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Abstract. Given a graph, an L(p, 1)-labeling of the graph is an assignment f
from the vertex set to the set of nonnegative integers such that for any pair of ver-
tices u and v, |f(u) − f(v)| ≥ p if u and v are adjacent, and f(u) ̸= f(v) if u and
v are at distance 2. The L(p, 1)-labeling problem is to minimize the span of f
(i.e.,maxu∈V (f(u))−minu∈V (f(u)) + 1). It is known to be NP-hard even for graphs of
maximum degree 3 or graphs with tree-width 2, whereas it is fixed-parameter tractable
with respect to vertex cover number. Since the vertex cover number is a kind of the
strongest parameter, there is a large gap between tractability and intractability from
the viewpoint of parameterization. To fill up the gap, in this paper, we propose new
fixed-parameter algorithms for L(p, 1)-Labeling by the twin cover number plus the
maximum clique size and by the tree-width plus the maximum degree. These algorithms
reduce the gap in terms of several combinations of parameters.

1 Introduction

Let G be an undirected graph, and p and q be constant positive integers. An L(p, q)-labeling of
a graph G is an assignment f from the vertex set V (G) to the set of nonnegative integers such
that |f(u) − f(v)| ≥ p if u and v are adjacent and |f(u) − f(v)| ≥ q if u and v are at distance 2,
for all pairs of u and v in V (G). We call the former distance-1 condition and the latter distance-2
condition. A k-L(p, q)-labeling is an L(p, q)-labeling f : V (G) → {0, . . . , k}, where the labels start
from 0 for conventional reasons. The k-L(p, q)-Labeling problem determines whether given G

Special Issue on the 15th Int. Conference and Workshops on Algorithms and Computation, WALCOM 2021

This work is partially supported by JSPS KAKENHI Grant Numbers JP17K19960, JP17H01698, JP19K21537,
JP20H05967, JP21K17707, JP21H05852, and JP21K19765. A preliminary version of this paper appeared in [25]

E-mail addresses: hanaka@nagoya-u.jp (Tesshu Hanaka) kazuma.k0622@gmail.com (Kazuma Kawai) ono@nagoya-
u.jp (Hirotaka Ono)

This work is licensed under the terms of the CC-BY license.

http://dx.doi.org/10.7155/jgaa.00592
https://orcid.org/0000-0001-6943-856X
https://orcid.org/0000-0003-0845-3947
mailto:hanaka@nagoya-u.jp
mailto:kazuma.k0622@gmail.com
mailto:ono@nagoya-u.jp
mailto:ono@nagoya-u.jp
https://creativecommons.org/licenses/by/4.0/


242 Hanaka et al. Computing L(p, 1)-Labeling with Combined Parameters

has a k-L(p, q)-labeling, or not, and the L(p, q)-Labeling problem asks the minimum k among all
possible assignments. The minimum value k is called the L(p, q)-labeling number, and we denote
it by λp,q(G), or simply λp,q. Notice that we can use k + 1 different labels when λp,q(G) = k.

The original notion of L(p, q)-labeling can be seen in the context of frequency assignment.
Suppose that vertices in a graph represent wireless devices. The presence/absence of edges indicates
the presence/absence of direct communication between the devices. If two devices are very close,
that is, they are connected in the graph, they need to use sufficiently different frequencies, that is,
their frequencies should be apart at least p. If two devices are not very but still close, that is, they
are at distance 2 in the graph, their frequencies should be apart at least q (≤ p). Thus, the setting
of q = 1 as one unit and p ≥ q = 1 is considered natural and interesting, and the minimization
of used range becomes the issue. Note that L(1, 1)-labeling on G is equivalent to the ordinary
coloring on the square of G. From these, L(p, 1)-Labeling for p > 1 is intensively and extensively
studied among several possible settings of p. In particular, L(2, 1)-Labeling is considered the
most important. A reason is that it is natural and suitable as a basic step to consider, and another
reason is that the computational complexity (e.g., hardness or polynomial-time solvability) tends
to be inherited from L(2, 1) to L(p, 1) of p > 2; for example, if L(2, 1)-Labeling is NP-hard in a
setting, the hardness proof could be modified to L(p, 1)-Labeling in the same setting. Also many
polynomial-time algorithms of L(2, 1)-labeling for specific graph classes can be easily extended
to L(p, 1). We can find various related results in surveys by Calamoneri [6]. See also [27] for
algorithmic results.

The notion of L(p, q)-Labeling firstly appeared in [23] and [32]. Griggs and Yeh formally
introduced the L(2, 1)-Labeling problem [21]. They also show that L(2, 1)-Labeling is NP-
hard in general. Furthermore, L(2, 1)-Labeling is shown to be NP-hard even for planar graphs,
bipartite graphs, chordal graphs [4], graphs with diameter of 2 [21] and graphs with tree-width
2 [14]. Moreover, for every k ≥ 4, k-L(2, 1)-Labeling, that is the decision version of L(2, 1)-
Labeling is NP-complete for general graphs [17] and even for planar graphs [11]. These results
imply that k-L(2, 1)-Labeling is NP-complete for every ∆ ≥ 3, where ∆ denotes the maximum
degree. On the other hand, L(2, 1)-Labeling can be solved in polynomial time for paths, cycles,
wheels [21], but these are rather trivial. For non-trivial graph classes, only a few graph classes
(e.g., co-graphs [7]) are known to be solvable in polynomial time. In particular, Griggs and Yeh
conjectured that L(2, 1)-Labeling on trees was NP-hard, which was later disproved (under P̸=NP)
by the existence of an O(n5.5)-time algorithm [7]. It is now known that L(p, 1)-Labeling on trees
can be solved in linear time [26].

From these results, we roughly understand the boundary between polynomial time solvability
and NP-hardness concerning graph classes, and studies are going to fixed-parameter (in)tractability.
For a problem A with input size n and parameter t, A is called fixed-parameter tractable with respect
to t if there is an algorithm whose running time is g(t)nO(1), where g is a computable function. Such
an algorithm is called a fixed-parameter algorithm. Moreover, A is called slice-wise polynomial (XP)
with respect to t if there is an algorithm whose running time is g(t)nh(t) where g, h are computable
functions, and such an algorithm is called an XP algorithm. If problem A is NP-hard for a constant
value of t, there is neighter fixed-parameter algorithm nor XP algorithm unless P=NP; we say A
is paraNP-hard. Unfortunately, L(2, 1)-Labeling is already shown to be paraNP-hard for several
parameters such as λ2,1, maximum degree and tree-width as seen above. For positive results, it is
fixed-parameter tractable with respect to vertex cover number [16] or neighborhood diversity [13].
Note that vertex cover number is a stronger parameter than tree-width, which means that if the
vertex cover number is bounded, the tree-width is also. There is still a gap on fixed-parameter
(in)tractability between them. For such a situation, two approaches can be taken. One is to
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finely classify intermediate parameters and see fixed-parameter (in)tractability for them, and the
other is to combine two or more parameters and see fixed-parameter (in)tractability under the
combinations. In this paper, we take the latter approach.

1.1 Our contribution

In this paper, we present algorithms with combined parameters. The parameters that we focus
on are clique-width (cw), tree-width (tw), maximum clique size (ω), maximum degree (∆) and
twin cover number (tc). These are selected in connection with aforementioned parameters, λp,1,
maximum degree and tree-width. Maximum clique size and clique-width are well used parameters
weaker than tree-width. Maximum degree itself is a considered parameter, which is strongly related
to λp,q(G). In fact, it is easy to see that λp,1 ≥ ∆ + p − 1, and λp,1 ≤ ∆2 + (p − 1)∆ − 2 [20].
Thus, λp,1 and ∆ are parameters equivalent in terms of fixed-parameter (in)tractability. Twin
cover number is picked up as a parameter that is moderately weaker than vertex cover number but
stronger than clique-width and is also incomparable to neighborhood diversity.

These parameters are ordered in the following two ways: (1) (vc ⪰){tw, tc} ⪰ cw and (2)
(λp,1 ≃)∆ ⪰ ω. Here, for graph parameters α and β, α ⪰ β represents that there is a positive
function g such that g(α(G)) ≥ β(G) holds for any G, and we denote α ≃ β if α ⪰ β and β ⪰ α. For
combined parameters of one from (1) and another from (2), we design fixed-parameter algorithms.
Note that some combination yields essentially one parameter. For example, tw + ω is equivalent
to tw, because tw ≥ ω − 1 holds. The obtained results are listed below:

� L(p, 1)-Labeling can be solved in time ∆O(tw∆)n for p ≥ 1. Since it is known that tw ≤
3cw∆ − 1 ([22]), it is also a ∆O(cw∆2)n-time algorithm, which implies L(p, 1)-Labeling is
actually FPT with respect to cw+ ∆. This result also implies that L(p, 1)-Labeling is FPT
when parameterized by band-width.

� L(p, 1)-Labeling is FPT when parameterized by tc + ω. Since tc + ω ≤ vc + 1 for any
graph, it generalizes the fixed-parameter tractability with respect to vertex cover number in
[16]. Since tc + ω ≥ tw, tc + ω is located between tw and vc.

� L(1, 1)-Labeling is FPT when parameterized by only twin cover number. This also yields a
fixed-parameter p-approximation algorithm for L(p, 1)-Labeling with respect to twin cover
number.

Figure 1 illustrates the detailed relationship between graph parameters and the parameterized
complexity of L(p, 1)-Labeling, which includes our new results and previous results shown in the
next subsection.

1.2 Related work

As mentioned above, L(p, 1)-Labeling is NP-hard even on graphs of tree-width 2 [14]. Using
stronger parameters than tree-width, Fiala et al. showed that L(p, 1)-Labeling is fixed-parameter
tractable when parameterized by vertex cover [16] and neighborhood diversity [13]. Moreover, Fi-
ala, Kloks and Kratochv́ıl showed that the problem is XP when parameterized by feedback edge set
number [17]. For approximation, it is NP-hard to approximate L(p, 1)-Labeling within a factor
of n0.5−ε for any ε > 0, whereas it can be approximated within O(n(log log n)2/ log3 n) [24]. For

L(1, 1)-Labeling, it can be solved in time O(∆28(tw+1)+1

n + n3), and hence it is XP by tree-
width [34]. This result is tight in the sense of fixed-parameter (in)tractability, because it is
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Figure 1: The relationship between graph parameters and the parameterized complexity of L(p, 1)-
Labeling. Let ω,∆, cw, mw, nd, tc, tw, fvs, fes, bw, ml, and vc denote maximum clique size, maxi-
mum degree, clique-width, modular-width, neighborhood diversity, twin cover number, tree-width,
feedback vertex set number, feedback edge set number, band-width, max leaf number, and vertex
cover number, respectively. Connections between two parameters imply that the upper is bounded
by a function of the lower. The underlines for parameters indicate that they are obtained in this
paper.

W[1]-hard with respect to tree-width [16]. Moreover, L(1, 1)-Labeling can be solved in time

O(cw326cwn24cw+22cw+1) [33].

Apart from L(p, 1)-Labeling, twin cover number is a relatively new graph parameter, which
is introduced in [18] as a weaker parameter than vertex cover number. In the same paper, many
problems are shown to be FPT when parameterized by twin cover number, and it is getting to be
a standard parameter (e.g., [1, 12, 19, 28, 29]). Recently, for Imbalance, which is one of graph
layout problems, a parameterized algorithm is presented [31]. It is interesting that they also adopt
twin cover number plus maximum clique size as the parameters.

2 Preliminaries

In this paper, we use the standard graph notations. Suppose that G = (V,E) is a simple and
connected graph with the vertex set V and the edge set E. We sometimes use V (G) or E(G)
instead of V or E respectively, to specify graph G. For G = (V,E), we denote the numbers of
vertices and edges by n = |V | and m = |E|, respectively. For V ′ ⊆ V , we denote by G[V ′] the
subgraph of G induced by V ′. For two vertices u and v, the distance distG(u, v) is defined by the
length of a shortest path between u and v where the length of a path is the number of edges of
it. We denote the closed neighbourhood and the open neighbourhood of a vertex v by NG[v] and

NG(v), respectively. We also define N≤ℓ
G [v] = {u | distG(u, v) ≤ ℓ} and N≤ℓ

G (v) = N≤ℓ
G [v] \ {v}.

For a set S ⊆ V , let NG(S) =
⋃

v∈S NG(v) and NG[S] =
⋃

v∈S NG[v]. The degree of v is denoted
by dG(v) = |NG(v)|. The maximum degree of G is denoted by ∆(G). For simplicity, we sometimes
omit the subscript G.
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The k-th power Gk = (V,Ek) of a graph G = (V,E) is a graph such that the set of vertices is
V and there is an edge (u, v) in Ek if and only if there is a path of length at most k between u
and v in G [5]. In particular, G2 is called the square of G.

Graph parameters

In the following, we introduce several graph parameters.

Clique-width We introduce the definition of clique-width (see also [8, 9]). A vertex-labeled
graph is a graph whose vertices have exactly one integer as a label. For a positive integer c, a
c-graph is a vertex-labeled graph with labels in {1, 2, . . . , c}. Then the clique-width cw(G) of G
is defined as the minimum integer c such that G is constructed with c labels by the following
operations:

� Create a new vertex with label i ∈ {1, 2, . . . , c},

� Take a disjoint union of two c-graphs,

� For two labels i and j, connect every pair of a vertex labeled by i and a vertex labeled by j
by an edge, and

� Relabel all the labels of vertices with label i to label j.

Tree-width

Definition 1 (Tree decomposition) A tree decomposition of a graph G = (V,E) is defined as
a pair ⟨X , T ⟩, where T is a tree with node set I(T ) and X = {Xi | i ∈ I(T )} is a collection of
subsets, called bags, of V such that:

1. (vertex condition)
⋃

i∈I(T ) Xi = V ,

2. (edge condition) For every {u, v} ∈ E, there exists an i ∈ I(T ) such that {u, v} ⊆ Xi, and

3. (coherence property) For every u ∈ V , Iu = {i ∈ I(T ) | u ∈ Xi} induces a connected subtree
of T .

The width of a tree decomposition is defined as maxi∈I |Xi| − 1 and the tree-width of G, denoted
by tw(G), is defined as the minimum width among all possible tree decompositions of G.

Definition 2 (Nice tree decomposition) A tree decomposition ⟨X , T ⟩ is nice if it satisfies the
following conditions:

1. T has a root node r(T ) ∈ I that satisfies Xr(T ) = ∅.

2. Each node of T has at most two children.

3. Each node i in T is one of the following five types:

� A leaf node i has no children and Xi = ∅,

� An introduce vertex v node i has exactly one child j satisfying Xi = Xj ∪ {v} for a
vertex v ∈ V ,
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� An introduce edge {u, v} node i has exactly one child j satisfying Xi = Xj and it is
labeled with an edge {u, v} ∈ E where u, v ∈ Xi,

� A forget v node i has exactly one child j satisfying Xi = Xj \ {v} for a vertex v ∈ V ,
and

� A join node i has exactly two children j1, j2 such that Xj1 = Xi and Xj2 = Xi.

We additionally require that every edge in E is introduced exactly once.

By the last statement, every edge is assigned to exactly one node. An assignment is done by an
introduce edge node, for a pair of vertices that have already been introduced. This implies that
for an introduce vertex v node i, v is an isolated vertex in Gi, where Gi = (Vi, Ei) is defined by
Vi, the union of all bags Xj such that j = i or j is a descendant of i, and Ei ⊆ E, the set of all
edges introduced at i (if i is an introduce edge node) or a descendant of i.

Any tree decomposition with ℓ nodes can be transformed to a nice tree decomposition with
O(tw · n) bags and the same width in time O(tw2 · max{ℓ, n}) [10].

Twin cover Two vertices u, v are called twins if N(u) \ {v} = N(v) \ {u}. Moreover, if twins
u, v have edge {u, v}, they are called true twins and the edge is called a twin edge. Then a twin
cover of G is defined as follows.

Definition 3 (Twin cover, [18]) A set of vertices X is a twin cover of G if every edge {u, v} ∈ E
satisfies either (1) u ∈ X or v ∈ X, or (2) u, v are true twins. The twin cover number of G, denoted
by tc(G), is defined as the minimum size of twin covers in G.

An important observation is that the complement V \X of a twin cover X induces disjoint cliques.
Moreover, for each clique Z of G[V \X], N(u) ∩X = N(v) ∩X for every u, v ∈ Z [18]. That is,
any pair of vertices in a clique are true twins and each edge in G[V \X] is a twin edge.

A vertex cover X is the set of vertices such that for every edge, at least one endpoint is in X.
The vertex cover number of G, denoted by vc(G), is defined as the minimum size of vertex covers
in G. Since every vertex cover of G is also a twin cover of G, tc(G) ≤ vc(G) holds. Because
ω(G) ≤ vc(G) + 1, we have tc(G) + ω(G) ≤ 2vc(G) + 1.

Other graph parameters

Definition 4 (Band-width) For a graph G = (V,E), the band-width bw(f) of a map f : V →
[1, n] is defined by max(i,j)∈E |f(i) − f(j)|. The band-width bw(G) of G is the minimum value of
bw(f) among all possible f , that is, bw(G) = minf :V→[1,n] bw(f).

Definition 5 (Max leaf number) For a graph G = (V,E), the max leaf number ml(G) of G is
defined as the maximum number of leaves among all possible spanning trees of G.

Integer Linear Programming

Integer Linear Programming Feasibility is formulated as follows.

Input: An q × p matrix A with integer elements, an integer vector b ∈ Zq

Question: Is there a vector x ∈ Zp such that A · x ≤ b?

Lenstra [30] proved that Integer Linear Programming Feasibility is FPT when param-
eterized by the number of variables.
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3 Parameterization by cw+∆ and tw+∆

As L(p, 1)-Labeling is paraNP-hard for tree-width, so is for clique-width. In this section, as a
complement, we show that L(p, 1)-Labeling (actually, L(p, q)-Labeling for any constant p and
q) is fixed-parameter tractable when parameterized by cw + ∆.

To this end, we give a fixed-parameter algorithm for L(p, 1)-Labeling parameterized by not
cw+∆ but tw+∆, which actually implies that the problem is FPT with respect to cw+∆, because
it is known that tw ≤ 3cw∆ − 1 [22]. The running time of the algorithm is ∆O(tw∆)n, and so it is

∆O(cw∆2)n.
In the algorithm, we first construct the square G2 of G and then compute L(p, 1)-Labeling of

G by dynamic programming on a tree decomposition ⟨X ′, T ′⟩ of G2. Actually, the algorithm runs
for L(p, q)-Labeling though the running time depends on λp,q(G). One can obtain the square of
G2 in time O(m∆(G)) = O(∆(G)2n). We then prove the following lemma.

Lemma 1 Given a tree decomposition of a graph G of width t with ℓ bags, one can construct a
tree decomposition of G2 of width at most (t + 1)∆(G) + t with ℓ bags in time O(t∆(G)ℓ).

Proof: We are given a tree decomposition ⟨X , T ⟩ of G of width t. Let X ′
i = Xi ∪ N(Xi) and

X ′ = {X ′
i | i ∈ I(T )} be the set of bags. We here define ⟨X ′, T ′⟩ as a tree decomposition of G2,

where T ′ and T are identical; T and T ′ has the same node set and the same structure, where each
i ∈ I(T ′) corresponds to i ∈ I(T ). In the following, we denote ⟨X ′, T ⟩ instead of ⟨X ′, T ′⟩.

We can see that ⟨X ′, T ⟩ is really a tree decomposition of G2 with width (t + 1)∆(G) + t. It
satisfies the properties of tree decomposition indeed: Since

⋃
i∈I(T ) X

′
i =

⋃
i∈I(T )(Xi ∪N(Xi)) =

V (G) = V (G2), the vertex condition is satisfied. We next see the edge condition. For each e ∈ E,
there is Xi containing e, so e ∈ X ′

i. For each {u, v} ∈ E2 \ E, there is a vertex v′( ̸= u, v)
such that {u, v′} ∈ E and {v′, v} ∈ E. Thus there is Xi satisfying {u, v′} ⊆ Xi, which implies
{u, v} ⊆ Xi ∪ {v} ⊆ Xi ∪N({v′}) ⊆ X ′

i. These show that the edge condition is satisfied.
Finally, we check coherence property: we show that for every u ∈ V , I ′u = {i ∈ I(T ) | u ∈ X ′

i}
induces a connected subtree of T . Note that

I ′u = {i ∈ I(T ) | u ∈ X ′
i} = {i ∈ I(T ) | u ∈ Xi} ∪

⋃
v∈N(u)

{i ∈ I(T ) | v ∈ Xi}.

Here, the subgraph Tu of T induced by {i ∈ I(T ) | u ∈ Xi} is connected by the coherent property
of ⟨X , T ⟩. Also for each v ∈ N(u), the subgraph Tv of T induced by {i ∈ I(T ) | v ∈ Xi}
is connected. By {u, v} ∈ E, the edge condition of ⟨X , T ⟩ implies that there exists a bag Xj

containing both u and v. Since Tu and Tv has a common node j, the subgraph of T induced by
{i ∈ I(T ) | u ∈ Xi} ∪ {i ∈ I(T ) | v ∈ Xi} is also connected, which leads that the subgraph of T
induced by I ′u is also connected.

Hence, ⟨X ′, T ⟩ is a tree decomposition of G2. Since the size of bag X ′
i is |X ′

i| = |Xi ∪N(Xi)| =
|
⋃

u∈Xi
N [u]| ≤ (t + 1)(∆(G) + 1), the width is at most (t + 1)(∆(G) + 1) − 1 = (t + 1)∆(G) + t.

The construction of ⟨X ′, T ⟩ is done by preparing each X ′
i, which takes O(t∆(G)) steps for each i.

Thus it can be done in time O(t∆(G)ℓ) in total. □

Corollary 1 tw(G2) ≤ (tw(G) + 1)∆(G) + tw(G) holds.

By the above lemma, the tree-width of G2 is bounded if tw(G) and ∆(G) are bounded. Thus
we can design a dynamic programming algorithm on a tree decomposition of G2.
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Lemma 2 Given a tree decomposition of G2 of width at most t, one can compute k-L(p, q)-
Labeling on G in time O((k + 1)t+1t2n).

Proof: We present a dynamic programming algorithm for L(p, q)-Labeling of G on a nice tree
decomposition of G2, which is almost the ordinary nice tree decomposition except that each intro-
duce edge node has an extra one bit information that represents whether e ∈ E or not. Here, we
assume that an introduce edge e node has additional information whether e ∈ E or not. This can
be done by letting each introduce edge node have 1 bit when we make a nice tree decomposition.

In the algorithm, we guess every assignment of labels for vertices in each bags. For each bag
Xi and each labeling fi : Xi → {0, . . . , k}, we define L[i, fi], which is true if there is a partial
k-L(p, q)-labeling in Gi such that the labels of vertices in Xi follows fi, and false otherwise. In
the root node r, if L[r, fr] = true for some fr, there exists a k-L(p, q)-labeling of G. The algorithm
computes L[i, fi]’s from leaves to the root by the bottom-up manner.

Leaf node In a leaf node Xi = {v}, we set L[i, fi(v)] = true for ∀fi(v) ∈ {0, . . . , k}.

Introduce vertex v node: For an introduce vertex node i having a child j, Xi = Xj ∪ {v}.
Since v is isolated in Gi, we define L[i, fi] = L[j, fi \ fi(v)].

Introduce edge {u, v} node: In an introduce edge node i, suppose that e = {u, v} is introduced.
If e ∈ E(G), L[i, fi] = true if and only if L[j, fj ] = true in node j such that fj(w) = fi(w) for
every vertex w ∈ Xi(= Xj) and |fj(u)−fj(v)| ≥ p. Otherwise, e ∈ E(G2)\E(G). This implies that
the distance between u and v is 2 in G by the definition of G2. Therefore, we define L[i, fi] = true

if and only if L[j, fj ] = true in node j such that fj(w) = fi(w) for every vertex w ∈ Xi(= Xj)
and |fj(u) − fj(v)| ≥ q.

Forget v node: In a forget node i, we have Xi = Xj \ {v}. By the definition of a tree decompo-
sition, v never appears in any later nodes in the tree decomposition of G2. Thus, we can compute
L[i, fi] =

∨
fj\fj(v)=fi

L[j, fj ].

Join node: In a join node i having two children j1, j2, Xi = Xj1 = Xj2 holds. Thus, for each
labeling fi, we can compute L[j, fi] = L[j1, fi] ∧ L[j2, fi].

The correctness of the dynamic programming algorithm is clear. Then we analyze the running
time. In the algorithm, the size of each DP table in a node is at most (k+1)t+1. The update time of
each entry in a DP table is bounded by O(t). Because the number of nodes of a tree decomposition
is bounded by O(tn) [10], the running time of the dynamic programming is O((k + 1)t+1t2n). □

Here, one can construct a tree decomposition ⟨X , T ⟩ of G of width 5tw(G) + 4 with O(n) bags
in time 2O(tw(G))n [3]. By Lemma 1, we can obtain a tree decomposition ⟨X ′, T ⟩ of G2 of width
(5tw(G) + 4 + 1)∆(G) + 5tw(G) + 4 = O(tw(G)∆(G)) from ⟨X , T ⟩ in time O(tw(G)∆(G)n). By
Lemma 2 and λp,q ≤ max{p, q}∆2, we have the following theorem.

Theorem 1 For any positive constant p and q, there is an algorithm to solve L(p, q)-Labeling

in time ∆O(tw∆)n, which is also bounded by ∆O(cw∆2)n.

Note that tw ≤ 3cw∆ − 1 holds for any graph [22].
For the band-width bw(G) and the max leaf number ml(G) of G, we have tw(G) ≤ bw(G) ≤

ml(G) and ∆(G) ≤ 2bw(G) [2]. Thus, the following corollary holds.
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Corollary 2 For any positive constant p and q, L(p, q)-Labeling is fixed-parameter tractable
when parameterized by max leaf number, and even band-width.

4 Parameterization by twin cover number

4.1 L(p, 1)-Labeling parameterized by tc+ ω

We design a fixed-parameter algorithm for L(p, 1)-Labeling with respect to tc + ω. Notice that
for a twin cover X of G = (V,E), each of the connected components of G[V \X] forms a clique.
We categorize vertices in V \ X with respect to the neighbors in X. Let T1, T2, . . . , Ts be the
sets of vertices having common neighbors in X, called types of vertices in V \ X, where s is the
number of types. Moreover, we say that a clique C ⊆ V \ X is of type Ti if C ⊆ Ti. Note that
V \X =

⋃s
i=1 Ti. Let ni = |Ti| and ωi be the maximum clique size in Ti.

We first see a general property about cliques with the common neighbors: Suppose that a graph
G consists of only cliques C1, C2, . . . , Ch and the common neighbors Y of all the vertices in the
cliques. That is, all the vertices are within distance 2. Note that a twin cover focuses on such a
substructure in a graph. Then the following lemma holds.

Lemma 3 Suppose that a graph G is above defined by cliques C1, C2, . . . , Ch, in the descending or-
der of the size and their common neighbors Y , where the vertices in Y are labeled by a1, a2, . . . , a|Y |.
For an arbitrary set L of labels that are at least p apart from a1, a2, . . . , a|Y |, if |L| ≥

∑
j |Cj | and∑

j |Cj | ≥ p|C1| hold, there exists an L(p, 1)-labeling of C1, . . . , Ch using only labels in L.

Proof: Let n′ =
∑

j |Cj | and ω = |C1|. Let us assume L = {l1, l2, . . . , ln′}. Since we can use
distinct labels for vertices in C1, C2, . . . , Ch, only the distance-1 condition inside of a same clique
matters. If n′ ≡ 1 (mod p), we label the vertices in C1, C2, . . ., Cn′ in this order by using labels
in order of l1, lp+1, l2p+1, . . . , ln′ , l2, lp+2, l2p+2 . . ., ln′−p+2, l3 . . . , lp, l2p, . . . , ln′−1. Note that the
vertices in C1 are labeled by l1, lp+1, . . . , lp(ω−1)+1 (note that pω ≤ n′). Since the difference
between lαp+i and l(α+1)p+i for each i and α is at least p, the labeling for cliques does not violate
the distance-1 condition. We can choose similar orderings for the other residuals. □

Now we go back to the algorithm parameterized by tc+ω. Given a twin cover X, we say that
a k-L(p, 1)-labeling is good for X if it uses only labels in {0, 1, . . . , (2p − 1)|X| − p} ∪ {k − (2p −
1)|X| + p, . . . , k} for X. The following lemma is also important. It can be shown by repeatedly
applying Lemma 3.

Lemma 4 Let X be a twin cover in G such that each Ti satisfies ωi ≤ ni/p. If G has a k-L(p, 1)-
labeling, then G also has a good k-L(p, 1)-labeling for X.

Proof: Let f be an L(p, 1)-labeling, and a, b ∈ {0, 1, . . . , k} be two labels such that (1) they are
not used in X, (2) they are at least p apart from all the labels used in X, and (3) there is at least
one label l used in X where a + p ≤ l ≤ b− p. By the definition of a and b, l can exist only when
b − a ≥ 2p. For example, the triplet of (a, l, b) is possible for l = a + p and b = a + 2p, but we
cannot take l for b < a + 2p. Then we rotate labels between a and b in f as follows: a → a + 1,
a + 1 → a + 2, . . ., b → a.

Let f ′ be a labeling obtained by the above relabeling. The rotation does not affect the distance-
2 condition, though it may affect distance-1 condition. As for X, we notice that only labels in
{a+ p, . . . , b− p} are changed in X, which does not yield any new conflict inside of X. Therefore,
f ′ satisfies the distance-1 condition of L(p, 1)-labeling in G[X]. Also b− p + 1 is only a label that
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could be newly used in X of f ′, which does not affect any label in V \ X; f ′ also satisfies the
distance-1 condition of L(p, 1)-labeling between X and V \X.

We see that f ′ does not violate the condition of L(p, 1)-labeling within X and between X and
V \X. On the other hand, it may violate the condition within V \X. For example, if a clique in
G[V \X] has two vertices labeled with b− p+ 1 and b+ 1 in f , they are labeled with b− p+ 2 and
b + 1 in f ′, which violates the distance-1 condition by (b + 1) − (b − p + 2) = p − 1. Fortunately,
such a violation can be easily avoided by further relabeling vertices in V \X as follows.

For each Ti, we first observe that labels used in f for Ti are different from each other due to the
distance 2-condition, as so in f ′. A problem may occur inside of a clique, which may violate the
distance-1 condition. However, even if a conflict occurs, we can obtain a proper k-L(p, 1)-labeling
by relabeling the vertices in Ti with the same label set. This is because the cliques inside of Ti

have exactly same neighbors and pωi ≤ ni holds, by which we can apply the argument of Lemma
3.

The above procedure can push up a label in a middle range used in X. It can be applied
as long as a triplet of a, b and l exists. As mentioned above, l can exist only when b − a ≥ 2p.
Consider the labeling where all the vertices in X are labeled by |X| labels near k: k − (2p −
1)|X| + p, k − (2p− 1)(|X| − 1) + p, k − (2p− 1)(|X| − 2) + p, . . . , k − (2p− 1) + p (= k − p + 1).
It is easy to see that we cannot take a and b for the labeling, though we can take a and b
if we use k − (2p − 1)|X| + p − 1 or a smaller label instead of k − (2p − 1)|X| + p. On the
other hand, consider the labeling where all the vertices in X are labeled by |X| labels near 0:
p−1, 3p−2, . . . , (p−1) + (2p−1)(|X|−2), p−1 + (2p−1)(|X|−1)(= (2p−1)|X|−p). We cannot
take a and b again.

By these, if we cannot apply the above procedure, all the labels for X are in {0, 1, . . . , (2p −
1)|X|−p−1, (2p−1)|X|−p}∪{k− (2p−1)|X|+p, k− (2p−1)|X|+p+1, . . . , k−1, k}. Hence, by
applying the above procedure repeatedly, we eventually obtain a good k-L(p, 1)-labeling f∗, which
implies that if there is a k-L(p, 1)-labeling in G, then there is a good k-L(p, 1)-labeling for X in G.

□

Thus, we consider to find a good L(p, 1)-labeling. Using the lemma, we show that L(p, 1)-
Labeling is fixed-parameter tractable with respect to tc + ω.

Theorem 2 L(p, 1)-Labeling is fixed-parameter tractable when parameterized by tc + ω.

Proof: We present an algorithm to solve k-L(p, 1)-Labeling instead of L(p, 1)-Labeling. We
first compute a minimum twin cover X in time O(1.2738tc + tcn + m) [18]. For twin cover X, we
define Ti’s. Then, we define another twin cover of X ′ = X ∪

⋃
i:ωi>ni/p

Ti, where X ′ is obtained by
adding every Ti breaking the condition of Lemma 4 to X. By this modification, our algorithm can
utilize a twin cover that satisfies the condition of Lemma 4. The size of X ′ is at most tc+2tc ·p ·ω,
because the number of types is at most 2tc and the size of Ti joining X is at most p · ω. Let
tc′ = |X ′|.

We are now ready to present the core of the algorithm. We classify an instance into two cases.
If k is small enough, we can apply a brute-force type algorithm. Otherwise, we try to find a good
k-L(p, 1)-labeling.

(Case: k < 4ptc′) For each type Ti, the distance between two vertices in Ti is at most 2. Thus, the
labels of vertices in Ti must be different each other. Due to k < 4ptc′, if |Ti| ≥ 4ptc′, we conclude
that the input is a no-instance. Otherwise, n = |X ′| +

∑
i |Ti| ≤ tc′ + 4ptc′2tc holds, because the

number of Ti’s is at most 2tc. Thus we check all the possible labelings in time O((4ptc′)tc
′(4p2tc+1)).
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(Case: k ≥ 4ptc′) Let C0, C1, . . . Ct be the family of all possible set systems on {T1, . . . , Ts} such
that whenever two distinct Tj and Tj′ are in Ci then N(Tj) ∩ N(Tj′) = ∅. Here, C0 is the empty
set. Roughly speaking, each of Ci represents a set of types that can use an identical label, because
the distance between Tj and Tj′ in Ci is at least 3 and they do not violate the distance-2 condition.
The idea to reduce the number of essential patterns of assignments is to consider not assignments
of labels to vertices in V \X ′ but Ci instead. Note that cliques in a type Tj can be labeled by the
same way due to Lemma 3.

For each Ci, we prepare a set Li of labels, which will be used during the execution of the
algorithm to represent the set of labels that could be used for vertices in Tj ∈ Ci. Note that
L0, L1, . . . , Lt must be disjoint each other, and a label in Li is used exactly once per Tj . We also
define L0 as the set of labels not used in V \X ′. Each Li can be empty.

By Lemma 4, there is a good k-L(p, 1)-labeling for X ′ such that vertices in X ′ only use labels in
{0, 1, . . . , (2p−1)|X ′|−p}∪{k−(2p−1)|X ′|+p, . . . , k} if the input is an yes-instance. Thus we try
all the possible partial labelings for X ′, each of which uses only labels in {0, 1, . . . , (2p−1)|X ′|−p}∪
{k−(2p−1)|X ′|+p, . . . , k}. Since the number of labels used in X ′ is at most 2((2p−1)|X ′|−p+1) ≤
4ptc′, there are at most (4ptc′)tc

′
possible labelings of X ′. For each of them we further try all

the possible placement of labels in {0, 1, . . . , (2p− 1)|X ′| − 1} ∪ {k − (2p− 1)|X ′| + 1, . . . , k} into
L0, L1, . . . , Lt, which is a little wider than above. The number of possible placements is at most
(t + 1)4ptc

′
due to the disjointness of Li’s. Therefore, the total possible nonisomorphic partial

labelings is at most (4ptc′)tc · (t + 1)4ptc
′
. Note that no vertex will be labeled by a label in

{0, 1, . . . , (2p− 1)|X ′| − 1} ∪ {k− (2p− 1)|X ′| + 1, . . . , k} hereafter. Thus we consider how we use
labels in {(2p− 1)|X ′|, . . . , k− (2p− 1)|X ′|} for V \X ′, which does not yield any conflict with X ′.

We then formulate how many labels should be placed in L0, L1, . . . , Lt for one partial labeling
using {0, 1, . . . , (2p − 1)|X ′| − p} ∪ {k − (2p − 1)|X ′| + p, . . . , k} as Integer Linear Programming.
For a fixed partial labeling, let ai be the number of labels that have been already assigned to Li,
and xi be a variable representing the number of labels used in Li in the desired labeling.

The following is the ILP formulation.
x0 + · · · + xt ≤ k + 1

xi ≥ ai, for i ∈ {0, . . . , t}∑
i:Tj∈Ci

xi = |Tj |, for j ∈ {1, . . . , s}

The first constraint shows that the total number of labels is at most k + 1. Note that the number
of unused labels is x0. The second one is for consistency to the partial labeling. The last one,
which is the most important, guarantees that every vertex in Tj can receive a label; the number
of usable labels is |{i | Tj ∈ Ci}|, because a label in Li is used exactly once per Tj .

If the above ILP has a feasible solution, it is possible to assign labels to all the vertices in
V \ X ′ if we ignore the distance-1 condition inside of each clique. Actually, we can see that the
information is sufficient to give a proper k-L(p, 1)-labeling. At the beginning of the algorithm, we
take twin cover X ′, which means that for every Ti ⊆ V \X ′, ni ≥ pωi holds. Since cliques in G[Ti]
have common neighbors and ni ≥ pωi, only the number of available labels matters by Lemma 3.
Since the existence of an ILP solution guarantees this, we can decide whether a partial labeling
can be extended to a proper k-L(p, 1)-labeling, or not.

Because t ≤ 2s ≤ 22
tc′

, the number of variables of the ILP is at most 22
tc′

; it can be solved in
FPT time with respect to tc′ [30]. Since tc′ ≤ tc+ 2tc · p · ω, the total running time is FPT time
with respect to tc + ω. □
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4.2 L(1, 1)-Labeling parameterized by tc

Unlike L(p, 1)-labeling with p ≥ 2, the distance-1 condition of L(1, 1)-labeling requires just that
the labels between adjacent vertices are different. Thus, L(1, 1)-Labeling seems to be easier than
L(p, 1)-Labeling with p ≥ 2. Actually, we can show that L(1, 1)-Labeling is fixed-parameter
tractable parameterized only by twin cover number.

Lemma 5 For a connected graph G, let X be a non-empty twin cover of G and G′ is a graph
obtained from G by deleting all the twin edges in G[V \X]. Then, any L(1, 1)-labeling on G′ is an
L(1, 1)-labeling on G and vice versa.

Proof: The statement is true, if N≤2
G [v] = N≤2

G′ [v] holds for any vertex v ∈ V , and we show this
below. We first show this for v ∈ X. Since X is a twin cover in G and only twin edges in G[V \X]

are deleted, N≤2
G [v] = N≤2

G′ [v] holds for any v ∈ X. Note that G[V \X] forms a set of cliques of
twins and each vertex in such a clique has the same neighborhood in X.

Next, we show N≤2
G [v] = N≤2

G′ [v] for v ∈ V \X. Let C be the clique in G[V \X] that contains
v. Since we only delete the twin edges in G[V \X], the distance from v to w ∈ V \ C in G′ and
the distance in G are the same. For v, w ∈ C, since they are true twins in G, there is a common
neighbor in X in G′, which implies that the distance between v and w is two in G′. Therefore, for
every v ∈ V , N≤2

G [v] = N≤2
G′ [v] holds. This completes the proof. □

Corollary 3 For G′ defined as above, λ1,1(G′) = λ1,1(G) holds.

Then we give an fixed-parameter algorithm for L(1, 1)-Labeling parameterized by twin cover
number. First, we compute a minimum twin cover X of G in time O(1.2738tc + tcn + m) [18].
If there exists an empty twin cover of G, it consists of complete graphs. In this case, we can
immediately obtain an optimal labeling. Otherwise, we compute the L(1, 1)-labeling number of
G′, which equals to the L(1, 1)-labeling number of G by Corollary 3. Since X is a twin cover in G,
it is a vertex cover in G′ by the deletion of twin edges in G[V \X]. Because L(1, 1)-Labeling is
fixed-parameter tractable when parameterized by vertex cover number [16], we have the following
theorem.

Theorem 3 L(1, 1)-Labeling is fixed-parameter tractable when parameterized by twin cover num-
ber.

Since λ1,1(G) ≤ λp,1(G) ≤ λp,p(G) = pλ1,1(G) holds, an L(1, 1)-labeling gives an approximation
for L(p, 1)-Labeling. In fact, by replacing the labels of an optimal L(1, 1)-labeling of G with
multiples of p, we obtain an L(p, 1)-labeling whose approximation factor is at most p.

Corollary 4 For L(p, 1)-Labeling, there is a fixed-parameter p-approximation algorithm with
respect to twin cover number.

5 Concluding Remarks

Some FPT results hold for more general settings, that is, L(p, q)-Labeling with any constant p
and q. For example, L(p, q)-Labeling with any constant p and q is FPT when parameterized
by tree-width plus maximum degree. This implies that bounding maximum degree is essential for
NP-hardness, because L(p, q)-Labeling for trees (i.e., graphs with tree-width 1) is NP-hard for
every pair of p and q having no common divisor [15].

An interesting open question is whether L(p, 1)-Labeling parameterized by only twin cover
number is FPT or not.
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