, Y disjoint subsets of V , Split(G,X, Y, k) finds a separator S of size at most k in G which
is strictly between X and Y . Split reports failure if no such separator exits (described in Lemma
11.20 of [11]).

3.3.2 DFS-Trees(G, k)

DFS-Trees(G, k) (Algorithm 1 using Algorithm 2) computes a DFS tree and partitions it into
smaller DFS trees with the following properties.

� the size (number of vertices) of the smaller trees is at least s = n/24k, and

� all subtrees rooted at children of the roots of the trees in the partition have size less than
n/24k.

DFS-Trees(G, k) collects the set W ′ consisting of all the roots of the trees in the partition. These
roots are representatives of the vertices in their small DFS tree. Therefore, the weight w[v] for
v ∈W ′ is the number of vertices in the small tree with root v.

3.3.3 Separation(G, k)

Separation(G, k) is the recursive procedure that splits according to the number of vertices (Al-
gorithm 3). Note that when any vertex v is placed into the separator S, then the procedure
Separation removes that vertex v from the graph and starts from scratch. The idea is that when
we place a root of a small tree (a representative) left or right, then we want to put the whole small
tree there. But when a representative is placed into the separator, then its tree does not go there.
At this point a new collection of trees is formed.

3.4 The Correctness of Reed’s Algorithm

If the treewidth is at most k− 1, then there is a good tree decomposition of G of width k− 1. Let
x be a centroid in it. The connected components of G[V \ Bx] can be partitioned into 2 parts L
and R, such that no part has more than 2

3 |V | vertices.
First, we prove the correctness of the algorithm for the case that G is a connected graph (lines

16-25 of Algorithm 3). Later, we describe the case that G is not connected.

266 Mahdi Belbasi, Martin Fürer An Improvement of Reed’s Treewidth Approximation

Algorithm 1: Construct Small DFS-Trees

Result: Roots of DFS-Trees (representatives) with sizes of their strict subtrees
< |V |/(24k)

1 Procedure DFS-Trees(G, k) // G is a connected graph.

2 ∗s = |V |
24k // s : the size bound for splitting off a small tree.

3 ∗W ′ = ∅
4 ∗for all v ∈ V do
5 ∗color[v] = WHITE
6 end
7 ∗Pick any vertex u of G.
8 ∗count = DFS-visit(G, u)
9 ∗w[x] = w[x] + count, where x is the last representative added to W ′

10 ∗return (W ′, w[v] for all v ∈W ′)
11 End Procedure

Algorithm 2: Main recursive procedure of DFS-Trees

1 Procedure DFS-Visit(G, u)
2 ∗ color[u] = GRAY
3 ∗ count = 1
4 ∗for all v adjacent to u do
5 ∗ if color[v] == WHITE // The white vertex v is discovered now.

6 then
7 ∗ count = count+DFS-Visit(G, v)
8 end

9 end
10 ∗ if count ≥ s then
11 ∗ W ′ = W ′ ∪ {u}
12 ∗ w[u] = count
13 ∗ count = 0

14 end
15 return count
16 End Procedure

JGAA, 26(2) 257–282 (2022) 267

Algorithm 3: Main recursive procedure in Reed’s algorithm

Result: A weakly balanced separation (X,S, Y) of G of size ≤ k
1 Procedure SEPARATION(G, k)
2 ∗ if G is not a connected graph then
3 ∗Let C1, . . . , Ct be the connected components of G, and w.l.o.g., assume C1 is the

largest component.
4 ∗ if |C1| < 3

4 |V | then
5 ∗Let L = C1 and i = 2.

6 ∗while |L| < 1
4 |V | do

7 ∗L = L ∪ Ci.
8 ∗i = i+ 1

9 end
10 ∗return (L, ∅, V \ L)
11 end
12 ∗Let (X ′, S′, Y ′) =SEPARATION(G[C1], k). W.l.o.g., assume X ′ is the one with lower

weight.

13 ∗return (X ′ ∪ (
t⋃

i=2

Ci)), S
′, Y ′)

14 end
15 ∗ if k > 0 then
16 ∗(W ′, w[v] : ∀v ∈W ′) = DFS-Trees(G, k)
17 end
18 ∗for all v ∈W ′ // Here v is placed into separator S.
19 do
20 ∗(X,S, Y) = SEPARATION(G− v, k − 1)
21 ∗ if ¬failure then
22 ∗return (X,S ∪ {v}, Y)
23 end

24 end
// The set of vertices W ′ is partitioned into X ⊆ L and Y ⊆ R = W ′ \ L.

25 ∗for all X ⊆W ′ // Here no vertex is put into S.
26 do
27 ∗ if (13 −

1
24)|V | ≤ w(X) ≤ (23 + 1

24)|V | then
28 ∗Split(G,X,W ′ \X, k)
29 ∗ if ¬failure then
30 ∗return (X,S, Y)
31 end

32 end

33 end
34 return failure
35 End Procedure

268 Mahdi Belbasi, Martin Fürer An Improvement of Reed’s Treewidth Approximation

Note that for the correctness proof, we do not have to find this tree decomposition. It is
sufficient to know that it exists. We can assume, that we have fixed such a tree decomposition, a
centroid x and the sets L and R.

Every set W ′ ⊆ V is partitioned into parts in L, the separator S = Bx, and R.
One of the many branches of the procedure Separation(G, k) working with a set W ′, tries this

partition of it, and succeeds, unless a previously taken branch has already succeeded. First, the
procedure decides which part of W ′ goes into S, one vertex v at a time. This vertex v is removed
from G, but otherwise, we still consider the same tree decomposition. |Bx| has now decreased by
1, as v is removed from it.

We then consider the case that none of the remaining vertices in W ′ are in the separator. The
procedure decides which part X ⊆ W ′ goes into L (line 26) of Algorithm 3. Now the weight of
each part is at most (23 + 1

24)n as at most k small subtrees can have some of their vertices on the
wrong side. And this is at most k times less than n

24k vertices.
On the branch of the procedure Separation(G, k) which selects this partition of W ′, there is

the separator Bx of size at most k between X and Y . Our algorithm cannot guarantee to find this
separator Bx, but it will find some separator S of size at most k between X and Y . Again up to
1
24n vertices can be on the opposite side of their representatives. Now the larger side can contain
at most (23 + 2 · 1

24)n = 3
4n vertices. Thus we have a somewhat balanced partition (a constant

fraction on each side).
Note that if at any pointG becomes disconnected in Algorithm 3, it only works to our advantage,

and we handle it separately in lines 2-15. Let C1, . . . , Ct be the connected components of G, and
w.l.o.g., assume C1 has the highest volume. In this case, there are two possibilities:

� First, we consider the case that C1 has volume (actual size) ≤ 3
4n. Then, if |C1| is already

≥ 1
4n we are done. We return C1 as the L.H.S. and the remaining components as the R.H.S.

However, if |C1| < 1
4n, we add other components to C1 until its volume passes 1

4n for the
first time. Note that since |C1| has maximum volume, all other components have volume
≤ 1

4n, and adding them one at a time will not cause an issue.

� In the second case, C1 has volume more than 3
4n. Then, we run SEPARATION(G[C1], k)

to get (X ′, S′, Y ′). This is a separation for G[C1]. W.l.o.g., assume X ′ does not have a
higher weight than Y ′. Then, we put all the vertices represented by X ′ along with all other

components (X ′ ∪ (
t⋃

i=2

Ci)) on the L.H.S. Note that:

Vol(X ′ ∪ (

t⋃
i=2

Ci)) = Vol(X ′) + n− |C1|.

We know that (13 −
1
24)|C1| ≤ V ol(X ′) ≤ (12 + 1

24)|C1|. Hence,

Vol(X ′ ∪ (

t⋃
i=2

Ci)) ≤ (
1

2
+

1

24
)|C1|+ n− |C1| = n− 13

24
|C1|

≤ 19

32
n <

3

4
n.

and

Vol(X ′ ∪ (

t⋃
i=2

Ci) ≥ (
1

3
− 1

24
)|C1|+ n− |C1| = n− 17

24
|C1|

JGAA, 26(2) 257–282 (2022) 269

≥ n− 17

24
n =

7

24
n >

1

4
n.

Furthermore,

Vol(Y ′) ≤ 3

4
|C1| ≤

3

4
n,

and

Vol(Y ′) ≥ (
1

2
− 1

12
)|C1| ≥

5

12
· 3
4
n =

5

16
n >

1

4
n.

So, in the case that G is not connected, we still find a somewhat balanced separator.
We assume the O

(
33kk2n2

)
4-approximation algorithm of Robertson-Seymour [18, 20] (see

Proposition 11.14 of Flum and Grohe [11]) is known. It handles a set W ⊆ V of size 3k − 2.
Working with (G,W), it finds a separator S of size at most k to split G− S into two parts L and
R with both, |W ∩X| and |W ∩ Y | at most 2

3 |W |. A tree node with bag W ∪ S is formed. Two
recursive calls continue with (G[L ∪ S], (W ∩ L) ∪ S) and (G[R ∪ S], (W ∩R) ∪ S), respectively.

Reed’s algorithm does the same steps to handle W . However, in order to decrease the de-
pendence on n of the running time from O

(
n2

)
to O(n log n), Reed intersperses these balanced

partitions of W with balanced partitions of V (Algorithm 3). In each case, it would be desirable
that V and W simultaneously split in a balanced way. However, during the traditional splitting of
W , the graph might be split very unbalanced, and during the new splitting of V , the set W might
not be split at all.

Reed’s algorithm can alternate between splitting W as in the O
(
33kk2n2

)
algorithm and split-

ting V . Now W can be of size at most 6k. On each side, we have at most (23 · 6k) = 4k. Splitting
by W as well as splitting by V adds k to the new W . Thus, we are back at 6k. The constructed
tree decomposition has then width at most 7k. But we show that this can be improved to a 5-
approximation algorithm. We do not need to alternate between splitting W and V . Splitting V is a
costly procedure. We can do it only after every log 3

2
k steps and we still spend only O(f(k)n log n)

time.
We start with W of size at most 4k (3k and kexcess as excess). Initially, kexcess = k. Each time

we split W , we get

|W | ≤ 2

3
· 3k + k︸︷︷︸

adding separator

+
2

3
kexcess = 3k +

2

3
kexcess,

and then update kexcess ← ⌊ 23kexcess⌋. The excess drops by a factor of 2
3 . After log 3

2
k steps, the

excess becomes zero and then we can split by V . At this point, |W | could increase to 4k again (3k
was the size of W before this step, and when we split by V , we have to include the separator as
well). We end up with |W | ≤ 4k and we add the separator to the root bag, which means the largest
bag has size at most 5k. Therefore, it is a 5-approximation algorithm. Reed mentions 5k in his
paper, but he does not mention the frequency of the two operations. We don’t know whether he
had the same modification in mind. Simple alternation between the two operations only achieves
7k.

3.5 Running Time of Reed’s Algorithm

Let T (n, k) be the running time of the procedure SEPARATION(G, k) for G = (V,E) and
n = |V |. Let n′ and k′ be the current bound on the graph size and current separator capacity.

270 Mahdi Belbasi, Martin Fürer An Improvement of Reed’s Treewidth Approximation

Initially n′ = n and k′ = k. We have the following recurrence for Reed’s algorithm.

T (n′, k′) ≤ 24k′T (n′ − 1, k′ − 1) + 224k
′
c(k′ + 1)kn′︸ ︷︷ ︸
flow algorithm

, (2)

for some c > 0. It is difficult to obtain a good solution, but by induction on k′ we get the following
loose upper bound.

T (n′, k′) ≤ 3c224k
′
k′! kn. (3)

For k′ = 0, this bound is valid. For k′ ≥ 1, we have:

T (n′, k′) ≤ 24k′T (n′ − 1, k′ − 1) + c224k
′
(k′ + 1)kn′

≤ 3c24k′224(k
′−1)(k′ − 1)! kn+ c224k

′
(k′ + 1)kn′ by induction hypothesis

= c224k
′
kn(

3 · 24k′!
224

+ k′ + 1) ≤ 3c224k
′
knk′! (

24

224
+

k′ + 1

3 k′!
)

≤ 3c224k
′
k′! kn.

Even though, this is not a tight bound, we have T (n, k) ≥ c′24kk!(n− k), which is 2Ω(k log k)n.

T (n, 0) ≥ c′n

T (n, k) ≥ 24kT (n− 1, k − 1)

≥ c′24k24k−1(k − 1)! (n− k) by inductive hypothesis

≥ c′24kk! (n− k)

4 Our Improved Algorithm

In this section, we discuss how to improve Reed’s algorithm. The dependence on k in the running
time of Reed’s algorithm is huge. We decrease this factor significantly to make the algorithm more
applicable. We introduce two main modifications. First, we work with a larger cut-off threshold

than Reed’s |V |
24k . Such an improvement can be achieved by replacing the arbitrary 3/4 bound by

1− ϵ. But even more is possible by arguing about the weights of connected components instead of
the weights of the parts of a bipartition.

The second improvement is to avoid branching on whether there is a representative going into
the separator or not. Reed branches on these two cases at the beginning, while we branch 3-fold
for every representative.

Note that the second improvement is not obvious. Reed had a good reason to avoid 3-fold
branching. If a representative of tree is put into the separator, then, we lose control of the un-
bounded set of additional vertices of the tree.

4.1 Relax the balancing requirement

Reed’s argument starts with a weakly balanced separation by volume (i.e. according to V) that is
known to exist. The larger side has at most 2/3 of the volume, but it might have up to 2/3+1/24
of the weight. The algorithmic split by this weight partition might pick a set with another 1/24
fraction more volume. Thus the worst kind of volume split found is now 3/4 to 1/4. Recall that
these differences are bounded this way for the following reason. When the weight carrying root

JGAA, 26(2) 257–282 (2022) 271

of a tree is on one side, some of its small subtrees rooted at the children can be partially on the
other side. But the separator prevents more than k small subtrees to have any part on a different

side than the root, and each small subtree contains less than |V |
24k vertices. Instead of 3/4, one can

choose any number strictly between 2/3 and 1. If 1− ϵ is chosen, then the constant 24 is replaced
by 1

((1−ϵ)−2/3)/2 = 6
1−3ϵ ≤ 6 + 24ϵ for ϵ ≤ 1/12.

A better improvement is possible by a modification of the analysis. If G is connected, then we
know that a balanced V -separator S′ exists. It is a separator by volume. We fix such an S′ for
the analysis. The algorithm does not have to find it. S′ defines a set of connected components
G1, . . . , Gt of G − S′ with vertex sets V1, . . . , Vt. We focus on the set B of those branches of
the algorithm which put any vertex v ∈ W ′ into the separator if and only if v ∈ S′. For each
branch of B, the weight of Gi is the weight of W ′ ∩ Vi. We choose a larger value of s, namely

s = ⌊(1/4 − ϵ/2) |V |
k ⌋. Because |Vi| ≤ |V |

2 , the weight of each connected component Gi is at most
(3/4− ϵ/2)|V |. We group V1, . . . , Vt into L′ and R′ such that neither L′ nor R′ have weight more
than (3/4− ϵ/2)|V |.

Now, there exists exactly one branch of B that places a vertex v ∈W ′ left if and only if v ∈ L′.
Otherwise such a vertex v ∈ W ′ is placed right on this branch. Again, note that the algorithm
does not know L′ and R′. However, as it tries all possible placements of W ′, one branch is good.

The algorithm finds a separator S that allows the same 2-partition of W ′ \ S′ as S′. The
separator S found by the algorithm might be different from S′. However, as S′ and S agree on
W ′, the volume ratio is not worse than (1− ϵ) to ϵ.

With this improvement, the constant 24 of Reed’s algorithm is replaced by

1

((1− ϵ)− 1/2)/2
=

4

1− 2ϵ
≤ 4 + 12ϵ for ϵ ≤ 1/6.

4.2 Main Improvement

The other improvement is to allow the representatives (the roots of the subtrees) to go either, left,
right, or into the separator. Once a representative v goes into the separator, we change its weight
to 0. We also delete v from G and unmark all of the vertices in its subtree, so that they can be
searched again. Then, we continue the DFS from the parent of v. There is one complication here
that we have to take care of; what happens if G− v gets disconnected?

Three cases might happen. We cover all the cases and show that they can be handled. Let
x, y, and z be three types of children of v with the small subtrees (with size < n

Ck) τx, τy, and τz,
rooted respectively (Fig. 3(a)). The cases are:

� There is a back edge from a vertex in τx to an ancestor of v. If we delete v from the tree, the
vertices of τx will still be searched because they are connected to an ancestor of v. So, we
just need to color them white once more. Hence, we do not need to worry about this case.

� There is a vertex p in τy with subtree τq attached to it with q as its root such that q is a
representative below τy which has not gone into the separator (this is a bottom-up approach).
Even though this case seems to be troublesome, we can fix it. Let τp,y be τy rooted at p
(dangling from p). Make p a child of q. Now, the problem has been fixed (Fig. 3(b)). The
same reasoning applies when v is a root and its subtree is too small.

Notice that in this case, it is possible that there is a back edge to some vertex higher up as
well, but it does not change anything here. We handle it by attaching to the subtree below
it. Alternatively, one could handle it like the previous case. Both are fine.

272 Mahdi Belbasi, Martin Fürer An Improvement of Reed’s Treewidth Approximation

v

x y z

q

DFS Tree

p

y

(a) (b)

q

v

q
v

p

p

Figure 3: How to fix the cases after a representative goes to the separator. Here, v and q are
representatives and v is going to be sent into the separator.

� There is no back edge from τz to an ancestor of v, and there is no subtree below. So deleting
v makes τz disconnected from the entire tree, and this is only for our advantage.

Now, the question is how to distinguish between these three cases?
We just need to distinguish between case 2 and the other two cases (together) because case 1

and 3 are handled the same way.
Cases 1 and 3 are actually the simple ones. We just need to color the vertices in their subtrees

white and then we are done. So, we have to find a way to recognize case 2. For that, each vertex u
in τ(y) saves a possible representative q with an edge to some p ∈ τ(y) such that p is an ancestor
of q (defined as rep connected in the pseudocode). If no such representative exists, simply set its
value to nil. Notice that we just need to store one representative connected down below since it
is sufficient to handle this case as we just described. Each vertex passes that information to its
parent. So, if rep connected[y] ̸= nil, we know that the case 2 has happened. Otherwise, case 1
or 3 has happened and we do not need to know which one since they are handled the same way.
Now, let’s go back the algorithm description.

The main difference here is that Reed branches in the beginning and considers two cases. In
the first case, none of the representatives goes to the separator, and in the second case at least
one goes to the separator. In the second case, Reed’s algorithm branches into at most 24k (upper
bound for the number of subtrees). We want to avoid these branches and each time only branch
into three cases. Assume we want to decide where to put v (a representative with weight w(v)).
Let L, S, and R be the left, the separator, and the right sets, respectively. If we put v into L
(or R), usually most of the vertices in its subtree will be in L (or R) as well. In case v goes to
S, we release the other vertices of its tree to be searched again (as we described above and also
as it is mentioned in the pseudocode). We have to mention that unlike Reed, we do not decide
at the beginning if at least one vertex is going to the separator. Instead, we consider this case
for every representative only when we handle that representative (remember that we handle the
representative in a serial way).

Theorem 2 Let C0 = 4 + 4 log 1.25 + log 5 < 7.60965. For any C > C0, there exists a 5-
approximation algorithm that solves treewidth in time O(2Ckn log n), where k is treewidth+1.

Proof:
Here, we include the pseudocodes of our algorithms (4 and 5), but before that we introduce the

global variables.

JGAA, 26(2) 257–282 (2022) 273

Global Variables

� G: the input graph

� root: a fixed vertex to start all the DFS visits

� W ′: the list containing all the representatives (that do not go into the separator)

� W: the list containing the weight of every representative

� decision: the string that dictates where we should place the representatives.

� S: the separator

� k: an upper bound on the capacity of the separator in the beginning.

� k′: an upper bound on the capacity of the separator at any given time.

The following section includes additional explanations on Algorithms 4 and 5 as well the proof
of correctness.

4.3 The Correctness of Our Algorithm

We use a subroutine of Robertson-Seymour’s 4-approximation algorithm [18,20] to find a balanced
separator of any given set W . We call this splitting “split by W”. If we continue just by splitting
W , we end up having quadratic dependence on n in the running time in a worst case scenario.
In order to avoid this, after every log 3

2
k such splittings, we split based on V (the reasoning can

be found in Section 3.4). Splitting by V is handled by finding a collection of representatives and
then splitting the representatives in a balanced way. As we mentioned earlier, at most n

Cϵ
vertices

would be on the opposite side of their representatives. Hence, this way of splitting procedure splits
the entire graph in a somewhat balanced way without actually deciding on every vertex (if there
exists a balanced separator at all). Below we explain the latter part in more detail.

We do a DFS and the first time that we post-visit a vertex with at least n
Cϵk

vertices in its
subtree, we call that vertex a representative which represents the vertices of its subtree. Then, we
decide what to do with that representative.

Algorithm 4 initiates the process by calling the DFS on G starting from a fixed vertex root.
The reason that we fix the starting point is that we want to have a deterministic DFS search so
that when we change our “decision”, the DFS follows the same order.

Decision is a string ∈ {0, 1}∗ that tells us what to do after we find a representative. If one
decision was not good (i.e., it did not give us a balanced separator), we check the next decision.

We start with the decision that no representative should go into the separator (decision = “”).
Notice that decision is a string. The reason is that we want to keep the leading 0’s. Decision either
is empty or ends with a 1 (we stop at the right-most 1 and assume the string is padded with an
unlimited5 number of 0s to the right). If necessary, we keep adding those 0’s to the right.

If decision[i] = 0, we send the i-th representative left/right. If it was 1, we send that vertex
into the separator and do not consider it a representative anymore. If |decision| is too short, this
means it was supposed to be 0 (because the string can be padded with unlimited 0s). Then, we
add 0 to the R.H.S. of the decision string and send this representative left/right. Sending left/right

5In fact, Cϵk is sufficient.

274 Mahdi Belbasi, Martin Fürer An Improvement of Reed’s Treewidth Approximation

Algorithm 4: The procedure to initialize the DFS

1 Procedure INIT DFS()
2 Declarations:
3 ∗ R tree info = (list of vertices R vertices, vertex rep connected)

4 ∗ s = ⌊(1/4− ϵ/2) |V |
k ⌋ // s : the size bound for splitting off an R-tree.

5 ∗ decision = “” // No representative should go into the separator

6 ∗ while TRUE do
7 ∗ Initialize W ′ and W with empty lists // W ′ is the (ordered) list of the

representatives and W is the (ordered) list of their corresponding

weights. W =
(
w[i]1≤i≤|W ′|

)
, where w[i] is the weight of the i-th

representative.

8 ∗ k′ = k
9 ∗ for all v ∈ V do

10 ∗ color[v] = WHITE
11 end
12 ∗ vertex rep = DFS VISIT(root)
13 ∗ x.R vertices = x.R vertices ◦ vertex rep.R vertices, where x is the last

representative added to W ′ // If the topmost subtree has smaller size than

s, we hook it onto the last representative x.
14 ∗ if x.rep connected == nil then
15 ∗ x.rep connected = vertex rep.rep connected
16 end
17 ∗ if k′ == 0 then
18 ∗ if connected components of G− S can form a balanced bipartition (L,R) then
19 ∗ return (L,R)
20 end

21 end
22 ∗ else
23 try all partitions of W ′ into X and Y to see if there exists a balanced separator.
24 ∗ if such a partition exists then
25 ∗ return (L,R) // L is X along with all the vertices represented

by vertices of X (analogously R corresponds to Y).

26 end

27 end
// Now, we update the decision to look for the next possibility

28 ∗ decision = lexicographically next string of at most the same length. // For

instance, 0011001 follows 011000 and 101 follows 1001111
29 ∗ if no such string exists then
30 ∗ return “Treewidth is > k”
31 end
32 ∗ Drop the “0”s to the right of the rightmost “1” in decision. // We always remove

the rightmost "0"s and add them back only if necessary (in the

DFS-Visit() procedure)

33 end
34 End Procedure

JGAA, 26(2) 257–282 (2022) 275

Algorithm 5: Main recursive procedure of DFS-Trees

Result: Rtree info about the current partial Rtree
1 Procedure DFS-Visit(u)
2 ∗ this = new R tree info({u}, nil)
3 ∗ color[u] = GRAY
4 ∗ while there exists v adjacent to u such that color[v] == WHITE do
5 ∗ child = DFS VISIT(v)
6 ∗ this.R vertices = this.R vertices ◦ child.R vertices
7 ∗ color[v] = BLACK
8 ∗ if this.rep connected == nil then
9 ∗ this.rep connected = child.rep connected // Each vertex remembers one of

the possible representatives to which one of its descendants in the

current Rtree is connected to and passes it to its parent.

10 end

11 end
12 ∗ length = |W ′|+ (k − k′)
13 ∗ if |this.R vertices| ≥ s then
14 ∗ if len(decision) <length // 0 means place it left/right. Also, we assume

that the decision is padded with unlimited zeros to the right of

decision that we do not show after the last 1, where 1 means place into

the separator

15 then
16 ∗ decision = decision ◦ “0” // where ◦ is string concatenation

17 end
18 ∗ if decision[length] == 0 // "0" means place it left/right

19 then
20 ∗W ′ = W ′ ∪ {this}
21 ∗ return (∅, u)
22 end
23 ∗ else

// i.e. decision[length] == 1 which means send this into the

separator

24 ∗ k′ = k′ − 1
25 ∗ if this.rep connected ̸= nil // Handling the middle case of Figure 3

26 then
27 ∗ w[this.rep connected] = w[this.rep connected] + |this.R vertices| ∗ return

this

28 end
29 ∗else
30 for all z ∈ this.Rnodes do
31 ∗ color[z] = WHITE // Either the left or the right case of

Figure 3 has happened. In either case we do not need to

worry.

32 end
33 ∗ return (∅, nil)
34 end

35 end

36 end
37 End Procedure

276 Mahdi Belbasi, Martin Fürer An Improvement of Reed’s Treewidth Approximation

means just place it in W ′, for now. At the end of this iteration, check all the possible ways of
splitting W ′ into X and Y to find a balanced separator. If such a split exist, return (L,R), where
L = X ∪ {any vertex represented by a representative in X} (analogously R corresponds to Y). If
none exist, check the next decision and start over.

Then, the while loop on line 6 checks the entire search space. For any fixed decision, we
deterministically know what should happen to the representatives that we find. Each time we
have a new decision, we set the variables back to their original values and restart searching for a
balanced separator.

In line 12, we call the DFS Visit on root. DFS Visit returns a set of vertices (either the subtree
that is too small to form a group represented by a representative or ∅ if they form a group)
and the information whether any vertex in the set returned in the first argument is connected to
another representative down below. (We will see later why we need this.) We refer to this pair of
information as R tree info (check line 3 of Algorithm 4). There is a chance that the last vertex
post-visited (which is root) is not a representative, meaning that the size of its subtree is smaller
than the threshold s. In this case, we hook the subtree rooted at root to the last representative
that we have found (similar to part b of Figure 3). This happens in line 13.

The main process happens in DFS VISIT. Whenever it post-visits a vertex, it checks whether
its subtree is big enough. If the size of the current subtree hits the threshold, it forms a group
and decides whether the current representative should go left/right or into the separator based on
decision (0 means send it into the separator and 1 means send it left/right). Otherwise, it passes
the set of nodes to the parent along with a possible representative connected to its subtree down
below.

In line 28 of Algorithm 4, we update the decision if the current decision has failed.

The next decision is the next string in lexicographical order with at most the same length. For
example

1 follows 0

100111 follows 100110111

001011 follows 0010101111111

The reason that we do not check all the decision space is that if decision leads us to a failure,
there is no reason to check a string with decision as one of its prefixes. Notice that every time we
run out of the characters on the R.H.S. of decision, we just concatenate a ‘0’ to the R.H.S. of it.

If tw(G) ≤ k, then there exists a tree decomposition of G namely T with width (at most) k.
Then, based on Lemma 2, there exists a strong centroid x in T . Both T and x are unknown,
but they do exist (if we knew, we already had a tree decomposition of width k and a balanced
separator). The connected components of G \Bx can form a bipartition (L,R) such that no part
has more than 2

3n vertices. For the sake of argument, fix T , x, L, and R. Every W ′ ⊆ V is
partitioned into parts in L (name it X), parts in separator S = Bx, and parts in R (name it Y).

The weight of each part is at most
(

2
3 + 1

Cϵ

)
n. One of the branches picks W ′. On the branch

that picks W ′, the separator Bx lies between X and Y . There is no guarantee that we find this
separator, but the algorithm finds at least one separator of size ≤ k separating X from Y in a
balanced way. Once more, up to 1

Cϵ
n vertices are on the opposite side of their representative. Now,

the larger side has at most 2
3n+ 2

Cϵ
n vertices and the smaller side has at least 1

3n−
2
Cϵ

n vertices.

As we argued, we set Cϵ ← 4
1−2ϵ . This means that in a worst case scenario, our algorithm finds an

(ϵ, 1− ϵ)-separation. Each part has a constant fraction of the vertices. Hence, we have a somewhat
balanced separator.

JGAA, 26(2) 257–282 (2022) 277

The approximation ratio analysis is similar to what we described in Section 3.4. We start with
|W | ≤ 4k. It can be written as 3k + k. Let’s call the second term, kexcess. Initially, kexcess = k.
Each time we split W , the separator separates W into two parts with the largest part having at
most 2/3|W | vertices of W . We include the separator itself on both sides before recursing. This
means

|W | ≤ 2

3
(3k + kexcess) + k︸︷︷︸

upper bound on the size of the separator

= 3k +

new kexcess︷ ︸︸ ︷
2

3
kexcess .

Each time, the bound on kexcess decreases by a factor of 2/3. After log 3
2
k iterations, kexcess drops

to zero. At this point, we do one split by V . We have to add the separator to both parts and this
means |W |, which was upper bounded by 3k, might go up to 4k once more. Now, we can do log 3

2
k

splits by W again and continue as described.
Notice that throughout the entire process |W | ≤ 4k. Ultimately, in order to merge the two

tree decompositions that we found for two subproblems, we add the separator to both sides. This
means the largest bag can have up to 5k vertices and hence, the approximation ratio is 5.

5 Running Time of Our Algorithm

Let G, k, and t be the initial graph, the bound on the size of the separator, and the number
of representatives, respectively. t is at most Cϵk since the cut-off threshold for the volume of
the subtrees was n

Cϵk
. While proceeding with the algorithm at each step, let G′, k′, and t′ be

the current graph, the current bound on the size (capacity) of the separator, and a bound on
the number of representatives still to find, respectively. Each time we send some vertex to the
separator, we decrease the capacity by one. We assume a worst case, where the number of R trees
is t, and the separator found has size k (other cases only speed up the running time). Then, the
recurrence for the running time to find a separator of size at most k in G is:

T (t, k) ≤ T (

⌈
t · k − 1

k

⌉
, k − 1) + 2T (t− 1, k) +Qkn+O(1), for t, k > 0, (4)

where Q is the constant factor of the DFS. On the R.H.S., the first term handles the case where
the representative goes to the separator. Therefore, k decreases by 1, and the number of subtrees
becomes at most t · k−1

k (delete that vertex and continue the DFS). The second term handles the
case that the current representative does not go into the separator but left or right. Here, the
capacity of the separator is unchanged but the number of subtrees decreases by 1. The third term
is the upper bound of the exact running time of the DFS. And the last term O(1) is the overhead
to make the calls. The base cases of the recurrence:

T (0, k) ≤ Q(k + 1)kn to do k+1 DFSs. We find k paths from X to Y ,
and search for augmenting paths.

T (t, 0) ≤ Qkn We have to test whether S is indeed a separator.

The recurrence in 4 might seem hopeless, so we simplify it (generous bound).

T (t, k) ≤ T (t, k − 1) + 2T (t− 1, k) +Qkn+O(1), t, k > 0 (5)

278 Mahdi Belbasi, Martin Fürer An Improvement of Reed’s Treewidth Approximation

Now, we have to solve this recurrence. Our recursion tree starts from the root T (t, k) and has two
children T (t, k− 1) and T (t− 1, k), left and right, respectively. This is an unbalanced binary tree.
Each strand terminates when one of the arguments of T (· , ·) becomes zero. Each time we choose
the left branch (putting one representative into the separator), we decrease k by 1. Otherwise
(putting the representative and its subtree to the right or left set of the separator), we decrease t
by 1 and multiply the value by 2. Let #(t− i, 0) be the (worst case) number of leaves with the first
argument t − i and the second argument k = 0, for 0 ≤ i < t (analogous notation for #(0, k − j)
for 0 ≤ j < k). Observe that #(t − i, 0) =

(
k+i
i

)
, and #(0, k − j) =

(
t+j
j

)
. The first two terms of

Equation 5 can be computed at the leaves and the other two terms are spent in every vertex of
the recursion tree. The reason is that for the first two terms, we need the results of the children
and recursively everything relies on the results of the leaves. Each time we decide to consider a
subproblem (any internal node corresponds to a subproblem), we have to find the actual separator.
This step takes Qkn time. Also, in order to make the recursive calls, we spend O(1) time.

Now, we compute the first part (the first two terms).

t−1∑
i=0

#(t− i, 0) 2i︸︷︷︸
i right branches

T (t− i, 0)

+

k−1∑
j=0

#(0, k − j) 2t︸︷︷︸
t right branches

T (0, k − j)

≤

t∑
i=0

(
k + i

i

)
2i Qk2n︸ ︷︷ ︸

Eq. 5

+

k−1∑
j=0

(
t+ j

j

)
2t Qkn︸︷︷︸

Eq. 5

≤ Qk2n

t∑
i=0

(
k + i

k

)
2i +Qkn2t

k−1∑
j=0

(
t+ j

j

)

< Qk2n

t∑
i=0

(
k + t

k

)
2i +Qkn2t

(
k + t

k − 1

)
≤ Qk2n

(
k + t

k

)(
2t+1 − 1

)
+Qk2n2t

(
k + t

k

)
Now, we have to compute the second part of Equation 5 where we should look at every internal
vertex of the tree. We have

(
t+k
k

)
− 1 internal vertices (in worst-case), and in each vertex with

value k′, we spend at most Qk′kn+O(1) ≤ Qk2n(1 +O(1n)). Hence,

T (t, k) ≤
(
2t+1 − 1

)
Qk2n

(
k + t

k

)
+Qk2n(1 +O(1

n
))

(
t+ k

k

)
= Qk2n

(
2t+1 +O

(
1

n

))(
k + t

k

) (6)

Notice that T (· , k) is monotonic (due to the definition of T) and use the fact that t ≤ Cϵk. Now,
we simplify Equation 6 by bounding T (t, k) with T (Cϵk, k) and using Striling’s approximation.

T (t, k) ≤ T (Cϵk, k) ≤ Qk2n

(
2Cϵk+1 +O

(
1

n

))(
(Cϵ + 1) k

k

)
≤ Qk

3
2n

(
2Cϵk+1 +O

(
1

n

))√
Cϵ + 1

2πCϵ

(
1 +

1

Cϵ

)Cϵk

(Cϵ + 1)
k

JGAA, 26(2) 257–282 (2022) 279

Now, we compute the running time (TV), when we split based on V . We assume a worst case
split of ϵ to 1− ϵ and worst case separator of size k.

TV (n, k) = TV (ϵn+ k, k) + TV ((1− ϵ)n+ k, k) + T (t, k)

≤ TV (ϵn+ k, k) + TV ((1− ϵ)n+ k, k)

+Qk
3
2n

(
2Cϵk+1 +O

(
1

n

))√
Cϵ + 1

2πCϵ

(
1 +

1

Cϵ

)Cϵk

(Cϵ + 1)
k

≤ Qk
3
2

(
2Cϵk+1 +O

(
1

n

))√
Cϵ + 1

2πCϵ

(
1 +

1

Cϵ

)Cϵk

(Cϵ + 1)
k 1

ϵ
n lnn

In the above equation, we use the corollary to the following lemma (Lemma 5). Note that the
reason we add k to both recursive calls is that we add the separator to both subproblems.

Lemma 5 Assume 0 < ϵ ≤ 1
2 , 0 < c′ ≤ c, 2 ≤ k, and n1 + n2 = n. Then the recurrence

f(n+ k) ≤

{
c′(n+ k) if n− k ≤ 4k

f(n1 + k) + f(n2 + k) + c(n+ k) otherwise,

where 1
2n ≤ n1 ≤ (1− ϵ)n has a solution with f(n+ k) ≤ c

ϵn lnn− ck, for n ≥ 2k.

Proof: Case 1: 2k ≤ n ≤ 4k. Then n ≥ 4 implying lnn > 1 and

f(n+ k) ≤ c(n+ k) < 2cn− ck <
c

ϵ
n lnn− ck.

Case 2: n ≥ 4k and n2 ≥ 2k.

f(n+ k) ≤ f(n1 + k) + f(n2 + k) + c(n+ k)

≤ c

ϵ
(n1 lnn1 + (n− n1) ln(n− n1))− 2ck + c(n+ k)

<
c

ϵ

(1− ϵ)n(ln(1− ϵ)︸ ︷︷ ︸
<−ϵ

+ lnn) + ϵn(ln ϵ+ lnn)

+ c(n− k)

<
c

ϵ
n lnn− c(1− ϵ)n+ cn ln ϵ+ c(n− k)

≤ c

ϵ
n lnn+ (ϵ + ln ϵ︸ ︷︷ ︸

<0 for ϵ ≤ 1
2

) cn− ck

≤ c

ϵ
n lnn− ck

Case 3: n ≥ 4k and n2 = n− n1 < 2k.

f(n+ k) ≤ f(n1 + k) + f(n2 + k) + c(n+ k)

≤ c

ϵ
n1 lnn1 − ck + c′(n2 + k) + c(n+ k)

≤ c

ϵ
(1− ϵ)n(ln(1− ϵ) + lnn)− ck + c′(n2 + k) + c(n+ k)

<
c

ϵ
(1− ϵ)n(−ϵ+ lnn)− ck + c′(n2 + k) + c(n+ k)

280 Mahdi Belbasi, Martin Fürer An Improvement of Reed’s Treewidth Approximation

≤ c

ϵ
n lnn− ck − cn lnn− c(1− ϵ)n+ c′(n2 + k) + c(n+ k)

<
c

ϵ
n lnn− ck

The last inequality is true, because n ≥ 4k ≥ 8 implying lnn > 2, and n+ k < 3k ≤ 3
4n. □

□

Corollary 1 Under the conditions of the Lemma 5,

f(n) ≤ c

ϵ
n lnn.

Now, the total running time of the algorithm (Tt) is:

Tt(n, k) ≤ Qk
3
2

(
2Cϵk+1 +O

(
1

n

))√
Cϵ + 1

2πCϵ

(
1 +

1

Cϵ

)Cϵk

(Cϵ + 1)
k

(
1 + log 3

2
k
)

ϵ
n lnn, (7)

where it takes log 3
2
k steps so that the kexcess drops to zero (that is when we need to split by V

once more).
As we mentioned in Section 4.1, Cϵ =

4
1−2ϵ . We plug that into Equation 7.

Tt(n, k) ≤ Qk
3
2

(
2

4k
1−2ϵ+1 +O

(
1

n

))√
5− 2ϵ

8π

(
1.25− ϵ

2

) 4k
1−2ϵ

(
4

1− 2ϵ
+ 1

)k

(
1 + log 3

2
k
)

ϵ
n lnn,

(8)

In Equation 8, let ϵ→ 0.

lim
ϵ→0

Tt(n, k) ≤
1

ϵ

√
5

2π
Qk

3
2

(
log 3

2
k
)
2(4+4 log 1.25+log 5)kn lnn (9)

□

□

For instance, by setting ϵ = 10−2,we have

Tt(n, k) ≤ 90Qk1.5 log3/2 k 2
7.718kn lnn,

and by setting ϵ = 10−3, we get

Tt(n, k) ≤ 893Qk1.5 log3/2 k 2
7.621kn lnn

Corollary 2 There exists a 5-approximation algorithm for treewidth that runs in time O
(
27.61kn log n

)
.

JGAA, 26(2) 257–282 (2022) 281

6 Conclusion

In this paper, we have given a detailed analysis of Reed’s treewidth approximation algorithm [17].
We have shown that it runs in time O(224kk!n log n), where k is treewidth+1. Furthermore, we
have shown that it is a 5 or 7 approximation, depending on how frequently we split based on V .

Then, we have given our improved algorithm which runs in time O(27.61kn log n), with the same
approximation ratio.

Our main goal was to obtain a small coefficient of k in the exponent to make the algorithm
more applicable. We think it is still possible to further improve it. Also, trying to come up
with a better approximation ratio is worthwhile while maintaining the same dependence on k (a
2-approximation [15] is known but the coefficient of k in the exponent is larger).

Finally, another direction for future work could be giving hardness results on the approximation
ratio.

References

[1] E. Amir. Approximation algorithms for treewidth. Algorithmica, 56(4):448–479, 2010. doi:

10.1007/s00453-008-9180-4.

[2] S. Arnborg, D. G. Corneil, and A. Proskurowski. Complexity of finding embeddings in a k-tree.
SIAM Journal on Algebraic Discrete Methods, 8:277–284, 1987. doi:10.1137/0608024.

[3] S. Arnborg, J. Lagergren, and D. Seese. Problems easy for tree-decomposable graphs extended
abstract. In International Colloquium on Automata, Languages, and Programming, pages 38–
51. Springer, 1988. doi:10.1007/3-540-19488-6_105.

[4] M. Belbasi and M. Fürer. An improvement of Reed’s treewidth approximation. In Inter-
national Workshop on Algorithms and Computation, pages 166–181. Springer, 2021. doi:

10.1007/978-3-030-68211-8_14.

[5] U. Bertele and F. Brioschi. On non-serial dynamic programming. Journal of Combinatorial
Theory, Series A, 14(2):137–148, 1973. doi:10.1016/0097-3165(73)90016-2.

[6] H. L. Bodlaender. A linear-time algorithm for finding tree-decompositions of small treewidth.
SIAM Journal on Computing, 25(6):1305–1317, 1996. doi:10.1137/S0097539793251219.

[7] H. L. Bodlaender. Discovering treewidth. In International Conference on Current Trends
in Theory and Practice of Computer Science, pages 1–16. Springer, 2005. doi:10.1007/

978-3-540-30577-4_1.

[8] H. L. Bodlaender, P. G. Drange, M. S. Dregi, F. V. Fomin, D. Lokshtanov, and M. Pilipczuk.
A O(ck n) 5-approximation algorithm for treewidth. SIAM Journal on Computing, 45(2):317–
378, 2016. doi:10.1137/130947374.

[9] B. Courcelle. The monadic second-order logic of graphs. I. Recognizable sets of finite graphs.
Information and Computation, 85(1):12–75, 1990. doi:10.1016/0890-5401(90)90043-H.

[10] U. Feige, M. Hajiaghayi, and J. R. Lee. Improved approximation algorithms for minimum
weight vertex separators. SIAM Journal on Computing, 38(2):629–657, 2008. doi:10.1137/
05064299X.

https://doi.org/10.1007/s00453-008-9180-4
https://doi.org/10.1007/s00453-008-9180-4
https://doi.org/10.1137/0608024
https://doi.org/10.1007/3-540-19488-6_105
https://doi.org/10.1007/978-3-030-68211-8_14
https://doi.org/10.1007/978-3-030-68211-8_14
https://doi.org/10.1016/0097-3165(73)90016-2
https://doi.org/10.1137/S0097539793251219
https://doi.org/10.1007/978-3-540-30577-4_1
https://doi.org/10.1007/978-3-540-30577-4_1
https://doi.org/10.1137/130947374
https://doi.org/10.1016/0890-5401(90)90043-H
https://doi.org/10.1137/05064299X
https://doi.org/10.1137/05064299X

282 Mahdi Belbasi, Martin Fürer An Improvement of Reed’s Treewidth Approximation

[11] J. Flum and M. Grohe. Parameterized Complexity Theory (Texts in Theoretical Computer
Science. An EATCS Series). Springer-Verlag, Berlin, Heidelberg, 2006.

[12] F. V. Fomin, I. Todinca, and Y. Villanger. Large induced subgraphs via triangulations and
CMSO. SIAM Journal on Computing, 44(1):54–87, 2015. doi:10.1137/140964801.

[13] R. Halin. S-functions for graphs. Journal of Geometry, 8(1-2):171–186, 1976. doi:10.1007/
BF01917434.

[14] T. Kloks. Treewidth: Computations and Approximations. Springer, 1994. doi:10.1007/

BFb0045375.

[15] T. Korhonen. A single-exponential time 2-approximation algorithm for treewidth. In 2021
IEEE 62nd Annual Symposium on Foundations of Computer Science (FOCS), pages 184–192,
2022. doi:10.1109/FOCS52979.2021.00026.

[16] J. Lagergren. Efficient parallel algorithms for graphs of bounded tree-width. Journal of
Algorithms, 20(1):20–44, 1996. doi:10.1006/jagm.1996.0002.

[17] B. A. Reed. Finding approximate separators and computing tree width quickly. In Proceedings
of the Twenty-Fourth Annual ACM Symposium on Theory of Computing, pages 221–228.
ACM, 1992. doi:10.1145/129712.129734.

[18] B. A. Reed. Tree Width and Tangles: A New Connectivity Measure and Some Applications,
page 87–162. London Mathematical Society Lecture Note Series. Cambridge University Press,
1997. doi:10.1017/CBO9780511662119.006.

[19] N. Robertson and P. D. Seymour. Graph minors. III. Planar tree-width. Journal of Combi-
natorial Theory, Series B, 36(1):49–64, 1984. doi:10.1016/0095-8956(84)90013-3.

[20] N. Robertson and P. D. Seymour. Graph minors. XIII. The disjoint paths problem. Journal
of Combinatorial Theory, Series B, 63(1):65–110, 1995. doi:10.1006/jctb.1995.1006.

https://doi.org/10.1137/140964801
https://doi.org/10.1007/BF01917434
https://doi.org/10.1007/BF01917434
https://doi.org/10.1007/BFb0045375
https://doi.org/10.1007/BFb0045375
https://doi.org/10.1109/FOCS52979.2021.00026
https://doi.org/10.1006/jagm.1996.0002
https://doi.org/10.1145/129712.129734
https://doi.org/10.1017/CBO9780511662119.006
https://doi.org/10.1016/0095-8956(84)90013-3
https://doi.org/10.1006/jctb.1995.1006

	Introduction
	Previously Known Results
	Our Contribution

	Preliminaries
	Tree Decomposition

	Analysis of Reed's Algorithm
	Summary of Reed's Algorithm
	Centroids and Separators
	Algorithm to Find a Weakly Balanced Separation
	Split(G, X, Y, k)
	DFS-Trees(G, k)
	Separation(G, k)

	The Correctness of Reed's Algorithm
	Running Time of Reed's Algorithm

	Our Improved Algorithm
	Relax the balancing requirement
	Main Improvement
	The Correctness of Our Algorithm

	Running Time of Our Algorithm
	Conclusion

